Published Papers

Our preprints can be found in the preprints section.

2018

PDF(open access)
P. Elbau, L. Mindrinos and O. Scherzer Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging Inverse Probl., 34(1):014006, 2018 BibTeX | funding | PDF )
PDF(open access)

2017

PDF(available here on Jan 2019; preprint available now)
H. Akhouayri, M. Bergounioux, A. Da Silva, P. Elbau, A. Litman and L. Mindrinos Quantitative thermoacoustic tomography with microwaves sources J. Inverse Ill-Posed Probl., 25(6):703–717, 2017 BibTeX | PDF )
PDF(available here on Jan 2019; preprint available now)
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
H. Ammari, F. Romero and C. Shi A signal separation technique for sub-cellular imaging using dynamic optical coherence tomography Multiscale Model. Simul., 15(3):1155–1175, 2017 BibTeX | PDF )
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
L. Baratchart and C. Gerhards On the Recovery of Core and Crustal Components of Geomagnetic Potential Fields SIAM J. Appl. Math., 77(5):1756-1780, 2017 BibTeX | PDF )
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
PDF unavailable(author's post print available here on Aug 2018; preprint available now)
R. Chapko, D. Gintides and L. Mindrinos The inverse scattering problem by an elastic inclusion Adv. Comput. Math., first online:1–24, July, 2017 BibTeX | PDF )
PDF unavailable(author's post print available here on Aug 2018; preprint available now)
R. Chapko and L. Mindrinos On the numerical solution of the exterior elastodynamic problem by a boundary integral equation method J. Integral Equations Appl., to appear:1–20, 2017 BibTeX )
PDF unavailable(author's post print available here on May 2018; preprint available now)
G. Dong, B. Jüttler, O. Scherzer and T. Takacs Convergence of Tikhonov regularization for solving ill–posed operator equations with solutions defined on surfaces Inverse Probl. Imaging, 11(2):221 – 246, April, 2017 BibTeX | funding | PDF )
PDF unavailable(author's post print available here on May 2018; preprint available now)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-58771-4_23)
G. Dong and O. Scherzer Nonlinear Flows for Displacement Correction and Applications in TomographyIn F. Lauze, Y. Dong and A. Dahl, editors, Scale Space and Variational Methods in Computer Vision. SSVM 2017, 10302:283–294. Springer, May, 2017 BibTeX | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-58771-4_23)
PDF(open access)
P. Elbau, L. Mindrinos and O. Scherzer Inverse problems of combined photoacoustic and optical coherence tomography Math. Methods Appl. Sci., 40(3):505–522, 2017 BibTeX | funding | PDF )
PDF(open access)
P. Elbau, L. Mindrinos and O. Scherzer Modeling polarization-sensitive OCT using inverse scattering techniquesIn Imaging and Applied Optics 2017, MW3C.3. Optical Society of America, 2017 BibTeX )
P. Elbau, O. Scherzer and C. Shi Singular Values of the Attenuated Photoacoustic Imaging Operator J. Differential Equations, 263(9):5330–5376, 2017 BibTeX | funding )
PDF(open access)
W. Freeden and C. Gerhards Romberg extrapolation for Euler summation-based cubature on regular regions GEM. Int. J. Geomath., 2017 BibTeX | PDF )
PDF(open access)
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
I. A. Frigaard, J. A. Iglesias, G. Mercier, C. Pöschl and O. Scherzer Critical Yield Numbers of Rigid Particles Settling in Bingham Fluids and Cheeger Sets SIAM J. Appl. Math., 77(2):638–663, 2017 BibTeX | funding | PDF )
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
PDF unavailable(author's post print available here on Mar 2018; preprint available now)
C. Gerhards, S. Pereverzyev Jr. and P. Tkachenko A parameter choice strategy for the inversion of multiple observations Adv. Comput. Math., 43:101-112, February, 2017 BibTeX | PDF )
PDF unavailable(author's post print available here on Mar 2018; preprint available now)
PDF(open access)
D. Gintides and L. Mindrinos The inverse electromagnetic scattering problem by a penetrable cylinder at oblique incidence Appl. Anal., 1–19, 2017 BibTeX | PDF )
PDF(open access)
PDF(open access)
J. A. Iglesias, M. Rumpf and O. Scherzer Shape-Aware Matching of Implicit Surfaces Based on Thin Shell Energies Found. Comput. Math., Online First:1–37, 2017 BibTeX | funding | PDF )
PDF(open access)
PDF unavailable(author's post print available here on Aug 2018; preprint available now)
C. Kirisits and O. Scherzer Convergence rates for functionals with polyconvex integrands Inverse Probl., 33(8):085008, July, 2017 BibTeX | PDF )
PDF unavailable(author's post print available here on Aug 2018; preprint available now)

paper website
PDF unavailable(author's post print available here on Jan 2019; preprint available now)
L. F. Lang and O. Scherzer Optical flow on evolving sphere-like surfaces Inverse Probl. Imaging, 11(2):305–338, 2017 BibTeX | Website | PDF )
PDF unavailable(author's post print available here on Jan 2019; preprint available now)
PDF unavailable(author's post print available here on Jan 2019)
A. P. Patrone and O. Scherzer On a spatial-temporal decomposition of optical flow Inverse Probl. Imaging, 11(4):761–781, 2017 BibTeX | PDF )
PDF unavailable(author's post print available here on Jan 2019)
PDF unavailable(author's post print available here on Dec 2018; preprint available now)
C. Shi and O. Scherzer Two reconstruction formulas for the Attenuated Photoacoustic Imaging Inverse Probl., November, 2017 BibTeX | PDF )
PDF unavailable(author's post print available here on Dec 2018; preprint available now)

2016

PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
V. Albani, A. De Cezaro and J. Zubelli On the Choice of the Tikhonov Regularization Parameter and the Discretization Level: A Discrepancy-Based Strategy Inverse Probl. Imaging, 10:1–25, February, 2016 BibTeX | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(open access)
V. Albani, P. Elbau, M. V. de Hoop and O. Scherzer Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces Numer. Funct. Anal. Optim., 37(5):521–540, 2016 BibTeX | funding | PDF )
PDF(open access)
PDF(open access)
Z. Belhachmi, T. Glatz and O. Scherzer A direct method for photoacoustic tomography with inhomogeneous sound speed Inverse Probl., 32(4):045005, 2016 BibTeX | funding | PDF )
PDF(open access)
PDF(published version; the final publication is available at www.degruyter.com)
Z. Belhachmi, T. Glatz and O. Scherzer Photoacoustic Tomography With Spatially Varying Compressibility and Density J. Inverse Ill-Posed Probl., 25:119-133, September, 2016 BibTeX | PDF )
PDF(published version; the final publication is available at www.degruyter.com)
PDF(published version; © 2016 Society for Industrial and Applied Mathematics)
E. Beretta, M. V. de Hoop, F. Faucher and O. Scherzer Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates SIAM J. Math. Anal., 48:3962–3983, 2016 BibTeX | PDF )
PDF(published version; © 2016 Society for Industrial and Applied Mathematics)
E. Beretta, M. Muszkieta, W. Naetar and O. Scherzer A variational method for quantitative photoacoustic tomography with piecewise constant coefficientsIn M. Bergounioux, G. Peyre, C. Schnörr, J.B. Caillau and T. Haberkorn, editors, Variational Methods in Imaging and Geometric Control, 202–224. Walter de Gruyter GmbH & Co. KG, 2016 BibTeX )
P. Elbau, L. Mindrinos and O. Scherzer The Inverse Scattering Problem in Optical Coherence TomographyIn Imaging and Applied Optics 2016, MW5H.6. Optical Society of America, 2016 BibTeX )
PDF(author's post print; the final publication is available at Oberwolfach Conference: Theory and Numerics of Inverse Scattering Problems)
P. Elbau, L. Mindrinos and O. Scherzer The inverse electromagnetic scattering problem in OCT for anisotropic mediaIn F. Cakoni, M. Hanke-Bourgeois, A. Kirsch and W. Rundell, editors, Oberwolfach Conference: Theory and Numerics of Inverse Scattering Problems, 13:2612–2615. EMS Publishing House, 2016 BibTeX | PDF )
PDF(author's post print; the final publication is available at Oberwolfach Conference: Theory and Numerics of Inverse Scattering Problems)
PDF(author's post print)
C. Gerhards On the unique reconstruction of induced spherical magnetizations Inverse Probl., 32:015002, January, 2016 BibTeX | PDF )
PDF(author's post print)
D. Gintides and L. Mindrinos The direct scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder J. Integral Equations Appl., 28(1):91–122, 2016 BibTeX )
J. A. Iglesias and C. Kirisits Convective regularization for optical flowIn M. Bergounioux, G. Peyre, C. Schnörr, J.B. Caillau and T. Haberkorn, editors, Variational Methods in Imaging and Geometric Control, 184–201. Walter de Gruyter GmbH & Co. KG, 2016 BibTeX | funding | PDF )
PDF unavailable(author's post print available here on Nov 2018; preprint available now)
K. Sadiq, O. Scherzer and A. Tamasan On the X-ray transform of planar symmetric 2-tensors J. Math. Anal. Appl., 442(1):31–49, October, 2016 BibTeX | funding | PDF )
PDF unavailable(author's post print available here on Nov 2018; preprint available now)
PDF(open access)
J. Schmid, T. Glatz, B. Zabihian, M. Liu, W. Drexler and O. Scherzer Non-Equispaced Grid Sampling in Photoacoustics with a Non-Uniform FFT J. Biomed. Opt., 21(1):015005, 2016 BibTeX | PDF )
PDF(open access)
A Schnepf, D Leitner, PF Schweiger, P Scholl and J Jansa L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots J. Roy. Soc. I., 13(117):20160129, April, 2016 BibTeX )
PDF(open access)
H Vereecken, A Schnepf, JW Hopmans, M Javaux, D Or, T Roose, J Vanderborght, M Young, W Amelung, M Aitkenhead and others Modeling soil processes: key challenges and new perspectives Vadose Zone J., 1–120, 2016 BibTeX | PDF )
PDF(open access)

