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Abstract

‘We consider abstract operator equations F'u = y, where F' is a compact
linear operator between Hilbert spaces U and V', which are function spaces
on closed, finite dimensional Riemannian manifolds, respectively. This
setting is of interest in numerous applications such as Computer Vision
and non-destructive evaluation.

In this work, we study the approximation of the solution of the ill-posed
operator equation with Tikhonov type regularization methods. We state
well-posedness, stability, convergence, and convergence rates of the regu-
larization methods. Moreover, we study in detail the numerical analysis
and the numerical implementation. Finally, we provide for three different
inverse problems numerical experiments.

Key words: Inverse problems, variational regularization on Rieman-
nian manifolds, functions of bounded variation

1 Introduction

The problem of solving linear inverse and ill-posed problems has a long
tradition in engineering (see [16]). Several strategies have been proposed in the
literature to solve such problems approximatively in a stable manner.

However, in most applications the data are assumed to be functions, which
are defined on a subset of an Euclidean space. In this paper the focus is on
imaging problems, where the data are functions on closed, finite dimensional
Riemannian manifolds. Such problems appear in Computer Vision and non-
destructive evaluation, to name but a few (cf. Section [3)).

In this paper we take an abstract point of view and formulate the ill-posed
imaging problem as the solution of an operator equation

Fu=y. (1)



Here F' describes the physics of image formation, and y denotes the ideal mea-
surement data, which contains neither noise § nor modeling errors. The operator
F : U — V is a compact linear operator between Hilbert spaces of functions
defined on closed, finite dimensional Riemannian manifolds, respectively. Con-
sequently, the inverse operator is unbounded and the solution of is ill-posed.

In practice, ideal data are not available, but rather some approximation g°.
These perturbations, in general, do not allow for a direct stable inversion of
F. To provide a stable numerical solution, Tikhonov type regularization is an
adequate choice (see [15] 22| [T} 27) 26]). This method consisting in calculating
a minimizer u®, of the functional

1
Ty o (u) := 5uFu — 1’2 + aR(u), (2)

which approximates the solution of (I]). Here, typically, R : U — [0,+o0] is a
proper, convex regularization functional. The parameter a controls the trade
off between the quality of approximation of Fu and y° as well as the stability
of the minimizer. The choice of the regularizing functional R is essential and
is selected according to problem specifications. Typical choices of R, which
are also considered in the paper, are Sobolev space (semi-)norms and the total
variation semi-norm on manifolds. In this paper, we do not consider more
general settings of non-convex regularization functionals, as it has been done in
the Euclidean setting for instance in [29] [14].

In this paper we consider three different applications of regularization meth-
ods on manifolds, which are denoising, deblurring, and an inverse problem from
non-destructive evaluation, which has been studied recently in [20].

In the following we summarize some related work: Diffusion filtering on sur-
faces has been used successfully for denoising [8, 5], which can be considered
a particular inverse problem (see Section . Even more multi-scale decom-
position of data on manifolds can be used for denoising [I} [12]. The numerical
analysis and implementation of this paper is related to the work for discretiza-
tion of partial differential equations on manifolds, in particular discretization
of the Laplace-Beltrami operator on the manifold M, —A . Here, in partic-
ular, we refer to pioneering work of Dzuik [9] on surface finite elements. The
estimates there were generalized [6] by considering adaptive finite elements.
Subsequently, several parabolic diffusion equations, [I0, [4] (isotropic) and [5]
(anisotropic), were developed for manifold valued data. This topic should not
be confused with the topic of the paper, where the domain of the functions is a
manifold, where the context of the other papers is that the functions range in a
manifold (see [24]).

The paper is organized as follows: In Section [2| we prove well-posedness of
variational regularization on closed, finite dimensional Riemannian manifolds.
Also, convergence rates with respect to Bregman distances are obtained in the
convex regularization setting, under a standard source condition. Section [3] is
concerned with numerical minimization of the discrete Tikhonov functional -
this is most probably the most important contribution of this paper. We pro-
vide a consistent discretization of convex Tikhonov functionals and formulate



them in a purely matrix analysis fashion. As a byproduct this approach pro-
vides a consistent discretization of some nonlinear partial differential operators.
Moreover, the consistent discretization is the basis to solve inverse problems
in a stable way. Section [3.2] provides numerical experiments for three different
applications. Finally, in Section [5] we provide the basic notions on differential
geometry and non-linear analysis on manifolds and provide some embedding
results for Sobolev space and the space of functions of finite total variation.

