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Abstract We extend the concept of optical flow with
spatiotemporal regularisation to a dynamic non-Euclidean

setting. Optical flow is traditionally computed from a

sequence of flat images. The purpose of this paper is

to introduce variational motion estimation for images

that are defined on an evolving surface. Volumetric mi-
croscopy images depicting a live zebrafish embryo serve

as both biological motivation and test data.

Keywords biomedical imaging · Computer Vision ·
evolving surfaces · optical flow · spatiotemporal

regularisation · variational methods.

1 Introduction

1.1 Motivation

Advances in laser-scanning microscopy and fluorescent

protein technology have increased resolution of microscopy

imaging up to a single cell level [22]. They allow for four-

dimensional (volumetric time-lapse) imaging of living

organisms and shed light on cellular processes during
early embryonic development. Understanding cellular

processes often requires estimation and analysis of cell
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motion. However, the amount of data that is recorded
is tremendous and therefore in many cases automated

image analysis is necessary.

The specific biological motivation for this work is to
understand the motion and division behaviour of fluo-

rescently labelled endodermal cells of a zebrafish em-

bryo. Although of considerable importance for develop-

mental biology, knowledge about the migration patterns
of these cells is scarce [27]. The dataset under consider-

ation consists of volumetric time-lapse images taken by

a laser-scanning microscope. The recorded sequence de-

picts a cuboid section S ⊂ R
3 of said zebrafish embryo,

whose endodermal cells express a fluorescent protein.
We model this sequence by a scalar function

F̄ : [0, T ]× S → R

that assigns to every pair (t, x) ∈ [0, T ] × S a non-

negative value F̄ (t, x) proportional to the fluorescence

response of point x at time t.

Optical flow methods are used regularly to estimate

cellular motion, see Sec. 1.3. Applying them directly to

our data F̄ to obtain a dense 3D velocity field

m : [0, T ]× S → R
3

is possible but problematic from a computational point

of view [2], even more so if temporal regularisation is to

be included. We propose a solution to this by adapting

our model according to biological facts about the nature

of the marked cells.

Endodermal cells develop on the surface of the em-

bryo’s yolk, where they form a non-contiguous mono-
layer [29]. Loosely speaking, they only sit next to each

other but not on top of each other. Moreover, the yolk’s

shape is roughly spherical and deforms over time. This



2 Clemens Kirisits et al.

Mt0

Mt0+∆t

V

u

m

γ

Fig. 1 Sketch of a cell (indicated by a black ellipse) moving
along a trajectory γ on a moving surface. The cell’s velocity
is given by ∂tγ = m, which can be decomposed into surface
velocity V and relative tangential motion u.

means that the yolk’s surface can be modelled by an em-
bedded two-dimensional manifold Mt ⊂ R

3, the sub-

script indicating dependence on time. In practice, Mt

can be approximated by fitting piecewise polynomials,

for instance, to the cell centres.1 Consequently it is pos-
sible to reduce the data dimension by only considering

the restriction F of F̄ to this moving surface; see Fig. 2.

More details on the acquisition and preprocessing of the

microscopy data are given in Sec. 5.2. This dimension

reduction, in turn, necessitates the development of an
optical flow model for data defined on an evolving sur-

face, which is the main contribution of this article.

Let t0 be a fixed instant of time and x0 ∈ Mt0 . As-

sume a cell located at x0, indicated by a relatively high

value of F (t0, x0), moves with velocity m(t0, x0). On

the other hand, suppose the yolk’s surface has velocity
V(t0, x0). The purely tangential vector

u(t0, x0) = m(t0, x0)−V(t0, x0) (1)

describes the cell’s velocity relative to V. Put differ-

ently, the total observed velocity m of a cell is the
sum of the surface velocity V and the cell’s tangen-

tial velocity u. Compare Fig. 1. While the former is

a quantity extrinsic to the surface the latter is intrin-

sic. A motion estimation method dealing with the full

4D dataset F̄ would directly try to calculate m for all
(t, x) ∈ [0, T ] × S. The method proposed in this arti-

cle, however, only computes the tangential field u for

a given surface velocity V. The total velocity can then

be recovered by adding the two vector fields.

In practice the true velocity of a moving surface
might not be known and might even be impossible to

determine from available data. This is also the case for

the microscopy data considered in this paper. Our so-

lution consists in picking one surface velocity V that is

consistent with Mt, of which there are infinitely many

1 Sometimes it is possible to already capture the yolk’s sur-
face with the microscope in a second sequence of images. We
do not, however, use such additional data in this article.

in general, and to estimate the tangent field u relative

to this chosen surface velocity. While the resulting u

must be interpreted with care, it is reasonable to as-

sume that the sum u + V is close to the true total

velocity m. The selected surface velocity ideally strikes
a balance between being easy to implement while being

not too unnatural. While modelling the optical flow on

an evolving surface is the main novelty of this article,

from the viewpoint of our particular application, it can
be regarded as a subproblem making the computation

of 3D velocities feasible, namely by reducing the data

dimension while keeping as much accuracy as possible.

1.2 Contribution

The contributions of this article are as follows. First,

we formulate the optical flow problem on an evolving

two-dimensional manifold and derive a generalised op-

tical flow constraint. Second, we translate the classi-
cal functional by Horn and Schunck [13] and its spa-

tiotemporal extension by Weickert and Schnörr [31] to

the setting of moving manifolds. The associated Euler-

Lagrange equations are solved with a finite difference
scheme requiring a global parametrisation of the mov-

ing manifold. Finally, we apply this technique to obtain

qualitative results from the aforementioned zebrafish

data. Our experiments show that the optical flow is

an appropriate tool for analysing these data. It is capa-
ble of visualising global trends as well as individual cell

movements. In particular, the computed flow field can

indicate cell divisions, while its integral curves approx-

imate cell trajectories.
Finally, we address a point raised in the recent pub-

lication by Schmid et al. [27], who also analysed endo-

dermal cell dynamics in a zebrafish embryo. They ap-

proximated the surface by a sphere, used different map

projections to reduce the amount of data by one di-
mension, and subsequently computed cell motion in the

plane. They acknowledge, however, the need for more

exact, and supposedly slower, imaging techniques that

do not discard any 3D information. While our approach
still requires the volume data to be projected onto a sur-

face and thus is faster than comparable 3D approaches,

it does not require the surface to be very simple —

e.g. spherical or planar — or static.