2015

PDF(open access)
V. Albani and J. Zubelli Structured Models for Cell Populations: Direct and Inverse ProblemsIn Workshop on Multiscale and Hybrid Modelling in Cell and Cell Population Biology, 5:. ITM Web of Conferences, 2015 BibTeX | PDF )
PDF(open access)
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numer. Funct. Anal. Optim. in 2015 available online)
R. Andreev, P. Elbau, M. V. de Hoop, L. Qiu and O. Scherzer Generalized Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces Numer. Funct. Anal. Optim., 36(5):549–566, March, 2015 BibTeX | funding | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numer. Funct. Anal. Optim. in 2015 available online)
PDF(open access)
R. Andreev, O. Scherzer and W. Zulehner Simultaneous optical flow and source estimation: Space–time discretization and preconditioning Appl. Numer. Math., 96:72–81, October, 2015 BibTeX | funding | PDF )
PDF(open access)
M. Augustin, M. Bauer, C. Blick, S. Eberle, W. Freeden, C. Gerhards, M. Ilyasov, R. Kahnt, M. Klug, S Möhringer, T. Neu, H. Nutz, I. Ostermann and A. Punzi Modeling Deep Geothermal Reservoirs: Recent Advances and Future PerspectivesIn W. Freeden, M.Z. Nashed and T. Sonar, editors, Handbook of Geomathematics. Springer, 2nd edition, 2015 BibTeX )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
M. Bauer, M. Grasmair and C. Kirisits Optical Flow on Moving Manifolds SIAM J. Imaging Sciences, 8(1):484–512, April, 2015 BibTeX | funding | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
A. Constantin, K. Kalimeris and O. Scherzer A penalization method for calculating the flow beneath travelling water waves of large amplitude SIAM J. Appl. Math., 75(4):1513–1535, July, 2015 BibTeX | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
PDF(author's post print; cc by-nc-nd 4.0)
A. Constantin, K. Kalimeris and O. Scherzer Approximations of steady periodic water waves in flows with constant vorticity Nonlinear Anal. Real World Appl., 25:276–306, October, 2015 BibTeX | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
G. Dong, A.R. Patrone, O. Scherzer and O. Öktem Infinite Dimensional Optimization Models and PDEs for DejitteringIn Scale Space and Variational Methods in Computer Vision 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings, 678–689. Springer, April, 2015 BibTeX | funding )
P. Elbau, L. Mindrinos and O. Scherzer Mathematical Methods of Optical Coherence TomographyIn O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, 1169–1204. Springer New York, 2015 BibTeX | funding )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
P. Elbau and O. Scherzer Modelling the Effect of Focusing Detectors in Photoacoustic Sectional Imaging SIAM J. Imaging Sciences, 8(1):1–18, January, 2015 BibTeX | funding | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
PDF(open access)
P. Elbau and O. Scherzer RADAR Imaging - A Mathematical Perspective Schriftenreihe zur Didaktik der Mathematik der Österreichischen Mathematischen Gesellschaft, 48:available only online, 2015 BibTeX | funding | PDF )
PDF(open access)
W. Freeden, C. Gerhards and H. Nutz Modeling Oceanic Flow: From Global Navier–Stokes to Local Geostrophic Wavelet ModelingIn E. Grafarend, editor, Encyclopedia of Geodesy. Springer, October, 2015 BibTeX )
W. Freeden, C. Gerhards, H. Nutz and M. Schreiner Disturbing Potential from Deflections of the Vertical: From Globally Reflected Surface Gradient Equation to Locally Oriented Multiscale ModelingIn E. Grafarend, editor, Encyclopedia of Geodesy. Springer, October, 2015 BibTeX )
C. Gerhards Multiscale Modeling of the Geomagnetic Field and Ionospheric CurrentsIn W. Freeden, M.Z. Nashed and T Sonar, editors, Handbook of Geomathematics. Springer, 2nd edition, January, 2015 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-015-0561-4)
T. Glatz, O. Scherzer and T. Widlak Texture Generation for Photoacoustic Elastography J. Math. Imaging Vision, 52(3):369–384, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-015-0561-4)
M. Grasmair, M. Haltmeier and O. Scherzer Sparsity in Inverse Geophysical ProblemsIn W. Freeden, M. Z. Nashed and T. Sonar, editors, Handbook of Geomathematics. Springer Berlin Heidelberg, 2015 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s00211-014-0629-x)
M. V. de Hoop, L. Qiu and O. Scherzer An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints Numer. Math., 129(1):127–148, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s00211-014-0629-x)
J. A. Iglesias and A. M. Bruckstein On the Gamma-convergence of some polygonal curvature functionals Appl. Anal., 94(5):957-979, January, 2015 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0513-4)
C. Kirisits, L. F. Lang and O. Scherzer Optical Flow on Evolving Surfaces with Space and Time Regularisation J. Math. Imaging Vision, 52(1):55–70, May, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0513-4)
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Appl. Anal. in 2015 available online)
C. Kirisits, C. Pöschl, E. Resmerita and O. Scherzer Finite-dimensional approximation of convex regularization via hexagonal pixel grids Appl. Anal., 94(3):612–636, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Appl. Anal. in 2015 available online)
P. Kuchment and O. Scherzer Mathematical Methods in Photoacoustic imagingIn B. Engquist, editor, Encyclopedia of Applied and Computational Mathematics. Springer-Verlag, 2015 BibTeX )
PDF(open access)
G. Lobet, M.P. Pound, J. Diener, C. Pradal, X. Draye, C. Godin, M. Javaux, D. Leitner, F. Meunier, P. Nacry, T.P. Pridmore and A. Schnepf Root system markup language: Toward a unified root architecture description language Plant Physiology, 167(3):617–627, 2015 BibTeX | PDF )
PDF(open access)
C. Pöschl and O. Scherzer Exact solutions of one-dimensional total generalized variation Commun. Math. Sci., 13(1):171–202, 2015 BibTeX | funding )
J. Schmid, B. Zabihian, T. Widlak, T. Glatz, M. Liu, W. Drexler and O. Scherzer Texture generation in compressional photoacoustic elastographyIn Photons Plus Ultrasound: Imaging and Sensing 2015, 9323:93232S, 2015 BibTeX | funding )
S. Tron, G. Bodner, F. Laio, L. Ridolfi and D. Leitner Can diversity in root architecture explain plant water use efficiency? A modeling study Ecol. Model., 312:200–210, September, 2015 BibTeX )
S. Tron, P. Perona, L. Gorla, M. Schwarz, F. Laio and Ridolfi L. The signature of randomness in riparian plant root distributions Geophys. Res. Lett., 42:1–9, 2015 BibTeX )
PDF(open access)
T. Widlak and O. Scherzer Stability in the linearized problem of quantitative elastography Inverse Probl., 31(3):035005, 2015 BibTeX | funding | PDF )
PDF(open access)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10100-015-0424-5)
C. Yang, A. Taudes and G. Dong Efficiency analysis of European Freight Villages: three peers for benchmarking C. Europ. J. Operat. Research, October, 2015 BibTeX | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10100-015-0424-5)