2 Analysis of variational regularization for func-
tions on Riemannian manifolds

In this section, we state an analysis of variational regularization methods
for solving the ill-posed operator Equation for functions on manifolds. Well
definedness, stability, convergence, and convergence rate are proven along the
lines of [26] - the manifold setting does not further complicate the analysis,
and thus is omitted. However, the results are formulated below for the sake of
completeness and fixation of the notation:

Assumption 2.1. (A1) U andV are Hilbert spaces and Ty ,my denote the weak
topologies, respectively.

(A2) The functional R : U — [0,+00] is convexr and sequentially lower semi-
continuous with respect to Ty. (see e.g. [26])

(A3) D := D(F)ND(R) # O where D stands for the domain of the operator.
Here D(R) := {z € U : R(z) < oo} and D(F) is the domain of the
operator I, which is chosen appropriately.

(A4) For every a > 0 and C > 0, the lower level set of the Tikhonov functional
levelg(Ty y5) :={u e U : T, ,s(u) <C}
are sequentially pre-compact with respect to 1y .

(A5) For every o > 0 and C > 0, the set levelg (T, ) is sequentially closed
with respect to Ty and the restriction of F' to levelo(T,, ,¢) is sequentially
continuous with respect to Ty and Ty .

We refer to [26] for the particular definitions of properties use in Assumption
21
The results from [26] imply then:

Theorem 2.2. Let Assumption [2.1) hold. Then,

o there exists a minimizer of T, s for every a >0 and yev.



e Let o > 0. Then, for every sequence yr — y° let us denote
up € argminTy, o, , k€N,

then (ux) has a convergent subsequence. Every convergent subsequence of
(ur) converges to a minimizer of T, ,s.

e Assume that Equation has a solution in D. Moreover, assume that a
function o : (0,00) — (0,00) satisfies
52
0) >0 and —= — 0 0 —0.
a(9) an () for
Let the sequence d; of positive numbers converging to 0 and assume that
the data yi == y°*, oy, := a(6y) satisfies |y — yr| < Ok

Then, uy € argmin Ty (5,0, has a convergent subsequence and every limit
is a solution of Equation .

For obtaining qualitative estimates for the convergence of a Tikhonov reg-
ularized solution to a minimum norm solution, some additional assumptions,
such as the so-called source condition, are needed.

Proposition 2.3 (Convergence rates). Let Assumption hold. Assume there
exists a minimal norm solution u! € D(F) N D(R) of Equation and an
element

€ € Ran(F*) N OR(ul). (3)

Then, with the parameter choice o ~' &, we have
De(ul,ut) = 0(6) and |Ful, — | = 0(),
where D¢ denotes the Bregman distance, which is defined as follows:
De(t,u) :=R(0) — R(u) — ({,a—u), u,aeclU.
Here (£,4 — u) denotes the inner product on the Hilbert space U.

Proposition [2.3] applies for instance to total variation minimization

T =5 [ (=) + oDyl (M),
where
| Daul| (M)
— sup {/M udivas X di(g) : X € C%(M,R") and | X|L (v < 1} - W

denoted the total variation of u on the manifold and V x4 denotes the covariant
derivative. We choose the space U,V = LQ(M). Moreover, we assume that

IThe symbol ~ means that there exist constants ¢, C > 0 such that ¢ < a(5) < C§



F is continuous on L*(M) with D(F) N D(R) # 0. R(u) = |Dapu| (M) is
the total variation semi-norm. The verification of Assumption [2.1]is similar to
the Euclidean setting, and thus omitted. However, the verification requires the
Meyer-Serrin Theorem [5.2] and the Compactness Theorem [5.3] for functions of
Bounded Variation BV (M) on manifolds. Using both theorems allows to show
that the Poincaré inequality holds and from this follows that T,, ,s is coercive
(A.4). The Compactness Theorem is applied to verify (A.5).

Interpretation of the source condition and the convergence rates have been
given in [26] for function defined on subsets of R™, but are valid in the manifold
setting in a completely analogous manner.