This article is structured as follows. In the next sub-
section we review related literature. Section 2 is devoted

to providing the necessary mathematical background,

notations, and definitions. Sections 3 and 4 introduce

our variational model of optical flow on evolving sur-
faces and contain the continuous and discretised opti-

mality conditions, respectively. In Sec. 5 we explain our

microscopy data and the necessary preprocessing steps,
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Fig. 2 Frame no. 50 (top row) and 61 (bottom row) of the embryonic zebrafish image sequence. The left images illustrate
the raw volumetric data F̄ . Intensity corresponds to fluorescence response. In the middle images, the curved mesh represents
surfaces fitted to the cell’s centres. The right images depict only the surface and the extracted two-dimensional image F . All
dimensions are in micrometer (µm). For more details on the microscopy data and the preprocessing steps see Sec. 5.

summarise our approach, and finally present numerical

results.

1.3 Related work

Optical flow is the apparent motion in a sequence of

images. Its estimation is a key problem in Computer

Vision. Horn and Schunck [13] were the first to propose

a variational approach assuming constant brightness of
moving points and spatial smoothness of the velocity

field. Since then, a vast number of modifications have

been developed. See [3,30] for recent surveys.

Using optical flow to extract motion information

from cell biological data has gained popularity over the

last decade. See, for example [1,2,5,8,14,23,24,26,27].

In these works displacement fields are computed either
from 3D images or from 2D projections of the 3D data.

While projections can suffer from inaccuracies [26,27],

the extraction of dense velocities from volumetric time-

lapse data poses computational challenges [2]. In the

present article we avoid both of these problems.

Many natural scenarios are more accurately described

by a velocity field on a non-flat surface rather than

on a flat domain. With applications to robot vision,
Imiya et al. [15,28] considered optical flow for spheri-

cal images. Lefèvre and Baillet [21] extended the Horn-

Schunck method to general 2-Riemannian manifolds,

showed well-posedness, and applied it to brain imaging

data. They solved the numerical problem with finite el-

ements on a surface triangulation. In all of the above
works the underlying imaging surface is fixed over time,

while in this paper it is not.

A preliminary version of this paper appeared in [17].

The main differences to the present article are as fol-

lows. First, our current implementation allows us to

regularise spatiotemporally as well as only spatially. In

[17] we only treated spatial regularisation. Second, the
spatial regularisation functional has been improved in

the sense that it is now parametrisation invariant. We

have also conducted new experiments with the cell mi-

croscopy data and, in contrast to [17], computed ap-
proximate cell trajectories. Finally, we added some re-

cent references.

2 Notation and Background

Whenever convenient we make use of the Einstein sum-
mation convention. Every index that appears exactly

twice in an expression, once as a sub- and once as a

superscript, is summed over.
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2.1 Evolving Surfaces

Let M = (Mt)t∈I be a family of compact smooth 2-

manifolds Mt ⊂ R
3 indexed by a time interval I =

[0, T ]. Each Mt is assumed to be oriented by the unit

normal field N(t, ·). For every t ∈ I and x ∈ Mt the

orthogonal projector onto the tangent plane TxMt is

given by

P(t, x) := Id−N(t, x)N(t, x)⊤. (2)

We call M an evolving surface, if there is a smooth
function

φ : I ×M0 → R
3

such that φ(t, ·) is a diffeomorphism between M0 and

Mt for every t, and φ(0, ·) is the identity on M0. Note

that φ cannot be unique in general. With every φ there

is associated a surface velocity. Denote the inverse of
φ(t, ·) by φ−1

t (·). The surface velocity at a point x ∈ Mt

is then defined by

V(t, x) := ∂tφ
(

t, φ−1
t (x)

)

. (3)

In contrast to φ the domain of V is not I × M0, but

rather the 3-manifold

M̄ :=
⋃

t∈I

({t} ×Mt) ⊂ R
4.

In other words, V is a Eulerian specification of M,

while φ is a Lagrangian one. Even though different func-
tions φ, φ′ give rise to different velocitiesV,V′, the nor-

mal velocity of M is independent of the choice of φ.

That is, V · N = V′ · N. We provide a short proof

of this statement in Proposition 1 in the Appendix.

Given a Eulerian specification V of M, we can obtain,
at least locally, a Lagrangian one by solving the ordi-

nary differential equation (3) for φ with initial condition

φ(0, x0) = x0. From now on we consider φ and V fixed.

See Sec. 5.2 for the specific φ and V we use in the nu-
merical computations.

Let x0 : Ω ⊂ R
2 → R

3 be a parametrisation of M0

mapping local coordinates ξ =
(

ξ1, ξ2
)

to points x =
(

x1, x2, x3
)

of Euclidean space. By composing φ and x0

we obtain a parametrisation of the evolving surface M

x : I ×Ω → R
3, x(t, ξ) = φ (t,x0(ξ)) . (4)

With this convention we always have ∂tx = V. Dif-

ferentiation with respect to ξi will be denoted by ∂i.
The set {∂1x(t, ξ), ∂2x(t, ξ)} forms a basis of Tx(t,ξ)Mt.