2014

U. Ansorge, S. Buchinger, C. Valuch, A. R. Patrone and O. Scherzer Visual Attention in Edited Dynamical ImagesIn Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications (SIGMAP-2014), 198–205. SCITEPRESS, 2014 BibTeX | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
E. Beretta, M. Grasmair, M. Muszkieta and O. Scherzer A variational algorithm for the detection of line segments Inverse Probl. Imaging, 8(2):389–408, May, 2014 BibTeX | funding | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(open access)
G Bodner, D Leitner and H-P Kaul Coarse and fine root plants affect pore size distributions differently Plant and Soil, 1–19, 2014 BibTeX | PDF )
PDF(open access)
P. Elbau, L. Mindrinos and O. Scherzer Mathematical Modeling of Optical Coherence TomographyIn Oberwolfach Conference: Mathematics and Algorithms in Tomography, 2053–2054. Mathematisches Forschungsinstitut Oberwolfach, 2014 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s13137-013-0055-8)
C. Kirisits, L. F. Lang and O. Scherzer Decomposition of optical flow on the sphere GEM. Int. J. Geomath., 5(1):117–141, April, 2014 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s13137-013-0055-8)
PDF(open access)
D. Leitner, B. Felderer, P. Vontobel and A. Schnepf Recovering root system traits using image analysis-Exemplified by 2-dimensional neutron radiography images of lupine Plant Physiology, 164(1):24–35, 2014 BibTeX | PDF )
PDF(open access)
PDF(open access, CC BY 3.0)
D. Leitner, F. Meunier, G. Bodner, M. Javaux and A. Schnepf Impact of contrasted maize root traits at flowering on water stress tolerance – A simulation study Field Crops Research, August, 2014 BibTeX | PDF )
PDF(open access, CC BY 3.0)
L. Mindrinos Photoacoustic Imaging in Biology and MedicineIn ECMI Newsletter 56, 92–94. ECMI, 2014 BibTeX )
PDF(published version; © 2014 Society for Industrial and Applied Mathematics)
W. Naetar and O. Scherzer Quantitative photoacoustic tomography with piecewise constant material parameters SIAM J. Imaging Sciences, 7(3):1755–1774, September, 2014 BibTeX | funding | PDF )
PDF(published version; © 2014 Society for Industrial and Applied Mathematics)
PDF(open access)
P. Scholl, D. Leitner, G. Kammerer, W. Loiskandl, H.-P. Kaul and G. Bodner Root induced changes of effective 1D hydraulic properties in a soil column Plant and Soil, 193–213, 2014 BibTeX | PDF )
PDF(open access)
PDF(author's post print; cc by-nc-nd 4.0)
T. Takacs, B. Jüttler and O. Scherzer Derivatives of isogeometric functions on n-dimensional rational patches in $mathbb R^d$ Comput. Aided Geom. Design, 31(7):567–581, October, 2014 BibTeX | funding | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
PDF(author's post print; © C. Valuch, U. Ansorge, S. Buchinger, A. R. Patrone and O. Scherzer 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14, Newcastle Upon Tyne, United Kingdom, June 25-27, 2014 http://dx.doi.org/10.1145/2602299.2602307)
C. Valuch, U. Ansorge, S. Buchinger, A. R. Patrone and O. Scherzer The effect of cinematic cuts on human attentionIn ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14, Newcastle Upon Tyne, United Kingdom, June 25-27, 2014, 119–122. ACM, June, 2014 BibTeX | PDF )
PDF(author's post print; © C. Valuch, U. Ansorge, S. Buchinger, A. R. Patrone and O. Scherzer 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14, Newcastle Upon Tyne, United Kingdom, June 25-27, 2014 http://dx.doi.org/10.1145/2602299.2602307)

2013

PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
J. Abhau, O. Aichholzer, S. Colutto, B. Kornberger and O. Scherzer Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data Inverse Probl. Imaging, 7(1):1–25, February, 2013 BibTeX | funding | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(published version; the final publication is available at www.degruyter.com)
G. Bal, W. Naetar, O. Scherzer and J. Schotland The Levenberg-Marquardt iteration for numerical inversion of the power density operator J. Inverse Ill-Posed Probl., 21(2):265–280, February, 2013 BibTeX | funding | PDF )
PDF(published version; the final publication is available at www.degruyter.com)
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
M. Bauer, T. Fidler and M. Grasmair Local Uniqueness of the Circular Integral Invariant Inverse Probl. Imaging, 7(1):107–122, February, 2013 BibTeX | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(open access, CC BY 3.0, this Document is protected by copyright and was first published by Frontiers, all rights reserved, it is reproduced with permission.)
G. Bodner, D. Leitner, A. Nakhforoosh, M. Sobotik, K. Moder and H.-P. Kaul A statistical approach to root system classification Front. Plant Sci., 4:292, August, 2013 BibTeX | PDF )
PDF(open access, CC BY 3.0, this Document is protected by copyright and was first published by Frontiers, all rights reserved, it is reproduced with permission.)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38267-3_34)
G. Dong, M. Grasmair, S. H. Kang and O. Scherzer Scale and Edge Detection with Topological DerivativesIn A. Kuijper, K. Bredies, T. Pock and H. Bischof, editors, SSVM'13: Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision, 7893:404–415. Springer-Verlag, May, 2013 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38267-3_34)
V. M. Dunbabin, J. A. Postma, A. Schnepf, L. Pagès, M. Javaux, L. Wu, D. Leitner, Y. Chen, Z. Rengel and A. J. Diggle Modelling root–soil interactions using three–dimensional models of root growth, architecture and function Plant and Soil, 1–32, November, 2013 BibTeX )
PDF(author's post print; the final publication is available at Interfaces Free Bound.)
M. Grasmair, M. Muszkieta and O. Scherzer An approach to the minimization of the Mumford-Shah functional using Γ-convergence and topological asymptotic expansion Interfaces Free Bound., 15(2):141–166, 2013 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Interfaces Free Bound.)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/29/3/035006)
M. Grasmair, O. Scherzer and A. Vanhems Nonparametric instrumental regression with non-convex constraints Inverse Probl., 29(3):035006, February, 2013 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/29/3/035006)
PDF(author's post print; the definitive version is available at http://diglib.eg.org/)
J. A. Iglesias, B. Berkels, M. Rumpf and O. Scherzer A Thin Shell Approach to the Registration of Implicit SurfacesIn M. Bronstein, J. Favre and K. Hormann, editors, VMV 2013: Vision, Modeling & Visualization, 89–96. Eurographics Association, 2013 BibTeX | funding | PDF )
PDF(author's post print; the definitive version is available at http://diglib.eg.org/)
PDF(author's post print; this is the peer reviewed version of the following article: Photoacoustic imaging in attenuating acoustic media based on strongly causal models Math. Methods Appl. Sci., 36(16):2254–2264, which has been published in final form at 10.1002/mma.2756. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
K. Kalimeris and O. Scherzer Photoacoustic imaging in attenuating acoustic media based on strongly causal models Math. Methods Appl. Sci., 36(16):2254–2264, February, 2013 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Photoacoustic imaging in attenuating acoustic media based on strongly causal models Math. Methods Appl. Sci., 36(16):2254–2264, which has been published in final form at 10.1002/mma.2756. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
C. Kirisits, L. F. Lang and O. Scherzer Optical Flow on Evolving Surfaces with an Application to the Analysis of 4D Microscopy DataIn A. Kuijper, K. Bredies, T. Pock and H. Bischof, editors, SSVM'13: Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision, 7893:246–257. Springer-Verlag, 2013 BibTeX | funding )
PDF(open access)
O. Scherzer Regularization of Ill-posed Linear Equations by the Non-stationary Augmented Lagrangian MethodIn A. Keller, F. Kuo, A. Neuenkirch and J. F. Traub, editors, Algorithms and Complexity for Continuous Problems (Dagstuhl Seminar 12391), 2(9):219–219. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013 BibTeX | PDF )
PDF(open access)