3 Numerical results

In this section we discuss the implementation of variational regularization
method for functions defined on manifolds. Afterwards three inverse problems
and numerical experiments are considered. The three applications are denoising,
deblurring, and an inverse problem for the Funk—Radon transform.

Now we discuss the numerical minimization of the discretized Tikhonov func-
tional.

We assume that the closed Riemannian manifold M is approximated by a
polyhedron M represented as M = (V, T ), with vertices V = {v1,...,vx} C R3
and triangles 7 = {T1,..., T} C V x V x V. The three components of a vertex
vy, are denoted by vf, with j = 1,...,3. Each triangle T; € T is defined by the
set of indices t; = {i1,12,3}, of the vertices {v;, , v4,,vi, }, which are assumed to
be counter-clockwise oriented. In this section we only deal with the manifold M,
and assume that M is a sufficiently good approximation to M which justifies
an identification. Consequently, also the metric g and the surface measure on
M, v(g), are also identified.

The polyhedral surfaces used in the numerical experiments below have been
taken from the database [23]. Each surface is closed, of genus zero, and consists
of approximately 25000 vertices. For genus zero surfaces a natural parametriza-
tion is the sphere. Following [I3] imaging testdata y° on the manifold M is
generated by mapping a given function with planar domain  C R? onto M by
making use of the spherical parametrization.

Polyhedral representation

Each triangle T; is parameterized with respect to its vertices vk, v;, and v;
by using barycentric coordinates

ki (7) = vk + G(v; —vg) + Ga(vr — k),
where
= {7 = (4174.2) : Cl € [07 1] and CQ € [071_C1]} .

We approximate the minimizer of the Tikhonov functional from by the
minimizer of T, ,s on the finite dimensional space of piecewise linear functions



on the polyhedron M: For k € {1,...,K} let (¢x) be the function, which is
continuous on M, linear on each triangle T;, i = 1,..., L, and satisfies py(vy) =
1 and @i(vs) = 0 if s # k. On each triangle T; we have exactly three such
functions (for every vertex). The set of piecewise linear functions is the linear
span of the functions ¢y:

PL(M) := {Zuktpk} )
k

(From the definition of ¢, and xj; it follows that

x = kawk(x) for every x € M. (5)
k

and
op(xki(7)) =1—C — (o for every y € T . (6)
Minimization of the Tikhonov functional is performed for v € PL(M) and we

assume that the data y° € PL(M) too. Thus the functions u over which we
minimize and the data y° can be expressed via their series expansion:

u(x) = Y uper(x) and v (x) = > ylen(x) - (7)
k k

The vectors of coefficients are denoted in boldface by u := (ug), y° := (y2),
respectively. The Jacobian of the parametrization of the manifold M is the
matrix

J;, 0 ... 0
J_ 0 Jy . € R2L*3L (8)
o o0 ... Jg.

with L blocks

dor  9p;  dpr -1 0 1
C2 [ C2

Opr 99  Op
Ji[ pe a][—l 1 o]

Each submatrix J; is the Jacobian of the parameterizations in the triangle T;.
All vertices in M are put in a block diagonal matrix V € R3/*3L with L blocks

v vy

V= | v} U? v}
3,3 .3

v U5

Each submatrix V; stores the vertices from triangle T; ordered accordingly to
the basis functions ¢5. The metric tensor G € R*2%2L on M is block diagonal
matrix with the L diagonal blocks

G; = (V,JINHT (v, JT) e R?*2 |



Again, G; is the metric tensor in a given triangle T;. Let A; denote the area of
the triangle T;, then the volume of the metric tensor satisfies:

Vgl = Vdet(Gy)| = 24,

Therefore the surface measure dv(g) can be expressed in barycentric coordinates
and the relation reads as follows:

dv(g) = 2A;dy.

Let V e R3EXK 3 matrix which encodes the connectivity of the manifold M.
That is

T = 1 ifiety wherek=3(k'-1)+4,7=1,2,3
70 else.