Note that this basis is not orthonormal in general. Us-

ing dot notation for the standard inner product of R3,

the components of the first fundamental form g = (gij)

are given by

gij = ∂ix · ∂jx. (5)

The elements of its inverse are denoted by upper indices

g−1 =
(

gij
)

.

Let F : M̄ → R be a scalar function and f : I×Ω →
R its coordinate representation,2 that is

F (t,x(t, ξ)) = f(t, ξ).

The integral of F over the evolving surface is then given

by
∫

I

∫

Mt

F dAdt :=

∫

I

∫

Ω

f
√

det g dξ dt,

where dA denotes the surface measure.

We refer to [6], [11] and the references therein for

more information on evolving surfaces. Eulerian and

Lagrangian coordinates can be read up in Sec. 2.1 of

[4], for example.

2.2 Derivatives on Evolving Surfaces

Spatial Derivatives. The spatial differential operators
introduced below are not different from those on static

manifolds. Therefore t ∈ I can be considered fixed in

this paragraph.

The surface gradient ∇MF of F is the tangent vec-

tor field which points in the direction of greatest in-

crease of F . In local coordinates it is given by

∇MF = gij∂if∂jx, (6)

where we omitted the arguments (t,x(t, ξ)) on the left

and (t, ξ) on the right hand side, respectively. The sur-

face gradient is just the tangential part of the R
3 gra-

dient. More precisely, if F̂ is a smooth extension of F

to an open neighbourhood of Mt in R
3, then

∇MF = P∇R3F̂ .

Note that the last expression does not depend on the

choice of F̂ .

Similarly, for two tangent vector fields u, v on Mt

the covariant derivative ∇vu of u along v is the tan-

gential part of the conventional directional derivative of

u along v. That is

∇vu = P∇R3 û(v),

2 Distinguishing between a surface quantity and its coordi-
nate representation is often avoided. We decided, however, to
make this distinction for the data F , and only for F , as we
found it helpful especially in Sec. 3.
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where û is an extension of u as above and ∇R3 û(v)

is the Jacobian of û applied to v. Let u := ui∂ix and

v := vi∂ix be their representations in the coordinate

basis. The covariant derivative then reads

∇vu =
(

vi∂iu
j + viukΓ jik

)

∂jx. (7)

The Christoffel symbols Γ jik are defined by the action

of ∇ on the coordinate basis

∇∂ix∂kx = Γ jik∂jx. (8)

An explicit expression for the Christoffel symbols in
terms of the first fundamental form is given by

Γ jik =
1

2
gmj (∂igkm + ∂kgmi − ∂mgik).

Recall that the coordinate basis is in general not or-
thonormal. In Sec. 4, however, we want to rewrite the

regularisation functional in terms of an orthonormal ba-

sis in order to simplify subsequent calculations. There-

fore we now make the little extra effort of expressing the

covariant derivative ∇vu in terms of an arbitrary, pos-
sibly non-coordinate, frame {e1, e2}. Writing u = wiei
and v = ziei in this basis, the corresponding formula

reads

∇vu =
(

∇vw
j + ziwkΓ̃ jik

)

ej . (9)

For scalar functions like wj the covariant derivative
∇vw

j is just the directional derivative along v. It can

be computed by using linearity of the covariant deriva-

tive with respect to its lower argument

∇vw
j = ∇vi∂ixw

j = vi∇∂ixw
j = vi∂iw

j .

The Γ̃ jik are the symbols associated to the new frame
{e1, e2}. In analogy to (8), they are defined by

∇ei
ek = Γ̃ jikej . (10)

For an orthonormal frame {e1, e2} the following trans-

formation law describes the relation between the two

types of symbols

Γ̃ jik = δjpαhpghm
(

αℓi∂ℓα
m
k + αℓiα

n
kΓ

m
ℓn

)

, (11)

where αji is the ∂jx-coordinate of ei, that is, ei = αji∂jx

and δjp is the Kronecker delta. We give a short deriva-
tion of the equation above in Lemma 3 in the Appendix.

The covariant derivative of u at a point (t, ξ) is a

linear operator on Tx(t,ξ)Mt, mapping tangent vectors

v to tangent vectors∇vu. Its 2-norm (Frobenius norm)

can be computed via

‖∇u(t, ξ)‖22 = |∇e1
u(t, ξ)|2 + |∇e2

u(t, ξ)|2, (12)

where {e1, e2} now is an arbitrary orthonormal basis of

the tangent space Tx(t,ξ)Mt, that is, ei · ej = δij . Note

that, if x is a global parametrisation, then we can ob-

tain a frame {e1, e2} which is orthonormal everywhere

by Gram-Schmidt orthonormalisation of the coordinate
basis {∂1x, ∂2x}.

For a thorough treatment of the concepts introduced

in this section we refer to [10,19]. More basic differential

geometry texts are [9,18], for example.

Temporal Derivatives. Let x ∈ Mt0 . Denote by ψ : t 7→
ψ(t) ∈ Mt a trajectory through M with ψ(t0) = x. We

define the time derivative of F following ψ at x as3

dψt F (t0, x) :=
d

dt
F (t, ψ(t))

∣

∣

∣

∣

t=t0

. (13)

There are a few special cases of this derivative that are

worth mentioning. Let ψN be a trajectory for which
the vector ∂tψ(t0) is orthogonal to TxMt0 . The corre-

sponding derivative is called normal time derivative and

denoted by

dNt F (t0, x) :=
d

dt
F (t, ψN(t))

∣

∣

∣

∣

t=t0

. (14)

Every Lagrangian coordinate system φ of M engenders

a time derivative like (13) in a natural way. For x =

φ(t, y) ∈ Mt the time derivative of F following φ is

defined by

dVt F (t0, x) :=
d

dt
F (t, φ(t, y))

∣

∣

∣

∣

t=t0

. (15)

We choose the notation dNt F and dVt F , because the
derivative (13) in fact only depends on the velocity of

ψ at x, see Lemma 1. Finally, if M is parametrised

according to (4), which we assume from now on, then

dVt F = ∂tf . For illustration see Fig. 3.