2012

S. Arridge and O Scherzer Imaging from coupled physics Inverse Probl., 28(8):080201, 2012 BibTeX )
PDF(author's post print; cc by-nc-nd 4.0)
A. De Cezaro, O. Scherzer and J. P. Zubelli Convex regularization of local volatility models from option prices: Convergence analysis and rates Nonlinear Anal., 75(4):2398–2415, March, 2012 BibTeX | funding | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
PDF(author's post print; the final publication is available at Inverse Problems for Partial Differential Equations)
P. Elbau, A. Kirsch, O. Scherzer and R. Schulze Photoacoustic and Coupled Physics ImagingIn M. Hanke-Bourgeois, A. Kirsch, W. Rundell and M. Lassas, editors, Inverse Problems for Partial Differential Equations, 11:14–17. EMS Publishing House, 2012 BibTeX | PDF )
PDF(author's post print; the final publication is available at Inverse Problems for Partial Differential Equations)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045004)
P. Elbau, O. Scherzer and R. Schulze Reconstruction formulas for photoacoustic sectional imaging Inverse Probl., 28(4):045004, March, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045004)
PDF(author's post print; the final publication is available at Computational Inverse Problems)
P. Elbau, O. Scherzer and R. Schulze Photoacoustic Sectional Imaging and Reconstruction Formulas for a Single Scattering ModelIn H. Ammari, L. Borcea, T. Hohage and B. Kaltenbacher, editors, Computational Inverse Problems, 51:7–8. EMS Publishing House, 2012 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Computational Inverse Problems)
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
T. Fidler, M. Grasmair and O. Scherzer Shape Reconstruction with A Priori Knowledge Based on Integral Invariants SIAM J. Imaging Sciences, 5(2):726–745, 2012 BibTeX | funding | PDF )
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/10/104005)
K. Frick and M. Grasmair Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities Inverse Probl., 28(10):104005, October, 2012 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/10/104005)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045001)
M. V. de Hoop, L. Qiu and O. Scherzer Local analysis of inverse problems: Hölder stability and iterative reconstruction Inverse Probl., 28(4):16pp, March, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045001)
J. A. Iglesias and R. Kimmel Schrödinger Diffusion for Shape Analysis with TextureIn A. Fusiello, V. Murino and R. Cucchiara, editors, Computer Vision – ECCV 2012. Workshops and Demonstrations, 7583:123-132. Springer Verlag, 2012 BibTeX )
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
A. Kirsch and O. Scherzer Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements SIAM J. Appl. Math., 72(5):1508-1523, October, 2012 BibTeX | funding | PDF )
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
R. Kowar and O. Scherzer Attenuation Models in PhotoacousticsIn H. Ammari, editor, Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies, 2035:85–130. Springer Verlag, 2012 BibTeX | funding )
PDF(open access)
D. Leitner and A. Schnepf Image analysis of 2-dimensional root system architectureIn A. Handloviucov'a, Z. Minarechov'a and D. uSevucoviuc, editors, ALGORITMY 2012, 113–119. Slovak University of Technology in Bratislava, 2012 BibTeX | PDF )
PDF(open access)
E. Oburger, D. Leitner, D. L. Jones, T. Roose and A. Schnepf Response to N. J. Barrow by E. Oburger, D. Leitner, D. L. Jones, T. Roose, A. Schnepf European J. Soil Sc., 63(4):528–530, 2012 BibTeX )
C. Pontow and O. Scherzer Analytical Evaluations of Double Integral Expressions Related to Total VariationIn U. Langer and P. Paule, editors, Numerical and Symbolic Scientific Computing: Progress and Prospects, 1:193–218. Springer, 2012 BibTeX | funding )
O. Scherzer and C. Kirisits Convex Variational Regularization Methods for Inverse ProblemsIn P. Bühlmann, T. Cai, A. Munk and B. Yu, editors, Frontiers in Nonparametric Statistics, 14:43–45. EMS Publishing House, 2012 BibTeX )
A. Schnepf, D. Leitner and S. Klepsch Modeling Phosphorus Uptake by a Growing and Exuding Root System Vadose Zone J., 11(3):, 2012 BibTeX )
PDF(open access)
A. Schnepf, P. Scholl, G. Bodner and D. Leitner Modelling root system phosphate uptake from a soil column as affected by root exudationIn A. Handloviucov'a, Z. Minarechov'a and D. uSevucoviuc, editors, ALGORITMY 2012, 105–112. Slovak University of Technology in Bratislava, 2012 BibTeX | PDF )
PDF(open access)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/1/015007)
N. Thorstensen and O. Scherzer Convergence of variational regularization methods for imaging on Riemannian manifolds Inverse Probl., 28(1):015007, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/1/015007)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/8/084008)
T. Widlak and O. Scherzer Hybrid tomography for conductivity imaging Inverse Probl., 28(8):084008, July, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/8/084008)

2011

J. Boulanger, P. Elbau, C. Pontow and O. Scherzer Non-Local Functionals for ImagingIn H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 49:131–154. Springer, 1st edition, 2011 BibTeX | funding )
F. Frühauf, C. Pontow and O. Scherzer Texture Enhancing Based on Variational Image DecompositionIn M. Bergounioux, editor, Mathematical Image Processing, 5:127–140. Springer, 2011 BibTeX | funding )
PDF(author's post print; the final publication is available at Trends in Mathematical Imaging and Surface Processing)
M. Fuchs and O. Scherzer Regularized Reconstruction of M-Rep Shapes with Statistical A Priori KnowledgeIn V. Caselles, M. Rumpf, G. Sapiro and P. Schröder, editors, Trends in Mathematical Imaging and Surface Processing, 08:11–12. EMS Publishing House, 2011 BibTeX | PDF )
PDF(author's post print; the final publication is available at Trends in Mathematical Imaging and Surface Processing)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/27/7/075014)
M. Grasmair Linear convergence rates for Tikhonov regularization with positively homogeneous functionals Inverse Probl., 27(7):075014, June, 2011 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/27/7/075014)
PDF(open access)
M. Grasmair Well-posedness classes for sparse regularization Commun. Math. Sci., 9(4):1129–1141, 2011 BibTeX | funding | PDF )
PDF(open access)
PDF(author's post print; this is the peer reviewed version of the following article: Necessary and sufficient conditions for linear convergence of l1-regularization Comm. Pure Appl. Math., 64(2):161–182, which has been published in final form at 10.1002/cpa.20350. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
M. Grasmair, M. Haltmeier and O. Scherzer Necessary and sufficient conditions for linear convergence of l1-regularization Comm. Pure Appl. Math., 64(2):161–182, 2011 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Necessary and sufficient conditions for linear convergence of l1-regularization Comm. Pure Appl. Math., 64(2):161–182, which has been published in final form at 10.1002/cpa.20350. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
PDF(open access)
M. Grasmair, M. Haltmeier and O. Scherzer The residual method for regularizing ill-posed problems Appl. Math. Comput., 218(6):2693–2710, 2011 BibTeX | funding | PDF )
PDF(open access)
H. Grün, H. Altmisdört, T. Berer, G. Paltauf, G. Zangerl, M. Haltmeier and P. Burgholzer Photoacoustic tomography with integrating fiber-based annular detectorsIn J. D'hooge and M. M. Doyley, editors, Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy, 7968:. SPIE, 2011 BibTeX | funding )
PDF(author's post print; this is the peer reviewed version of the following article: Causality analysis of frequency-dependent wave attenuation Math. Methods Appl. Sci., 34:108–124, which has been published in final form at 10.1002/mma.1344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
R. Kowar, O. Scherzer and X. Bonnefond Causality analysis of frequency-dependent wave attenuation Math. Methods Appl. Sci., 34:108–124, 2011 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Causality analysis of frequency-dependent wave attenuation Math. Methods Appl. Sci., 34:108–124, which has been published in final form at 10.1002/mma.1344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-010-0326-x)
F. Lenzen and O. Scherzer Partial Differential Equations for Zooming, Deinterlacing and Dejittering Int. J. Comput. Vision, 92(2):162–176, April, 2011 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-010-0326-x)
C. Pöschl and O. Scherzer Distance Measures and Applications to Multi-Modal Variational ImagingIn O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, 111–138. Springer, 2011 BibTeX | funding )
R. Schulze, G. Zangerl, M. Holotta, D. Meyer, F. Handle, R. Nuster, G. Paltauf and O. Scherzer On the use of frequency-domain reconstruction algorithms for photoacoustic imaging J. Biomed. Opt., 16(8):086002, 2011 BibTeX | funding )
PDF(author's post print; cc by-nc-nd 4.0)
N. Thorstensen, P. 'Etyngier, F. S'egonne and R. Keriven Diffusion maps as a framework for shape modeling Comput. Vision Image Understanding, 115(4):520–530, April, 2011 BibTeX | PDF )
PDF(author's post print; cc by-nc-nd 4.0)