V; € R3*K ig a linear mapping assigning each triangle 7; the indices of the
three vertices. Accordingly, the covariant derivative of w € PL(M), Vs u, on
the triangle T; is a constant vector and is given by

Zi:=VJI'G I, Viue R¥. (9)
The matrix
Z, 0 ... 0 O
0 Z, 0 ... 0
7 — ) - ] c RSLXL
0 w0
00 ... 0 Z

consists of the gradient vectors of u on each triangle of M. The matrix Z7Z is a
positive semi-definite diagonal matrix. Thus (Z7Z)?/? is the matrix consisting
of the p/2 powers of diagonal entries.

3.1 Discretization of the Tikhonov Functional

In the following we consider minimization of the discrete Tikhonov functional
with functions defined on PL(M). The goal is to express the fit-to-data term
and the regularization functional in dependence of the vector u.

In all our test cases we have that F' : U — V, where U and V are function
spaces defined on the same closed, finite dimensional Riemannian manifold M.
We assume that Fu can be approximated by a piecewise linear function on the
polyhedron M (note that here both F'u and M are approximated).

The linear operator F' may not necessarily map onto piecewise linear func-
tions and thus the elements of the range are again approximated by the discrete
operator

K K
Flu(x) = ZZijujcpk(x) ~ Fu(x) . (10)

k=1 j=1



In the following, for the sake of simplicity of notation, we identify the discrete
operator F'? with the matrix F of coefficients. Moreover, we assume that the
discretization is fine enough that we can identify F' and F¢ on PL(M).

We use the following approximations for the fit-to-data term and the regu-
larization functional:

e Let the matrix A € RE*3L be defined by the areas A; of the triangles:

4 {\/QAZ- if3(i— 1) < j < 3i+]1,
ij =

0 else.

Then,

SIFu = = 5 [ (Pule) =1 @)y @)

32 | (Putx) =) Py o)

E3 24 Y (Fw); -y
T;

JEL;

(11)

1 - -
= CIA(VRu -y

e In the applications presented below the regularization functional is either
the total variation semi-norm or the quadratic Sobolev semi-norm of the
gradient. We evaluate these functionals for u € PL(M) on the polyhedron:

uGPL(M)—)/ |VarulPdv(g), p=1,2.
M

Let the diagonal matrix A € REXE be defined by the areas A; of the
triangles:
Ay = 2Az .

(From the above considerations we find that

R(u) = }D /M IV arul” d(g)

1
== 24 [(Varw)l” (12)
P
1 -
= ~Tr(A(Z"Z)%)
p
Because we have that 97
= =vJTG 1V,
ou



it follows that the derivative of the discrete functional T}, ,s (with M replaced
by M) at u is given by

aTa y9 1 TxrT AT O 7,0
Zov () = —FTVTATA(VFu - V
u W= ( yY)
+aA(Z7Z) P22V TIT G VT (VITG IV ) .

The formal derivative of R(u) is a discrete approximation of the differential
operator

—divys (\VMu|p_2 VMu) :

In particular, for p = 2 we obtain a consistent approximation of the Laplace-
Beltrami operator.

The optimality condition dTy, ,s(u,p) = 0 for all p, can be solved with a
Landweber fixed point iteration:

alk+D — k) KV T, u®) k=0,1,2,....

Here k denotes the step size and is chosen to satisfy a stability criterion [I5]. The
algorithm is usually terminated if the difference of the update Ju*+1) —u®)|
is below a given threshold for the first time.

3.2 Applications
Denoising of data on manifolds

We consider denoising of image data on a closed finite dimensional Rieman-
nian manifold. The usual assumption is that the data y° can be decomposed
into a ideal image u! and additive white noise n,, with mean 0 and variance o.
That is

Images are typically considered in BV or Sobolev Space and in many cases the
embedding operator F' is compact. Denoising, corresponds to the case where
the operator F' is the identity. Thus denoising is an ill-posed inverse problem.
We therefore approximate the solution by Tikhonov regularization. The goal of
denoising is to remove the noise component n, from 3° but at the same time
preserve the visual appearance of the clean image uf.

In Figure [1I| we compare quadratic Sobolev semi-norm regularization with
total variation minimization.

Image deblurring

The general assumption is that the imaging data y° is obtained from the
clean image u' by convolution with a smooth kernel function i and by additive
white noise with mean zero and variance . Thus, in the terminology of the
paper, the operator equation reads as follows

v’ =hxut +n, = Ful +n, .