We stress that if V is the physical surface veloc-

ity, then dVt is the natural time derivative for functions
defined on M̄, since it measures the temporal change

along trajectories φ(·, y) of surface points. These trajec-
tories are not cell trajectories in general. They coincide

only if the cells do not move by themselves and all the

motion is surface motion.

Lemma 1 With the definitions from above, we have

dVt F = dNt F +∇MF ·V.
3 Note that this composition of F with ψ is necessary, be-

cause the conventional partial derivative ∂tF (t0, x) is mean-
ingless in general.
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Fig. 3 Sketch of different trajectories through the evolving
surface giving rise to different temporal derivatives. Corre-
sponding velocities are depicted in grey.

Proof The main idea in this derivation from [6] is to

consider the normally constant extension F̂ of F : Let

N̄ ⊂ R
4 be an open neighbourhood of M̄. If N̄ is cho-

sen sufficiently small, it is possible to define a func-

tion F̂ : N̄ → R that is smooth, constant on normal

lines through Mt for every t, and agrees with F on M̄.

Therefore

d

dt
F (t, φ(t, y)) =

d

dt
F̂ (t, φ(t, y))

= ∂tF̂ +∇F̂ · ∂tφ
= dNt F +∇MF ·V

The last equality holds because, by construction, ∇R3 F̂

equals ∇MF and

dNt F =
d

dt
F̂ (t, ψN(t)) = ∂tF̂ +∇R3 F̂ · ∂tψN = ∂tF̂ .

Finally, note that by definition (3) we have ∂tφ = V.

⊓⊔

Note that, since ∇MF is tangential, dVt F actually only

depends on the tangential part PV of V. Here P is the
orthogonal projector defined in (2).

Let u be a tangent vector field on the evolving sur-

face M, that is, a function u : M̄ → R
3 such that

u(t, ·) : Mt → TMt

for all t. In analogy to the covariant derivative (7) and

to (15), we define the following time derivative

∇tu = PdVt u, (16)

where application of dVt to u is understood component-

wise. Again we have dVt u = ∂tu. A normal time deriva-
tive for u could be defined as well but will not be needed

in the sequel. As in the scalar case, ∇tu can be consid-

ered the natural time derivative for a tangent vector

field u, if V is the physical surface velocity. By setting

∇t∂ix = Γ j0i∂jx (17)

we arrive at the following expression for ∇tu in local

coordinates

∇tu =
(

∂tu
j + uiΓ j0i

)

∂jx.

The new symbols have the explicit representation

Γ j0i = gjk∂tix · ∂kx, (18)

which can be verified by taking inner products of both

sides of (17) with the coordinate basis vectors.

Again, in order to simplify calculations later on, we
want to express this derivative in terms of an orthonor-

mal frame {e1, e2}. We have

∇tu =
(

∂tw
j + wiΓ̃ j0i

)

ej , (19)

where the symbols Γ̃ j0i are defined as before and satisfy

an analogous transformation law

Γ̃ j0i = δjpαhpghm
(

∂tα
m
i + αki Γ

m
0k

)

. (20)

The derivation is analogous to (11) and can be found

in Lemma 3 in the Appendix.

3 Model Statement

3.1 Generalised Optical Flow Equation

We assume to be given an evolving surface M together

with a known Lagrangian specification φ or, equiva-
lently, a Eulerian one V. In addition we are given scalar

data F on M which we want to track over time.

Our optical flow model is based on the so-called

brightness constancy assumption. For every x ∈ M0

we seek a trajectory γ(·, x) : t 7→ γ(t, x) ∈ Mt along
which F is constant. In other words, we assume exis-

tence of a Lagrangian specification γ of M such that

F (t, γ(t, x)) = F (0, x). (21)

This implies that the time derivative of F following γ

has to vanish identically. We deduce from Lemma 1

that the following generalised optical flow equation has

to hold

dNt F +∇MF · ∂tγ = 0, (22)

where dNt F is the normal time derivative as defined in

(14) and ∇MF is the surface gradient of F , cf. (6).

Let us continue the discussion of Sec. 1.1. According
to our definition of γ, a cell located at x0 ∈ Mt0 moves

with velocity

∂tγ(t0, γ
−1
t0

(x0)) = m(t0, x0) = u(t0, x0) +V(t0, x0),

(23)
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where γ−1
t0

is the inverse of γ(t0, ·), m is the total ob-

served velocity of a cell as introduced in Sec. 1.1 and u

is its velocity relative to V. The second equality above

is due to decomposition (1). According to our assump-

tions at the beginning of this section, we consider V as
given so that the actual unknown is u.

The remaining part of this subsection is devoted to

rewriting (22) in terms of local coordinates. First, we

give an interpretation of the coordinates ui of u with
respect to the basis {∂1x, ∂2x}. Let β =

(

β1, β2
)

: I ×
Ω → Ω be the coordinate counterpart of γ, defined by

the equation

γ(t,x0(ξ)) = x(t, β(t, ξ)).

See also Fig. 4. Taking time derivatives on both sides
and dropping arguments yields

m = V + ∂tβ
i∂ix,

since ∂tx = V. We can conclude that ui = ∂tβ
i, which

means that (u1, u2) is just the 2D velocity of the parametrised
trajectory β. It remains to rewrite (22) in terms of u1

and u2.

Lemma 2 The optical flow equation (22) is equivalent

to

dVt F +∇MF · u = 0.