2010

PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-009-0282-5)
J. Abhau and O. Scherzer A Combinatorial Method for Topology Adaptations in 3D Deformable Models Int. J. Comput. Vision, 87(3):304–315, May, 2010 BibTeX | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-009-0282-5)
S. Colutto, F. Frühauf, M. Fuchs and O. Scherzer The CMA-ES on Riemannian Manifolds to Reconstruct Shapes in 3-D Voxel Images IEEE Trans. Evol. Comp., 14(2):227–245, 2010 BibTeX )
A. De Cezaro, O. Scherzer and J. P. Zubelli A Convex-Regularization Framework for Local-Volatility Calibration in Derivative Markets: The Connection with Convex Risk Measures and Exponential FamiliesIn Proceedings of the 6th World Congress of the Bachelier Finance Society, 2010 BibTeX )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numer. Funct. Anal. Optim. in 2010 available online)
P. Elbau, M. Grasmair, F. Lenzen and O. Scherzer Evolution by Non-Convex Functionals Numer. Funct. Anal. Optim., 31(4):489–517, June, 2010 BibTeX | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numer. Funct. Anal. Optim. in 2010 available online)
PDF(open access)
K. Frick and O. Scherzer Regularization of ill-posed linear equations by the non-stationary augmented Lagrangian method J. Integral Equations Appl., 22(2):217–257, June, 2010 BibTeX | PDF )
PDF(open access)
PDF(open access)
M. Grasmair Non-convex sparse regularisation J. Math. Anal. Appl., 365(1):19–28, 2010 BibTeX | PDF )
PDF(open access)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/11/115014)
M. Grasmair Generalized Bregman distances and convergence rates for non-convex regularization methods Inverse Probl., 26(11):115014, October, 2010 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/11/115014)
M. Grasmair, M. Haltmeier and O. Scherzer Sparsity in Inverse Geophysical ProblemsIn W. Freeden, M. Z. Nashed and T. Sonar, editors, Handbook of Geomathematics, 763–784. Springer Berlin Heidelberg, 2010 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s00245-010-9105-x)
M. Grasmair and F. Lenzen Anisotropic Total Variation Filtering Appl. Math. Optim., 62(3):323–339, December, 2010 BibTeX | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s00245-010-9105-x)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/12/125002)
M. Haltmeier and G. Zangerl Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth Inverse Probl., 26(12):125002, 2010 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/12/125002)
PDF(author's post print; the final publication is available at Mathematics and Algorithms in Tomography)
R. Kowar and O. Scherzer Photoacoustic Imaging taking into account AttenuationIn M. Burger, A. Louis and T. Quinto, editors, Mathematics and Algorithms in Tomography, 7:54–56. EMS Publishing House, 2010 BibTeX | PDF )
PDF(author's post print; the final publication is available at Mathematics and Algorithms in Tomography)
PDF(open access)
R. Nuster, G. Zangerl, M. Haltmeier and G. Paltauf Full field detection in photoacoustic tomography Opt. Express, 18(6):6288–6299, 2010 BibTeX | PDF )
PDF(open access)
R. Nuster, G. Zangerl, M. Haltmeier, O. Scherzer and G. Paltauf Using a Phase Contrast Imaging Method in Photoacoustic TomographyIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2010, 7564:75640Q. SPIE, 2010 BibTeX )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
C. Pöschl, J. Modersitzki and O. Scherzer A Variational Setting for Volume Constrained Image Registration Inverse Probl. Imaging, 4(3):505–522, August, 2010 BibTeX | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Probl. Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/10/105017)
C. Pöschl, E. Resmerita and O. Scherzer Discretization of variational regularization in Banach spaces Inverse Probl., 26(10):105017, 2010 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Probl.. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/10/105017)
PDF(author's post print; this is the peer reviewed version of the following article: Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry Math. Methods Appl. Sci., 33(15):1771–1782, which has been published in final form at 10.1002/mma.1266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
G. Zangerl and O. Scherzer Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry Math. Methods Appl. Sci., 33(15):1771–1782, 2010 BibTeX | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry Math. Methods Appl. Sci., 33(15):1771–1782, which has been published in final form at 10.1002/mma.1266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)

2009

J. Abhau, Z. Belhachmi and O. Scherzer On a Decomposition Model for Optical FlowIn Energy Minimization Methods in Computer Vision and Pattern Recognition, 5681:126–139. Springer-Verlag, 2009 BibTeX )
C. Fiegl and C. Pontow Online scheduling of pick-up and delivery tasks in hospitals J. Biomed. Inf., 42:624–632, 2009 BibTeX )
F. Frühauf, A. Heilig, M. Schneebeli, W. Fellin and O. Scherzer Experiments and Algorithms to Detect Snow Avalanche Victims Using Airborne Ground-Penetrating Radar IEEE Trans. Geosci. Remote Sens., 47(7):2240 -2251, July, 2009 BibTeX )
M. Fuchs, B. Jüttler, O. Scherzer and H. Yang Shape metrics based on elastic deformations J. Math. Imaging Vision, 35(1):86–102, 2009 BibTeX )
M. Fuchs, B. Jüttler, O. Scherzer and H. Yang Combined evolution of level sets and B-spline curves for imaging Comput. Vis. Sci., 12(6):287–295, 2009 BibTeX )
M. Grasmair Locally Adaptive Total Variation RegularizationIn SSVM '09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, 5567:331–342. Springer-Verlag, 2009 BibTeX )
M. Grasmair Well-posedness and convergence rates for sparse regularization with sublinear lq penalty term Inverse Probl. Imaging, 3(3):383–387, 2009 BibTeX )
M. Haltmeier Frequency domain reconstruction for photo- and thermo-acoustic tomography with line detectors Math. Models Methods Appl. Sci., 19(2):283–306, 2009 BibTeX )
M. Haltmeier Convergence analysis of a block iterative version of the loping Landweber-Kaczmarz iteration Nonlinear Anal., 71(12):e2912–e2919, 2009 BibTeX )
M. Haltmeier, A. Leit ao and E. Resmerita On regularization methods of EM-Kaczmarz type Inverse Probl., 25(7):075008, 17, 2009 BibTeX )
M. Haltmeier, O. Scherzer and G. Zangerl Influence of detector bandwidth and detector size to the resolution of photoacoustic tomagraphyIn F. Breitenecker and I. Troch, editors, Argesim Report no. 35: Proceedings Mathmod 09 Vienna, 1736–1744, 2009 BibTeX )
M. Haltmeier, O. Scherzer and G. Zangerl A Reconstruction Algorithm for Photoacoustic Imaging Based on the Nonuniform FFT IEEE Trans. Med. Imag., 28(11):1727–1735, November, 2009 BibTeX )
M. Holotta, R. Esterhammer, P. Torbica, J. Völkl, C. Kremser, W. Jaschke, H. Grossauer, M. Haltmeier, O. Scherzer, R. Nuster, G. Paltauf and Burgholzer P. Photoacoustic Tomography of Small Animals and OrgansIn J. M. R. S. Tavares and N. R. M. Jorge, editors, Computational Vision and Medical Image – VipIMAGE 2009, 25–29. CRC Press, 2009 BibTeX )
F. Lenzen and O. Scherzer A Geometric PDE for Interpolation of M-channel DataIn SSVM '09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, 413–425. Springer-Verlag, 2009 BibTeX )
G. Paltauf, R. Nuster, M. Haltmeier and P. Burgholzer Photoacoustic Tomography with Integrating Area and Line DetectorsIn L. V. Wang, editor, Photoacoustic Imaging and Spectroscopy, 251–263. CRC Press, 2009 BibTeX )
C. Pöschl An overview on convergence rates for Tikhonov regularization methods for non-linear operators J. Inverse Ill-Posed Probl., 17(1):77–83, 2009 BibTeX )
O. Scherzer and B. Walch Sparsity Regularization for Radon MeasuresIn SSVM '09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, 452–463. Springer-Verlag, 2009 BibTeX )
G. Zangerl, O. Scherzer and M. Haltmeier Circular integrating detectors in photo and thermoacoustic tomography Inverse Probl. Sci. Eng., 17(1):133–142, 2009 BibTeX )
G. Zangerl, O. Scherzer and M. Haltmeier Exact series reconstruction in photoacoustic tomography with circular integrating detectors Commun. Math. Sci., 7(3):665–678, 2009 BibTeX )

2008

J. Abhau A robust and efficient method for topology adaptations in deformable modelsIn VISAPP 2008: Proceedings of the Third International Conference on Computer Vision Theory and Applications, 1:375–382. INSTICC-Institute for Systems and Technologies of Information, Control and Communication, 2008 BibTeX )
J. Abhau and O. Scherzer An efficient topology adaptation system for parametric active contour segmentation of 3D imagesIn Medical Imaging 2008: Image Processing, 6914:69143T. SPIE, 2008 BibTeX )
A. De Cezaro, M. Haltmeier, A. Leit ao and O. Scherzer On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations Appl. Math. Comput., 202(2):596–607, 2008 BibTeX )
R. Feichtinger, M. Fuchs, B. Jüttler, O. Scherzer and H. Yang Dual evolution of planar parametric spline curves and T-spline level sets Comput. Aided Design, 40(1):13–24, 2008 BibTeX )
T. Fidler, M. Grasmair and O. Scherzer Identifiability and reconstruction of shapes from integral invariants Inverse Probl. Imaging, 2(3):341–354, 2008 BibTeX )
F. Frühauf and H. Grossauer Solving constraint ill-posed problems using Ginzburg-Landau regularization functionals J. Inverse Ill-Posed Probl., 16(1):35–49, 2008 BibTeX )
M. Fuchs and S. Gerber Variational shape detection in microscope images based on joint shape and image feature statisticsIn Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on, 1–8. IEEE, 2008 BibTeX )
M. Fuchs and O. Scherzer Regularized Reconstruction of Shapes with Statistical a priori Knowledge Int. J. Comput. Vision, 79(2):119–135, 2008 BibTeX )
B. Gebauer and O. Scherzer Impedance-acoustic tomography SIAM J. Appl. Math., 69(2):565–576, 2008 BibTeX )
M. Grasmair, M. Haltmeier and O. Scherzer Sparse regularization with lq penalty term Inverse Probl., 24(5):055020, 13, 2008 BibTeX )
M. Grasmair and A. Obereder Generalizations of the taut string method Numer. Funct. Anal. Optim., 29(3-4):346–361, 2008 BibTeX )
H. Grossauer and P. Thoman GPU-Based Multigrid: Real-Time Performance in High Resolution Nonlinear Image ProcessingIn ICVS 2008: Proceedings of the 6th International Conference on Computer Vision Systems, 5008:141–150. Springer-Verlag, 2008 BibTeX )
H. Grün, R. Nuster, G. Paltauf, M. Haltmeier and P. Burgholzer Photoacoustic Tomography of Heterogenous Media Using a Model-Based Time Reversal MethodIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6856:. SPIE, 2008 BibTeX )
R. Kowar Reconstruction of transducer pressure fields from Schlieren dataIn Progress in industrial mathematics at ECMI 2006, 12:548–552. Springer, 2008 BibTeX )
G. Paltauf, R. Nuster, K. Passler, M. Haltmeier and P. Burgholzer Optimizing image resolution in three-dimensional photoacoustic tomography with line detectorsIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6856:. SPIE, 2008 BibTeX )
C. Pöschl and O. Scherzer Characterization of minimizers of convex regularization functionalsIn Frames and operator theory in analysis and signal processing, 451:219–248. Amer. Math. Soc., 2008 BibTeX )