(a) ut = Lenna on M (b) Testdata: u’ + N(0,0) on M

(c) Result with quadratic Sobolev semi- (d) w® — ut
norm regularization

)

[e3

(e) Result with total variation denoising (f) u

Figure 1: Denoising: The first row shows the ideal data v and the noisy signal
y°. The second row depicts the results with the squared gradient and the resid-
ual image ul, —uf. The last rows results are obtained by regularizing with total
variation.
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Type SNR Original/Noise  Original /Result

Sobolev semi-norm

Denoising 22.12 23.87
Deblurring 16.89 17.23
TV semi-norm | icing 22.12 26.35
Deblurring 16.89 21.18

Table 1: This table evaluates TV and quadratic variational regularization for
denoising and deblurring in terms of the signal to noise ratio(c.f. .

In our numerical experiments we assume that the kernel function h is a Gauf}-
function with variance 7. That is,

1 d;(p,q)
h(p,q) = 52 eXP ( g27_2 for every p,q € M,

where dg4(p, ¢) denotes the geodesic distance on the polyhedron M.

For implementing the Landweber algorithm we use the discrete con-
volution, which is (similar as in Section |3)) written as a bold face matrix H
with matrix entries d(v; j,vr,;). The geodesic distance between two points p
and ¢ can be computed by solving the Eikonal equation with constant velocity
p(x) =1 on M with an algorithm described in [19]. That is, after fixing one
point g € M, d(x, q) solves the Eikonal equation:

[Vd(x, q)| = p(x) .

The Landweber algorithm for minimization of the discretized regularization
functional reads as follows

ul ) = u® _ HT (Hu® — y0) + aVR®)) . (13)

Again, we compared TV and quadratic regularization. For TV regulariza-
tion, Kk < 1++8/6 has to be chosen sufficiently small. Figure [2| shows results for
deblurring with TV minimization and quadratic Tikhonov regularization.

In Table[I]we summarized the results on the denoising and delurring problem
for a fixed a. In order to compare the performance of different choices for R we
use the signal-to-noise ratio (SNR) measured in dB . The SNR is defined as

HUT .2 (M)
SNR = 20log _— | (14)
10 <|ug — ¥l ar)

The better performance of the Total Variation regularization stems from the
fact that discontinuities along edges are preserved while the Sobolev semi-norm
introduces severe blurring of the edges.

11



(a) ut = Lenna on M (b) y® = GauBian convolution of ulf +

N(0,0)

(c) Result with quadratic Sobolev semi- (d) ud, —ul
norm regularization

(e) Result with total variation regulariza-
tion
Figure 2: Deblurring: The first row shows the original signal and the noisy sig-
nal. The second rows results are obtained with by regularizing with the squared
gradient. The last row depicts the results with total variation regularization
and the residual images, respectively.
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Variational regularization for inversion of the spherical Funk-Radon
transform

In a recent work Louis et al [20] discuss a problem of density estimation,
which requires the inversion of the Funk-Radon transform on the 2-sphere. In
general, for arbitrary space dimension, the Funk-Radon transform maps a func-
tion defined on the 2-sphere to its means over the great circles. That is,

Fu(x) = L u(y)dv(y) for every x € S . (15)
W1 Js2nxt
Helgason [I8] provids a closed form for the inverse of the Funk-Radon transform.
In [20] an approximate inverse for the efficient numerical inversion of the Radon-
Funk transform on the 2-sphere has been proposed.

Here we investigate quadratic Tikhonov regularization with Sobolev semi-
norm regularization term on the 2-sphere. The method consists in minimization
of the functional

Ty (u) = [Fu— y6||12}(s2) + a|\VNIU||i2(s2) : (16)

The proposed numerical minimization algorithm requires real valued spherical
harmonics : The functions Y;™ (6, ¢), where ! denotes the degree and m the
order, form an orthonormal basis on S?:

™ 2m

Yy s = [ [ Y0 0¥E 6,004, ) = 8B

S2 0=0 J =0

In the following we define a single index j := j(I,m) := (I + 1)l + m for [ =
0,1,2,...,Land m =0,...,[ and identify the coordinates x on the sphere with
polar coordinates (6, ¢). For the numerical minimization we use approximations
of u € L*(M) with real spherical harmonics of maximal degree L. This is

R
u(ev 90) ~ chy}(ev 90) ’ (17)

with R = (L + 1)(L 4 1) basis functions. Therefore from discrete sample values
u = (ug) = (u(xx)), k =1,..., N x R the spherical harmonics expansions can
be computed from the following matrix equation:

u= Bc,
where
Yi(01,1) ... Ygr(61,¢1)
B = : : :
Yi(On,on) ... Yr(On,¢nN)

is the matrix of spherical harmonics basis functions. The coefficients c are the
coefficients of the best approximating solution in L?(M) and are given by

c=(BTB)"'BTu.