In local coordinates it reads

∂tf + ui∂if = 0.

Proof We prove the assertion in two steps. First we

show that

dNt F +∇MF · ∂tγ = dVt F +∇MF · u,
and afterwards rewrite the right hand side in local co-

ordinates.
By Lemma 1 the normal time derivative can be writ-

ten as

dNt F = dVt F −∇MF ·V
The other summand of (22) rewrites as

∇MF · ∂tγ = ∇MF · (V + u) .

Note that V is not assumed to be normal to Mt, so

that the term ∇MF · V does not vanish in general.

However, it does appear twice with opposite signs. Fi-

nally recall that dVt F = ∂tf and by the definition of
the first fundamental form

∇MF · u = gij∂if∂jx · uk∂kx
= gijgjk∂ifu

k

= ∂ifu
i.

⊓⊔

Ω Ω

M0 Mt

x0(·)

β(t, ·)

γ(t, ·)
x(t, ·)

Fig. 4 Commutative diagram describing the relation be-
tween β and γ.

It is worth noting that the parametrised optical flow

equation has precisely the same form as the classical
2D equation.

3.2 Regularisation

Directly solving the optical flow equation in the new set-
ting is just as ill-posed as it is in the classical setting. We

use variational regularisation to overcome this. In par-

ticular, we propose to minimise the following quadratic

spatiotemporal functional to recover a vector field u

describing the tangential motion of data F .

∫

I

∫

Mt

(

(

dVt F +∇MF · u
)2

+ λ0|∇tu|2 +

λ1‖∇u‖22
)

dAdt

(24)

Here λ0 ≥ 0 and λ1 > 0 are regularisation parameters.

Recall from Sec. 2 that u is temporally regularised ac-

cording to the assumed surface motion V. Functional
(24) is a generalisation of the one presented in [31] for

the Euclidean setting.

Moreover, if λ0 = 0, minimisation of (24) is equiva-

lent to minimising

∫

Mt

(

(

dVt F +∇MF · u
)2

+ λ1‖∇u‖22
)

dA (25)

for every instant t ∈ I separately. If Mt = M0 for

all t, the functional reduces to that of [21]. The spatial

regularisation term as defined in (12) is independent
of the chosen parametrisation. This is an improvement

over the functional chosen in [17].

Example 1 We end this section with a brief explana-

tion, from an applied point of view, of why we reg-

ularise with covariant derivatives. Consider as a toy
manifold the non-moving unit circle Mt = S1 ⊂ R

2

with parametrisation x(θ) = (cos θ, sin θ)
⊤
, θ ∈ [0, 2π)

and tangent basis {∂θx}. Consider the tangent vector

vector field u = c∂θx, where c 6= 0 is a fixed number.
This field would describe a uniform translation of data

F along the circle, and thus should not be penalised by

a regularisation term that enforces spatial smoothness.
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But while conventional differentiation does not yield a

vanishing vector field

∂θu = c∂θθx = −cx,

covariant differentiation does

∇θu = P∂θu = −cPx = −c(x− xx⊤x) = 0.

Here we used the fact that N = x and x⊤x = 1.

An analogous argument explains our penalisation of
∇tu of γ instead of the unprojected derivative ∂tu.

4 Euler-Lagrange Equations

To simplify matters from now on we will assume hav-

ing a global parametrisation x0 ofM0 and thus a global

parametrisation x of the whole evolving surface, cf. (4).

In addition, we express the functional (24) in an or-
thonormal non-coordinate basis {e1, e2} with

ei = αji∂jx. (26)

This leads to wearisome calculations at first, which how-

ever pay off eventually when we compute the optimality
conditions for the coordinates of u with respect to this

frame. Note that an orthonormal coordinate basis does

not exist in general [19].

In this section we use the following notational con-
vention. First, we identify t with ξ0. In addition, Latin

indices are always understood to run over the set {1, 2},
while Greek indices are reserved for {0, 1, 2}.

4.1 Rewriting Functional (24)

Let

u = wiei (27)

be the representation of the unknown u in the orthonor-

mal frame (26). It follows that uj = wiαji . Recall from

(9), (19) that the derivatives of u read

∇ei
u =

(

αki ∂kw
j + wkΓ̃ jik

)

ej ,

∇tu =
(

∂tw
j + wiΓ̃ j0i

)

ej .

If we set α0
µ = δ0µ and αµ0 = δµ0 , the coefficients of ej

above can be rewritten using the unified notation

Dµw
j = ανµ∂νw

j + wiΓ̃ jµi,

where µ = 0, 1, 2 and j = 1, 2. Consequently, defining
the operator D = (D0, D1, D2)

⊤, the integrand of the

regularisation term becomes a weighted 2-norm of the

matrix Dw = (Dµw
j)µj . The parametrised version of

energy functional (24) now takes the following compact

form

∫ T

0

∫

Ω

(

(

∂tf + wjαij∂if
)2

+

∑

µ,j

λµ
(

Dµw
j
)2

)

√

det g dξ dt,
(28)

where λ1 = λ2 and g is the first fundamental form as

introduced in (5). Observe that the simple form of the
regulariser originates from representing ∇ei

u and ∇tu

in an orthonormal basis. This also simplifies the com-

putation of the optimality conditions.

4.2 Optimality System

Denote the interior of I × Ω ⊂ R
3 by D. Functional

(28) takes the general form

E(w) =
∫

D

L(w,∇w) dξ,

where the Lagrangian L is a smooth function of all wi

and ∂µw
i. Denote partial derivatives of L by subscripts.