2007

J. Abhau, W. Hinterberger and O. Scherzer Segmenting surfaces of arbitrary topology: a two-step approachIn S. Y. Emelianov and S. A. McAleavey, editors, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, 6513:651314. SPIE, 2007 BibTeX )
P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier and G. Paltauf Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors Inverse Probl., 23(6):S65–S80, 2007 BibTeX )
M. Burger, K. Frick, S. Osher and O. Scherzer Inverse total variation flow Multiscale Model. Simul., 6(2):365–395 (electronic), 2007 BibTeX )
P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster and G. Paltauf Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectorsIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6437:643724. SPIE, 2007 BibTeX )
P. Burgholzer, G. J. Matt, M. Haltmeier and G. Paltauf Exact and approximate imaging methods for photoacoustic tomography using an arbitrary detection surface Phys. Rev. E, 75(4):046706, 2007 BibTeX )
D. Finch, M. Haltmeier and Rakesh Inversion of spherical means and the wave equation in even dimensions SIAM J. Appl. Math., 68(2):392–412, 2007 BibTeX )
K. Frick and O. Scherzer Convex inverse scale spacesIn SSVM'07: Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision, 4485:313–325. Springer-Verlag, 2007 BibTeX )
K. Frick and O. Scherzer Application of non-convex BV regularization for image segmentationIn Image processing based on partial differential equations, 211–228. Springer, 2007 BibTeX )
F. Frühauf, B. Gebauer and O. Scherzer Detecting interfaces in a parabolic-elliptic problem from surface measurements SIAM J. Numer. Anal., 45(2):810–836 (electronic), 2007 BibTeX )
M. Fuchs and O. Scherzer Segmentation of Biologic Image Data with A-Priori KnowledgeIn P. Neittaanmäki, J. P'eriaux and T. Tuovinen, editors, Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems. CIMNE, 2007 BibTeX )
M. Grasmair The equivalence of the taut string algorithm and BV-regularization J. Math. Imaging Vision, 27(1):59–66, 2007 BibTeX )
H. Grün, G. Paltauf, M. Haltmeier and P. Burgholzer Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal methodIn C. D. Depeursinge, editor, Novel Optical Instrumentation for Biomedical Applications III, 6631:663107. SPIE, 2007 BibTeX )
H. Grün, C. Hofer, M. Haltmeier, G. Paltauf and P. Burgholzer Thermoacoustic imaging using time reversalIn Proceedings of the International Congress on Ultrasonics, 1–4, 2007 BibTeX )
M. Haltmeier, R. Kowar, A. Leit ao and O. Scherzer Kaczmarz methods for regularizing nonlinear ill-posed equations. II. Applications Inverse Probl. Imaging, 1(3):507–523, 2007 BibTeX )
M. Haltmeier, A. Leit ao and O. Scherzer Kaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis Inverse Probl. Imaging, 1(2):289–298, 2007 BibTeX )
M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf Thermo-acoustic tomography and the circular Radon transform: exact inversion formula Math. Models Methods Appl. Sci., 17(4):635–655, 2007 BibTeX )
B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators Inverse Probl., 23(3):987–1010, 2007 BibTeX )
B. Jüttler, H. Pottmann and O. Scherzer Variational and PDE level set methods [Special issue on industrial geometry] Computing, 81(2-3):107–108, 2007 BibTeX )
M. A. Moyers-Gonz'alez, I. A. Frigaard, O. Scherzer and T.-P. Tsai Transient effects in oilfield cementing flows: qualitative behaviour European J. Appl. Math., 18(4):477–512, 2007 BibTeX )
A. Obereder, O. Scherzer and A. Kovac Bivariate density estimation using BV regularisation Comput. Statist. Data Anal., 51(12):5622–5634, 2007 BibTeX )
G. Paltauf, R. Nuster, P. Burgholzer and M. Haltmeier Three-dimensional photoacoustic tomography using acoustic line detectorsIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6437:64370N. SPIE, 2007 BibTeX )
G. Paltauf, R. Nuster, M. Haltmeier and P. Burgholzer Two-dimensional image reconstruction for photoacoustic tomography with line detectorsIn C. D. Depeursinge, editor, Novel Optical Instrumentation for Biomedical Applications III, 6631:663104. SPIE-OSA, 2007 BibTeX )
G. Paltauf, R. Nuster, M. Haltmeier and P. Burgholzer Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector App. Opt., 46(16):3352–3358, 2007 BibTeX )
G. Paltauf, R. Nuster, M. Haltmeier and P. Burgholzer Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors Inverse Probl., 23(6):S81–S94, 2007 BibTeX )
S. K. Patch and O. Scherzer Special section on photo- and thermo-acoustic imaging Inverse Probl., 23(6):S1–S10, 2007 BibTeX )
G. Zangerl, M. Haltmeier and O. Scherzer Cylindrical coordinates in Thermoacoustic TomographyIn IPDO Symposium on inverse problems, design and optimization, Miami, Florida, 2007 BibTeX )

2006

P. Burgholzer, C. Hofer, G. J. Matt, G. Paltauf, M. Haltmeier and O. Scherzer Thermoacoustic tomography using fiber based Fabry-Perot interferometer as an integrating line detectorIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6086:60861N. SPIE, 2006 BibTeX )
I. A. Frigaard and O. Scherzer Herschel-Bulkley diffusion filtering: non-Newtonian fluid mechanics in image processing ZAMM Z. Angew. Math. Mech., 86(6):474–494, 2006 BibTeX )
H. Grossauer Inpainting of movies using optical flowIn Mathematical models for registration and applications to medical imaging, 10:151–162. Springer, 2006 BibTeX )
M. Haltmeier and R. Kowar Rapid location of avalanche victims with ground penetrating radar ECMI-Newsletter, 39:, 2006 BibTeX )
M. Haltmeier, R. Kowar and O. Scherzer Computer aided location of avalanche victims with ground penetrating radar mounted on a helicopterIn F. Lenzen, O. Scherzer and M. Vincze, editors, Digital Imaging and Pattern Recognition: 30th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), 209:19–28. Oesterreichische Computer Gesellschaft, 2006 BibTeX )
W. Hinterberger and O. Scherzer Variational methods on the space of functions of bounded Hessian for convexification and denoising Computing, 76(1-2):109–133, 2006 BibTeX )
S. Leimgruber, F. Lenzen and O. Scherzer Automatic Detection and Counting of Small Airborne Dust ParticlesIn F. Lenzen, O. Scherzer and M. Vincze, editors, Digital Imaging and Pattern Recognition: 30th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), 209:29–36. Oesterreichische Computer Gesellschaft, 2006 BibTeX )
A. Obereder, S. Osher and O. Scherzer On the use of Dual Norms in Bounded Variation Type RegularizationIn R. Klette, R. Kozera, L. Noakes and J. Weickert, editors, Geometric Properties for Incomplete Data, 31:373–390. Springer, 2006 BibTeX )
S. K. Patch and M. Haltmeier Thermoacoustic Tomography - Ultrasound Attenuation ArtifactsIn Nuclear Science Symposium Conference Record, 2006. IEEE, 4:2604–2606. IEEE, 2006 BibTeX )
E. Resmerita and O. Scherzer Error estimates for non-quadratic regularization and the relation to enhancement Inverse Probl., 22(3):801–814, 2006 BibTeX )
H. Yang, M. Fuchs, B. Jüttler and O. Scherzer Evolution of T-spline Level Sets with Distance Field Constraints for Geometry Reconstruction and Image SegmentationIn Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI06), 37. IEEE Computer Society, 2006 BibTeX )