13
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(a) Approximation of u! with spherical harmon- (b) Approximation error.

ics basis of maximal degree 26.

(c) y = Funk-Radon transform of uf (d) ¥® = y + additive GauBian noise

Figure 3: Testdata and their Funk-Radon Transform
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Figure [3| a) shows the best approximation of a function w with a spherical
harmonics polynomial of degree 26.

Using the Funk-Henke Theorem it has been shown in [7] that the Funk-
Radon transform of a function u, given in a spherical harmonics basis, takes the
simple form

R
Fu(x) ~ 21 Y Py (0)c; Y;(x) - (18)
j=1
The Legendre polynomial of degree {(j) evaluated at 0 is

0 if I(y) is odd,
Py (0) = , .
() {(—1)“)/21‘3:;:5%)(;)” if () is even.

Therefore, the discrete Funk-Radon transform can be written as
F = BF, with F;; = 27P;(0)

a diagonal matrix. An example of the evaluation of the Funk-Radon transform
can be seen in Figure [3|c). In Figure [3[d), the transformed signal is perturbed
by some additive Gauflian noise with variance ¢ = 0.05. In order to reconstruct
the signal from its Funk-Radon transform we minimize the Tikhonov functional
from Equation .

As in the previous examples the subgradient of the L?(M)-norm of the gradi-
ent the Laplace-Beltrami operator, which in spherical harmonics basis expansion
is given by

~AgY; = 1)) + VY

and in matrix notation N
L7 =1()(1() +1).

Reconstruction of the inverse Funk-Radon transform with Tikhonov regulariza-
tion requires solving the linear system

(FTBTBF + aL)¢ = FTBTy’ . (19)
This equation can be solved again with a Landweber iteration:

Since the Funk transform annihilates odd functions (see [I8]), we take an
even function to test our inversion algorithm. As in [20] we use the function

u(x) = cos(3m(z — y)) + cos(3mx);

and evaluate the function at 900 point on the sphere as they are provided in
[28]. In the numerical experiments we used spherical harmonics of degree 26.
The reconstructions are depicted in Figure [d] Note that if @ = 0 we cannot
solve for C because the matrix F does not have full rank. Only by regularizing

15



(a) Reconstruction with low regularization (b) Reconstruction with strong regularization

(¢) Reconstruction error with low regularization (d) Reconstruction error with strong regulariza-
tion

Figure 4
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the inversion with the Laplace-Beltrami operator allows the reconstruction of
u(x). In Figure 4| we can observe the smoothing effect of the Laplace-Beltrami
operator on the solution. In the left column of Figure[d a low value a = 0.3 and
in the right column the result with a high value oo = 1.2. We observe a much
smoother reconstruction for higher values of a.

4 Conclusion

In this paper, we have studied the problem of variational regularization of
inverse and ill-posed problems for functions on closed Riemannian manifolds.
The analysis (stability, convergence, and rates) follows from standard results
on convex regularization and are reviewed. The main contribution of this pa-
per concerns the numerical analysis of such regularization methods and the
numerical implementation. Moreover, three inverse problems appearing in non-
destructive evaluation and Computer Vision are discussed.
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5 Background and definitions

All along this paper we use the notation:

e M denotes a closed n-dimensional manifold that is embedded in R™t1.

M = (V,T) denotes a polygonal approximation of M that is embedded
in R™*1. In this paper, typically, it is a polyhedron.

x denotes coordinates on the manifold. x denotes coordinates in the Eu-
clidean space.

e O denotes the subdifferential, V is the gradient in the Euclidean setting,
Vi and Vo are the covariant derivatives on the Riemannian manifolds
M, M, respectively.

e If not specified otherwise |.| denotes an Euclidean distance.