A minimiser (w1, w2) of E has to satisfy the following

second-order elliptic system

Lwm =
∑

µ

∂µL∂µwm , in D,

0 =
∑

µ

nµL∂µwm , on ∂D,
(29)

form = 1, 2 and where n = (n0, n1, n2)
⊤ is the outward

normal to D. The derivatives of the Lagrangian read

Lwm =
√

det g
(

αim∂if
(

wjαkj ∂kf + ∂tf
)

+
∑

µ,j

λµΓ̃
j
µmDµw

j
)

,

L∂νwm =
√

det g
∑

µ

λµα
ν
µDµw

m.

System (29) in terms of derivatives of w together with

explicit formulas for all coefficients can be found in the

Appendix. For more details on variational calculus we

refer to [7,12].

Remark 1 If M is a fixed plane, then ανµ = δνµ and all

connection symbols vanish. Consequently, the boundary
conditions become standard Neumann ones and system

(29) reduces to the one derived in [13] or [31], respec-

tively.
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wm
p

wm

N−
1 (p)

wm

N−+
12 (p)

wm

N+
2 (p)

wm

N+
1 (p)

wm

N+−
12 (p)

wm

N−−
12 (p)

wm

N−
2 (p)

wm

N++
12 (p)

wm

N−
0 (p)

wm

N+
0 (p)

Fig. 5 Eleven point stencil arising from the discretisation.

4.3 Discretisation and Numerical Aspects

We solve the Euler-Lagrange equations (29) with a stan-

dard finite difference scheme. The spatiotemporal do-

main D is assumed to be the unit cube (0, 1)3 and is
approximated by a Cartesian grid with spacing of hσ
in the direction of ξσ, where h1 = h2. Grid points are

denoted by p. Thus, wmp := wm(p) refers to the numer-

ical approximation of wm at p ∈ D. Partial derivatives
of the unknowns are approximated using central differ-

ences. They read

∂σw
m(p) ≈ 1

2hσ

(

wm
N+

σ (p)
− wm

N−
σ (p)

)

,

∂σσw
m(p) ≈ 1

h2σ

(

wm
N+

σ (p)
− 2wmp + wm

N−
σ (p)

)

,

and

∂νσw
m(p) ≈ 1

4hνhσ

(

wm
N++

νσ (p)
− wm

N+−
νσ (p)

−wm
N−+

νσ (p)
+ wm

N−−
νσ (p)

)

,

where the symbolsN±
σ (p) andN±±

νσ (p) denote the neigh-
bours of wmp in the grid along coordinates σ and ν, σ,

respectively. From the choice of the discrete derivatives

an eleven-point stencil is obtained; see Fig. 5. Deriva-

tives of the data f and the surface parametrisation x

are handled likewise, using central differences in the in-
terior and inward differences at the boundaries.

However, the resulting (sparse) linear system is un-

derdetermined from equations (29) alone, because the

approximations used for the mixed derivatives of wm re-
fer to points not occurring in any boundary condition.

Thus, at every grid point p ∈ C ⊂ ∂D with

C :=
(

{ξ1 = 0} ∪ {ξ1 = 1}
)

∩
(

{ξ2 = 0} ∪ {ξ2 = 1}
)

(30)

additional boundary conditions are needed. At these

points we set n = (0,±1,±1)⊤ in the boundary condi-

tion (29), which is a vector pointing in the direction of

the undetermined grid neighbour. This leads to expres-

sions of the form ±∂1wm±∂2wm, which, interpreted as

a directional derivative, can be approximated by

1

2
√
2hσ

(

wm
N±±

ij (p)
− wm

N∓∓
ij (p)

)

.

5 Experiments

5.1 Zebrafish Microscopy Data

As mentioned before, the biological motivation for this

work are cellular image sequences of a zebrafish em-

bryo. Endoderm cells expressing green fluorescent pro-

tein were recorded via confocal laser-scanning microscopy
resulting in time-lapse volumetric (4D) images. See e.g. [22]

for the imaging techniques.

The microscopy images were obtained during the

gastrula period, which is an early stage in the animal’s

developmental process and takes place approximately
five to ten hours post fertilisation. In short, the fish

forms on the surface of a spherical-shaped yolk, which

itself deforms over time. Detailed explanations and nu-

merous illustrations can be found in [16]. For the bi-

ological methods such as the fluorescence marker and
the embryos used in this work we refer to [25].

The captured area is approximately 540 × 490 ×
340µm3 and shows the pole region of the yolk. Fig-

ure 2, left column, depict two frames of the raw data.

The sequence contains 77 frames recorded in intervals
of 240 s with clearly visible cellular movements and cell

divisions. The spatial resolution of the data is 512 ×
512×44voxels. Intensities are in the range [0, 1]. In the

following we denote by

F̄ δ ∈ [0, 1]77×512×512×44

the unprocessed microscopy data approximating F̄ from

Sec. 1.1.

The important aspect about endodermal cells is that
they are known to form a monolayer during gastrula-

tion [29]. In other words, the radial extent is only a

single cell. This crucial fact allows for the straightfor-

ward extraction of a surface together with an image of

the stained cells. Figure 2 illustrates the idea for two
particular frames.

5.2 Preprocessing and Acquisition of Surface Data

In this section, we relate the mathematical concepts in-
troduced in Sec. 2 to the 4D microscopic images. We

give a concrete global parametrisation suitable for this

type of data and discuss the necessary preprocessing
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Fig. 6 Sequence of embryonic zebrafish images. Depicted are frames no. 46 to 60 of the entire sequence (aligned left to right,
top to bottom).

steps leading to an approximation of the evolving sur-
face M̄ together with an approximation of the scalar

quantity F .

The first step is to extract approximate cell centres

from the raw microscopy data. As the positions of cells

are characterised by local maxima in intensity they can

be reliably obtained as follows. For every frame, a Gaus-

sian filter is applied to the volumetric data F̄ δ. Then,
local maxima with respect to intensity are computed

and treated as cell centres whenever they exceed a cer-

tain threshold.