2005

A. Borzi, H. Grossauer and O. Scherzer Analysis of Iterative Methods for Solving a Ginzburg-Landau Equation Int. J. Comput. Vision, 64(2-3):203–219, 2005 BibTeX )
P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier and O. Scherzer Thermo-acoustic tomography with integrating area and line detectors IEEE Trans. Ultrason., Ferroeletr., Freq. Control, 52(9):1577–1583, September, 2005 BibTeX )
P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier and O. Scherzer Thermoacoustic Tomography Using Integrating DetectorsIn C. D. Depeursinge, editor, Novel Optical Instrumentation for Biomedical Applications II, 5864:SuD3. SPIE and OSA, 2005 BibTeX )
P. Burgholzer, C. Hofer, R. Nuster, G. Paltauf, M. Haltmeier and O. Scherzer Thermoacoustic tomography using integrating line detectorsIn Ultrasonics Symposium, 2005 IEEE, 1:166–169. IEEE, 2005 BibTeX )
F. Frühauf, O. Scherzer and A. Leit ao Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators SIAM J. Numer. Anal., 43(2):767–786 (electronic), 2005 BibTeX )
M. Grasmair, F. Lenzen, A. Obereder, O. Scherzer and M. Fuchs A Non-convex PDE Scale SpaceIn R. Kimmel, N. Sochen and J. Weickert, editors, Scale Space and PDE Methods in Computer Vision, 3459:303–315. Springer, 2005 BibTeX )
M. Grasmair and O. Scherzer Relaxation of nonlocal singular integrals Numer. Funct. Anal. Optim., 26(4-5):481–506, 2005 BibTeX )
M. Haltmeier, T. Schuster and O. Scherzer Filtered backprojection for thermoacoustic computed tomography in spherical geometry Math. Methods Appl. Sci., 28(16):1919–1937, 2005 BibTeX )
F. Lenzen, O. Scherzer and S. Schindler Robust Reconstruction from Chopped and Nodded Images Astronom. and Astrophys., 443(3):1087–1093, 2005 BibTeX )
Digital Imaging and Pattern Recognition, 2005 BibTeX )
G. Paltauf, P. Burgholzer, M. Haltmeier and O. Scherzer Thermo-acoustic tomography using optical line detectionIn C. D. Depeursinge, editor, Novel Optical Instrumentation for Biomedical Applications II, 5864:586402. SPIE, 2005 BibTeX )
G. Regensburger and O. Scherzer Symbolic computation for moments and filter coefficients of scaling functions Ann. Comb., 9(2):223–243, 2005 BibTeX )
O. Scherzer Taut-string algorithm and regularization programs with G-norm data fit J. Math. Imaging Vision, 23(2):135–143, 2005 BibTeX )
O. Scherzer, W. Yin and S. Osher Slope and G-set characterization of set-valued functions and applications to non-differentiable optimization problems Commun. Math. Sci., 3(4):479–492, 2005 BibTeX )

2004

H. Grossauer A Combined PDE and Texture Synthesis Approach to InpaintingIn T. Pajdla and J. Matas, editors, Computer Vision - ECCV 2004: 8th European Conference on Computer Vision, 3022:214–224. Springer Berlin / Heidelberg, 2004 BibTeX )
M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf Thermoacoustic computed tomography with large planar receivers Inverse Probl., 20(5):1663–1673, 2004 BibTeX )
R. Kowar Numerical Estimation of the Acoustic Impedance Function of Nonhomogeneous MediaIn P. Neittaanmäki, T. Rossi, S. Korotov, E. O nate, J. P'eriaux and Knörzer D., editors, Proceedings of ECCOMAS 2004. University of Jyväskylä, 2004 BibTeX )
F. Lenzen and O. Scherzer Tikhonov type regularization methods: history and recent progressIn P. Neittaanmäki, T. Rossi, K. Majava and O. Pironneau, editors, Proceedings of ECCOMAS 2004. University of Jyväskylä, 2004 BibTeX )
F. Lenzen, S. Schindler and O. Scherzer Automatic Detection of Arclets formed by Gravitational Lensing Astronom. and Astrophys., 416(1):391–401, 2004 BibTeX )
S. Osher and O. Scherzer G-norm properties of bounded variation regularization Commun. Math. Sci., 2(2):237–254, 2004 BibTeX )

2003

I. A. Frigaard, S. Leimgruber and O. Scherzer Variational methods and maximal residual wall layers J. Fluid Mech., 483:37–65, 2003 BibTeX )
I. A. Frigaard, G. Ngwa and O. Scherzer On effective stopping time selection for visco-plastic nonlinear BV diffusion filters used in image denoising SIAM J. Appl. Math., 63(6):1911–1934 (electronic), 2003 BibTeX )
H. Grossauer and O. Scherzer Using the complex Ginzburg–Landau equation for digital inpainting in 2D and 3DIn L. D. Griffin and M. Lillholm, editors, Scale Space Methods in Computer Vision, 4th International Conference, Scale-Space 2003, (2695)225–236, 2003 BibTeX )
W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen and O. Scherzer Tube methods for BV regularization J. Math. Imaging Vision, 19(3):219–235, 2003 BibTeX )
S. I. Kabanikhin, O. Scherzer and M. A. Shishlenin Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation J. Inverse Ill-Posed Probl., 11(1):87–109, 2003 BibTeX )
A. Leit ao and O. Scherzer On the relation between constraint regularization, level sets, and shape optimization Inverse Probl., 19(1):L1–L11, 2003 BibTeX )
P. Paule, O. Scherzer and A. Schoisswohl Wavelets with scale dependent propertiesIn Symbolic and numerical scientific computation (Hagenberg, 2001), 2630:255–265. Springer, 2003 BibTeX )
O. Scherzer Scale space methods for denoising and inverse problem Adv. Imaging Electron Phys., 128:445–530, 2003 BibTeX )

2002

C. W. Groetsch and O. Scherzer Iterative stabilization and edge detectionIn M. Z. Nashed and O. Scherzer, editors, Inverse problems, image analysis, and medical imaging, 313:129–141. American Mathematical Society, 2002 BibTeX )
W. Hinterberger, O. Scherzer, C. Schnörr and J. Weickert Analysis of Optical Flow Models in the Framework of Calculus of Variations Numer. Funct. Anal. Optim., 23(1-2):69–89, 2002 BibTeX )
R. Kowar and O. Scherzer Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problemsIn V. G. Romanov, S. I. Kabanikhin, Yu. E. Anikonov and A. L. Bukhgeim, editors, Ill-posed and Inverse Problems, 253–270. VSP, 2002 BibTeX )
R. Kowar and O. Scherzer Beam-forming for nonlinear ultrasound inversion J. Inverse Ill-Posed Probl., 10(2):195–211, 2002 BibTeX )
Inverse problems, image analysis, and medical imagingIn M. Z. Nashed and O. Scherzer, editors, Proceedings of the AMS Special Session on Interaction of Inverse Problems and Image Analysis held in New Orleans, LA, January 10–13, 2001, 313:xi+305. American Mathematical Society, 2002 BibTeX )
O. Scherzer Explicit versus implicit relative error regularization on the space of functions of bounded variationIn M. Z. Nashed and O. Scherzer, editors, Inverse problems, image analysis, and medical imaging, 313:171–198. American Mathematical Society, 2002 BibTeX )
O. Scherzer Relative error regularization for functions of bounded variationIn Proceedings PICOF 02, 181–188, 2002 BibTeX )
O. Scherzer and A. Schoisswohl A fast and robust algorithm for 2D/3D panorama ultrasound data Real-Time Imaging, 8(1):53–60, 2002 BibTeX )

2001

M. Burger and O. Scherzer Regularization methods for blind deconvolution and blind source separation problems Math. Control Signals Systems, 14(4):358–383, 2001 BibTeX )
F. Chyzak, P. Paule, O. Scherzer, A. Schoisswohl and B. Zimmermann The construction of orthonormal wavelets using symbolic methods and a matrix analytical approach for wavelets on the interval Experiment. Math., 10(1):67–86, 2001 BibTeX )
I. A. Frigaard, O. Scherzer and G. Sona Uniqueness and non-uniqueness in the steady displacement of two visco-plastic fluids ZAMM Z. Angew. Math. Mech., 81(2):99–118, 2001 BibTeX )
M. Hanke and O. Scherzer Inverse problems light: numerical differentiation Amer. Math. Monthly, 108(6):512–521, 2001 BibTeX )
W. Hinterberger and O. Scherzer Models for image interpolation based on the optical flow Computing, 66(3):231–247, 2001 BibTeX )
S. I. Kabanikhin, R. Kowar, O. Scherzer and V. V. Vasin Numerical comparison of iterative regularization methods for a parameter estimation problem in a hyperbolic PDE J. Inverse Ill-Posed Probl., 9(6):615–626, 2001 BibTeX )
O. Scherzer A posteriori error estimates for the solution of nonlinear ill-posed operator equations Nonlinear Anal., 45(4, Ser.~A: Theory Methods):459–481, 2001 BibTeX )
O. Scherzer and C. W. Groetsch Inverse Scale Space Theory for Inverse ProblemsIn M. Kerckhove, editor, Scale-Space and Morphology in Computer Vision, 2106:317–325. Springer, 2001 BibTeX )
J. Weickert, J. Heers, C. Schnörr, K. J. Zuiderveld, O. Scherzer and H. S. Stiehl Fast Parallel Algorithms for a Broad Class of Nonlinear Variational Diffusion Approaches Real-Time Imaging, 7(1):31–45, 2001 BibTeX )