In the following we review elementary facts from Riemannian geometry and
nonlinear analysis on manifolds.

1. The metric tensor g;;(x) expressed in a coordinate chart (€2, ¢) is

Iolw) dpla)y
ox; = Oz, BI=hen

G = gij(x) =

The inverse metric tensor is g = G~1.

17



2. Given a smooth, closed Riemannian n-manifold (M, g), there is an as-
sociated positive Radon measure on M, the Riemannian measure, which
is defined as follows: Given an integrable function u : M — R, an atlas
(94, i)ier of M and a partition of unity (2, ;, a;)jer,

/ udv(g Z/ (aju o 0;+/]g])dz, (21)

jeJ
where \/|g| = |det(g;;)| is the volume of the metric tensor and dx is the
Lebesgue volume element on R™ and therefore dv(g V\gldx

3. The gradient can be expressed with the chart (€2, <p)

A(uop) .

6$J‘ (22)

(Vmu)i = gij

4. The adjoint operator of the gradient is the divergence, which satisfies for
a given vector field X on M:

/M udiv o Xdv(g / V- Xdu(g) - (23)

In a chart (£2, ¢) the divergence is obtained by using Equation [22in Equa-
tion 23t

1 < 9
diva X = — Y — (Vg X3). 24
M \/m;axi( l9]Xi) (24)

5. Given (M, g) and v : [a,b] — M a curve on M, then L(v) is the length of
the curve on M with respect to g. For p,q on M with v(a) =p vy(a) =p
and v(b) = ¢, the distance associated with g between two points p and ¢
is

dg(p,q) = inf L(v).

YECpq

Cpq is the space of continuous curves connecting p and ¢g. The distance
dy defines a metric on the manifold. In this paper, we assume that the
metric space (M, d,) is always complete.

6. In a closed Riemannian manifold (without boundary) the Hopf-Rinow
theorem implies that for every pair of points on the manifold there exists
a unique geodesic [3].

Given a smooth and closed n-dimensional Riemannian manifold (M, g), we
define (see [17])

Cr(M) =

u € C¥(M) : ulk

ko = [ulp

R v
‘Vi\,lu‘ du(g)’ <00y,
M

18



where |.|, is the LP(M)-norm with respect to the Riemannian measure dv(g).
The space WP (M) (see e.g. [17]) is defined as the completion of the space
Cr (M) with respect to the norm |.|;,. In particular for k =1 and p > 1, we
have

lulweaay = lulp + 1V mul,p -
Now, we recall the definition of the space of functions of bounded variation on
manifolds.

Definition 5.1. We define BV(M) as the space of functions with bounded
variation and is the set of functions u € L*(M) such that |Du| (M) < 4-00.
The space is endowed with the norm |u| gy (amy = Uiy (a) +[Daul (M), where
|Dpqu| (M) denotes the variation of u, which is defined by

The space BV (M) is a Banach space endowed with the norm |[.| gy (aq)-
It can be understood as the natural (weak) closure of W11(M). Due to the
theorem of Meyer and Serrin [21] it is possible to approximate Sobolev functions
defined on subset of the Euclidean space by smooth functions. For the sake of
completeness we provide a proof to show the essential difference in the manifold
setting.

Theorem 5.2 (Approximation of BV-Functions). Let M be a smooth, closed
Riemannian manifold and w € BV (M). Then there exists a sequence (uy) of
functions in C°(M) such that

o u, = u in L*(M),

Proof. The proof is closely related to [2], where weighted BV spaces have been
considered and thus omitted.

The second important property of BV functions used in this paper is covered
by the following embedding theorem:

Theorem 5.3 (Compactness Theorem). Let M be a closed manifold, and let
(un)n be a sequence of functions in BV (M) such that sup,, |D | (M) < +00.
Then there exists a subsequence of u € BV (M) converging strongly in L' (M).

Follows from combining the analogous result for functions W (M), which
is stated in Hebey[I7], and Theorem

Theorem 5.4 (Embedding Theorem). For every function u € BV (M)
lull, 725 vy < C) D pgul (M) (25)

The proof is analogous to the Euclidean setting and thus omitted.
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