Next we fit a surface to the cell positions. For every

frame, this is done by least squares fitting of a piecewise

linear function combined with first-order regularisation.

From that we get a height field zδ ∈ R
77×512×512 which

completely describes the discrete evolving surface. Fi-

nally, the numerical approximation f δ of f is calculated

by linear interpolation of F̄ δ and evaluation at surface

points determined by zδ.

The combination of all processing steps described

above turns the original 4D array F̄ δ into two three-

dimensional arrays

f δ ∈ [0, 1]77×512×512,

zδ ∈ R
77×512×512.

Figure 2, right column, illustrates both surfaces and the

obtained images for two particular frames. In Fig. 6, a

segment of the sequence is shown.

Let us quickly relate zδ to the quantities introduced
in Sec. 2.1. The mapping

(t, ξ1, ξ2) 7→ (ξ1, ξ2, zδ(t, ξ1, ξ2)),

where (t, ξ1, ξ2) ranges over a 77× 512× 512 grid, is
the discrete parametrisation. The corresponding φ is

the function that identifies surface points with identical

(ξ1, ξ2) coordinates. Thus, the surface motion V occurs

only in direction of x3. However, we stress that this

particular parametrisation was chosen due to the lack
of knowledge about the true motion of material points

on the surface.

5.3 Solving for the Velocity Fields

After the preprocessing of the microscopy data as ex-

plained above, the following steps lead to the desired

solution:

1. From the parametrisation compute approximations
of ∂ix, g, Γ

k
ij , α

j
i , Γ̃

k
µj as explained in Sec. 2. Like all

other quantities the αji are functions of space and

time. They can be computed, for example, by Gram-

Schmidt orthonormalisation of the coordinate basis
{∂1x, ∂2x}.

2. Discretise optimality system (33) as described in

Sec. 4.3.

3. Compute coefficients (34) of discretised optimality
system from the quantities calculated in step 1.

4. Solve resulting linear system for unknowns w, see

Sec. 5.5.
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5. Compute relative tangential velocity u via (27) and

recover total velocity m = u+V.

6. Finally, cell trajectories can be approximated by

computing the integral curves ofm, see (32) in Sec. 5.5.

5.4 Visualisation

In order to illustrate the computed tangential velocity

fields we apply the standard flow colour-coding from

[3].4 This coding turns R2 vector fields into colour im-

ages according to a particular 2D colour space.

However, we are interested in visualising tangential

vector fields on an embedded manifold, which are func-
tions with values in R

3. To be able to apply the colour-

coding mentioned above we turn the computed optical

flow fields u into R
2 vector fields in the following way

u 7→ |u|
|Px3u|Px3u, (31)

where Px3 : (x1, x2, x3) 7→ (x1, x2, 0) is the orthogo-

nal projection onto the x1-x2 plane. If the scaling fac-
tor |u|

|Px3u|
were omitted, the new vector field would

simply be the original one as viewed from above. The

reason for including this scaling are vectors having a

large x3-component, which would otherwise seem un-
naturally short. Finally, the image resulting from the

colour-coding of vector field (31) is painted back on the

surface. Figure 7 illustrates the colour-coded tangential

vector field u and the colour space. In all figures the
surface is slightly smoothed for better visual effect.

5.5 Numerical results

We conducted four experiments with different parame-

ter settings and minimised functional (24) as outlined

in Sec. 5.3. Due to a low cell density near the bound-
aries we only worked with a part of the whole dataset.

The grid dimensions were (N0, N1, N2) = (30, 370, 370).

Accordingly, grid spacing was set to hσ = 1/Nσ. Our

implementation was done in Matlab and all experiments

were performed on an Intel Xeon E5-1620 3.6GHz work-
station with 128GB RAM. We used the Generalized

Minimal Residual Method (GMRES) to solve the re-

sulting linear system. As a termination criterion we

chose a relative residual of 0.02 and a maximum num-
ber of 2000 iterations with a restart every 30 iterations.

The resulting runtime was approximately two hours. In

Table 1, the parameters for all experiments are listed,

and the resulting running times and relative residuals

4 Some figures may appear in colour only in the online ver-
sion.

No. λ0 λ1 = λ2 Runtime Rel. residual
1 c c 2.05 h 0.075
2 c/10 c 2.07 h 0.086
3 c/100 c 2.09 h 0.103
4 c/100 c/10 2.14 h 0.016

Table 1 Runtimes and relative residuals of the experiments.
For convenience, we define c := 0.5.

are given. Implementation and data are available on our

website.5

Regularisation. In a first experiment, we compared dif-

ferent regularisation parameters. They were chosen such

that individual movements of cells are well preserved

and the velocity field is sufficiently homogeneous both

in time and space. Figure 8 depicts these results. A vi-
sual inspection of the dataset shows that cells tend to

move towards the embryo’s body axis which roughly

runs from the bottom left to the top right corner in

Fig. 7, right. This behaviour is clearly visible from the
obtained velocity fields. In Fig. 9, we show the optical

flow field for the sequence depicted in Fig. 6.

Cell Trajectories. In order to reconstruct the paths trav-

elled by individual cells, we computed the integral curves

ofm. By (23), for every starting point x0 ∈ M0 the tra-
jectory γ(·, x0) is the solution of the following ordinary

differential equation

∂tγ(t, x0) = m(t, γ(t, x0)),

γ(0, x0) = x0,
(32)

where m is the total velocity of a cell; cf. Sec. 2. As

discussed in Sec. 5.2, a local maximum of F at x0 ∈
M0 indicates the approximate position of a cell. Hence,
we chose local maxima as initial values and approxi-

mated (32) by solving the projection of

γ̂(t+ 1, x0) = γ̂(t, x0) + sm(t, γ̂(t, x0))

γ̂(0, x0) = x0,

to the x1-x2-plane, because it allows for a better illus-

tration. The parameter s is a step size and was chosen
as s := 10. Figure 10 shows the projection Px3 γ̂ of the

computed curves for several values of the regularisation

parameters. The effect on the smoothness of the trajec-

tories is clearly visible.