2000

H. W. Engl and O. Scherzer Convergence rates results for iterative methods for solving nonlinear ill-posed problemsIn Surveys on solution methods for inverse problems, 7–34. Springer, 2000 BibTeX )
I. A. Frigaard and O. Scherzer The effects of yield stress variation on uniaxial exchange flows of two Bingham fluids in a pipe SIAM J. Appl. Math., 60(6):1950–1976 (electronic), 2000 BibTeX )
C. W. Groetsch and O. Scherzer Non-stationary iterated Tikhonov-Morozov method and third-order differential equations for the evaluation of unbounded operators Math. Methods Appl. Sci., 23(15):1287–1300, 2000 BibTeX )
E. Radmoser, O. Scherzer and J. Weickert Scale-Space Properties of Nonstationary Iterative Regularization Methods J. Vis. Commun. Image Represent., 11(2):96–114, 2000 BibTeX )
O. Scherzer and J. Weickert Relations between regularization and diffusion filtering J. Math. Imaging Vision, 12(1):43–63, 2000 BibTeX )

1999

E. Radmoser, O. Scherzer and J. Weickert Scale-Space Properties of Regularization MethodsIn M. Nielsen, P. Johansen, O. Olsen and J. Weickert, editors, Scale-Space Theories in Computer Vision, 1682:211–222. Springer, 1999 BibTeX )
O. Scherzer and M. Gulliksson Adaptive strategy for the damping parameters in an iteratively regularized Gauss-Newton method J. Optim. Theory Appl., 100(1):161–180, 1999 BibTeX )

1998

P. Deuflhard, H. W. Engl and O. Scherzer A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions Inverse Probl., 14(5):1081–1106, 1998 BibTeX )
I. A. Frigaard and O. Scherzer Uniaxial exchange flows of two Bingham fluids in a cylindrical duct IMA J. Appl. Math., 61(3):237–266, 1998 BibTeX )
B. Hofmann and O. Scherzer Local ill-posedness and source conditions of operator equations in Hilbert spaces Inverse Probl., 14(5):1189–1206, 1998 BibTeX )
S. I. Kabanikhin, R. Kowar and O. Scherzer On the Landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order J. Inverse Ill-Posed Probl., 6(5):403–430, 1998 BibTeX )
M. Z. Nashed and O. Scherzer Least squares and bounded variation regularization with nondifferentiable functionals Numer. Funct. Anal. Optim., 19(7-8):873–901, 1998 BibTeX )
A. Neubauer and O. Scherzer Regularization for curve representations: uniform convergence for discontinuous solutions of ill-posed problems SIAM J. Appl. Math., 58(6):1891–1900 (electronic), 1998 BibTeX )
O. Scherzer A modified Landweber iteration for solving parameter estimation problems Appl. Math. Optim., 38(1):45–68, 1998 BibTeX )
O. Scherzer An iterative multi-level algorithm for solving nonlinear ill-posed problems Numer. Math., 80(4):579–600, 1998 BibTeX )
O. Scherzer and T. Strohmer A multi-level algorithm for the solution of moment problems Numer. Funct. Anal. Optim., 19(3-4):353–375, 1998 BibTeX )

1997

B. Blaschke, A. Neubauer and O. Scherzer On convergence rates for the iteratively regularized Gauss-Newton method IMA J. Numer. Anal., 17(3):421–436, 1997 BibTeX )
I. A. Frigaard and O. Scherzer Spraying the perfect billet SIAM J. Appl. Math., 57(3):649–682, 1997 BibTeX )
M. Z. Nashed and O. Scherzer Stable approximation of nondifferentiable optimization problems with variational inequalitiesIn Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), 204:155–170. Amer. Math. Soc., 1997 BibTeX )
M. Z. Nashed and O. Scherzer Stable approximations of a minimal surface problem with variational inequalities Abstr. Appl. Anal., 2(1-2):137–161, 1997 BibTeX )
A. Neubauer and O. Scherzer Reconstruction of discontinuous solutions from blurred dataIn R. L. Barbour, M. J. Carvlin and M. A. Fiddy, editors, Computational, Experimental, and Numerical Methods for Solving Ill-Posed Inverse Imaging Problems: Medical and Nonmedical Applications, 3171:34–41. SPIE, 1997 BibTeX )
O. Scherzer Stable evaluation of differential operators and linear and nonlinear multi-scale filtering Electron. J. Differential Equations, 15:12 pp. (electronic), 1997 BibTeX )

1996

A. Binder, M. Hanke and O. Scherzer On the Landweber iteration for nonlinear ill-posed problems J. Inverse Ill-Posed Probl., 4(5):381–389, 1996 BibTeX )
D. Dobson and O. Scherzer Analysis of regularized total variation penalty methods for denoising Inverse Probl., 12(5):601–617, 1996 BibTeX )
F. Hettlich, J. Morgan and O. Scherzer On the estimation of interfaces from boundary measurementsIn Inverse problems in geophysical applications (Yosemite, CA, 1995), 163–178. SIAM, 1996 BibTeX )

1995

M. Hanke, F. Hettlich and O. Scherzer The Landweber iteration for an inverse scattering problemIn K.-W. Wang, B. Yang, J.Q. Sun, K. Seto, K. Nonami, H.-S. Tzou, S.S. Rao, G.R. Tomlinson, B. Yang, H.T. Banks, G.M.L. Gladwell, M. Link, G. Lallement, T.E. Alberts, C.-A. Tan and Y.Y. Hung, editors, Proceedings of the 1995 Design Engineering Technical Conferences, 909–915. The American Society of Mechanical Engineers, 1995 BibTeX )
M. Hanke, A. Neubauer and O. Scherzer A convergence analysis of the Landweber iteration for nonlinear ill-posed problems Numer. Math., 72(1):21–37, 1995 BibTeX )
A. Neubauer and O. Scherzer A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems Z. Anal. Anwend., 14(2):369–377, 1995 BibTeX )

1994

A. Binder, H. W. Engl, C. W. Groetsch, A. Neubauer and O. Scherzer Weakly closed nonlinear operators and parameter identification in parabolic equations by Tikhonov regularization Appl. Anal., 55(3-4):215–234, 1994 BibTeX )
P. Burgholzer and O. Scherzer On the numerical determination of optimal textures of aluminium Text. Microstruct., 22:177–186, 1994 BibTeX )
H. W. Engl, W. Rundell and O. Scherzer A regularization scheme for an inverse problem in age-structured populations J. Math. Anal. Appl., 182(3):658–679, 1994 BibTeX )
H. W. Engl, O. Scherzer and M. Yamamoto Uniqueness and stable determination of forcing terms in linear partial differential equations with overspecified boundary data Inverse Probl., 10(6):1253–1276, 1994 BibTeX )
B. Hofmann and O. Scherzer Factors influencing the ill-posedness of nonlinear problems Inverse Probl., 10(6):1277–1297, 1994 BibTeX )

1993

C. W. Groetsch and O. Scherzer Optimal order of convergence for stable evaluation of differential operators Electron. J. Differential Equations, 4:1–10, 1993 BibTeX )
O. Scherzer A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates Appl. Math., 38(6):479–487, 1993 BibTeX )
O. Scherzer, H. W. Engl and R. S. Anderssen Parameter identification from boundary measurements in a parabolic equation arising from geophysics Nonlinear Anal., 20(2):127–156, 1993 BibTeX )
O. Scherzer, H. W. Engl and K. Kunisch Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems SIAM J. Numer. Anal., 30(6):1796–1838, 1993 BibTeX )

1992

O. Scherzer The use of Tikhonov regularization in the identification of electrical conductivities from overdetermined boundary data Results Math., 22(1-2):598–618, 1992 BibTeX )

1990

A. Neubauer and O. Scherzer Finite-dimensional approximation of Tikhonov regularized solutions of nonlinear ill-posed problems Numer. Funct. Anal. Optim., 11(1-2):85–99, 1990 BibTeX )

Contact

Computational Science Center
University of Vienna

Oskar-Morgenstern-Platz 1
1090 Wien
T: +43-1-4277-23701