Cell Divisions. Figure 11 shows two cell divisions in
more detail. The displacement field clearly resembles

the splitting of the mother cell and the diverging daugh-

ter cells. Our results suggest that cell divisions can be

indicated reasonably well by the proposed model.

5 http://www.csc.univie.ac.at
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Fig. 7 Optical flow field between frames 60 and 61 of the sequence. Colours indicate direction whereas darkness of a colour
indicates the length of the vector. Note that the colour circle has been enlarged for better visibility. Parameters are λ0 = c/100
and λ1 = λ2 = c, where c := 0.5.

Fig. 8 Resulting velocity field u between frames 60 and 61 obtained with different regularisation parameters. Denote c := 0.5.
Top left: λ0 = λ1 = λ2 = c. Top right: λ0 = c/10 and λ1 = λ2 = c. Bottom left: λ0 = c/100 and λ1 = λ2 = c. Bottom right:
λ0 = c/100 and λ1 = λ2 = c/10.
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Fig. 9 Sequence of colour-coded tangential velocity fields. Depicted are the same frames as in Fig. 6. Parameters are λ0 = c/100
and λ1 = λ2 = c/10.

6 Conclusion

Aiming at an accurate and efficient motion analysis of
4D cellular microscopy data, we generalised both the

Horn-Schunck and Weickert-Schnörr functionals to im-

ages defined on evolving surfaces. The resulting optical

flow constraint was solved by means of quadratic reg-

ularisation and verified on the basis of real data. Our
experimental results suggest that cell movements in-

cluding divisions are well captured by our model.
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Appendix

We first sketch a proof about the statement from Sec. 2.1 that
the normal velocity of an evolving surface is independent of
φ.

Proposition 1 Let φ be a Langrangian specification of M
and V the corresponding velocity as defined in (3). Then
V ·N is independent of the chosen specification.

Proof We can represent M̄ locally as the level set of a real-
valued function G(t, x), whose gradient does not vanish, see

e.g. [20, Prop. 5.16]. We now express V · N solely in terms
of G and thereby prove the assertion. Observing that the
composition of G with φ is constant, we calculate

0 =
d

dt
G(t, φ(t, x0)) = ∂tG+∇R3G ·V = ∂tG+ |∇R3G|V ·N.

The second equality holds, because ∇R3G is normal to the
surface. We conclude that

V ·N = − ∂tG

|∇R3G|
.

⊓⊔

In other words, different specifications of a surface can only
differ in their respective tangential velocities.

Next we prove the transformation law (11), (20) for the

connection coefficients Γ̃ j
µj .

Lemma 3 The symbols defined by (10) are given by (11).

Proof Take inner products on both sides of (11) with ej to
get

ej · ∇ei
ek = Γ̃ j

ik.

Next express both terms on the left hand side in the coor-
dinate basis by using ej = αm

j ∂mx and formula (7). The
assertion follows now immediately. ⊓⊔

An analogous calculation yields formula (20).
For our implementation the Euler-Lagrange equations (29)

are needed in the following form

dνσ∂νσw
m + cσm

i ∂σw
i + bmi w

i = am, in D,

qνσ∂σw
m + pνm

i wi = 0, on {ξν = 0} ∪ {ξν = 1},
(33)

where we assumed D = (0, 1)3. As usual the system is to be
understood for m = 1, 2 and ν = 0, 1, 2. Below we give the
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Fig. 10 Integral curves for frames {40, . . . , 60} for the identical regularisation parameters as in Fig. 8. The colour gradient of
a trajectory from yellow to green (bright to dark) indicates temporal progress. Local intensity maxima at the first frame serve
as initial values. The embryo’s body axis runs from bottom left to top right.

exact coefficients.

am = −αi
m∂if∂tf

bmi = αj
mα

k
i ∂jf∂kf

+
∑

µ λµ

(

∑

j Γ̃
j
µmΓ̃

j
µi −Gναν

µΓ̃
m
µi + ∂ν

(

αν
µΓ̃

m
µi

))

cσm
i =

∑

µ λµ

(

ασ
µΓ̃

i
µm − ασ

µΓ̃
m
µi

− δim
(

Gνα
ν
µα

σ
µ + ∂ν(α

ν
µα

σ
µ)

)

)

dνσ = −
∑

µ λµαν
µα

σ
µ

pνm
i =

∑

µ λµαν
µΓ̃

m
µi

qνσ =
∑

µ λµαν
µα

σ
µ

(34)

Here we used the shorthand

Gν =
∂ν

√
det g

2
√
det g

.

Recall that the functional without time regularisation (25)
leads to a sequence of decoupled systems for every instant t.
Each of those has the form

djk∂jkw
m + ckm

i ∂kw
i + bmi w

i = am, in D,

qjk∂kw
m + pmj

i wi = 0, on {ξj = 0} ∪ {ξj = 1}.
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Fig. 11 Detailed view of two cell divisions occurring between frames 41 and 44 (top, left to right) and frames 55 and 58
(bottom, left to right). Parameters are λ0 = c/100 and λ1 = λ2 = c/10. Vectors are scaled and only every second vector is
shown. Data intensities are interpolated for smooth illustration.

Note that, in comparison to system (33), we only replaced
Greek indices by Latin ones. The coefficients a, b, c, d, p, q of
this simpler system can be obtained from the list above by
setting λ0 = 0.
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