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Abstract: This paper investigates photoacoustic tomography with two spatially varying acoustic parame-
ters, the compressibility and the density. We consider the reconstruction of the absorption density param-
eter (imaging parameter of Photoacoustics) with complete and partial measurement data. We investigate and
analyze three different numerical methods for solving the imaging problem and compare the results.
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1 Introduction
Photoacoustic Imaging (PAI) is a novel technique for tomographical imaging of small biological or medical
specimens. The method makes use of the fact that an object expands after being exposed to ultrashort elec-
tromagnetic radiation, and emits an ultrasonic wave (see e.g. [28, 32]). The resulting acoustic pressure is
assumed to be proportional to the electromagnetic absorption, which is the imaging parameter of Photoa-
coustics. It provides detailed anatomical and functional information.

Opposed to the conventional photoacoustic imaging [28, 32], which is based on the assumption that
the compressibility and density of the medium are constant (and thus in turn the sound speed), this paper
assumes both of these parameters spatially varying. The mathematical model describing the propagation of
the ultrasonic pressure considered here is

κ(x)y��(x, t) − ∇ ⋅ (ρ(x)−1∇y(x, t)) = 0 inℝn × (0,∞),
y(x, 0) = f(x) inℝn ,
y�(x, 0) = 0 inℝn .

(1.1)

Here, κ is the material compressibility, ρ denotes the density and f denotes the amount of absorbed energy,
i.e. the imaging parameter that encodes thematerial properties of physiological interest in PAI.We emphasize
that the speed of sound is given by c(x) = 1

√κρ and that this equation is more general than

y��(x, t) − c2(x)∆y(x, t) = 0 inℝn × (0,∞),
y(x, 0) = f(x) inℝn ,
y�(x, 0) = 0 inℝn ,

(1.2)
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which also describes acoustic wave propagation in the case of variable sound speed. The latter equation
is derived from equation (1.1) under the additional assumption that ρ is spatially slowly varying. Another
common approximation is obtained by the assumption that κ is spatially slowly varying and results in

y��(x, t) − ∇ ⋅ (c2(x)∇y(x, t)) = 0 inℝn × (0,∞),
y(x, 0) = f(x) inℝn ,
y�(x, 0) = 0 inℝn .

(1.3)

For further details on the derivation of equation (1.1) from fluid- and thermodynamics, we refer to
[7, Chapter 8.1].

The photoacoustic reconstruction consists in determining the function f from measurement data of y on
a surface S ⊆ ∂Ω over time (0, T).

There exists a huge amount of literature on reconstruction formulas in the case c ≡ 1, see for instance
[16, 17, 29–31, 33, 34] to name but a few. Time reversal in the case of variable sound speed has been studied
for instance in [2, 14, 15, 19, 21, 26]. Time reversal for photoacoustic imaging based on equation (1.1) as
well as on equation (1.2) has been given in [21] – note that both associated wave operators are special cases
of the general operator from [21]. Their theory has been generalized to the elastic wave equation in [24].

In this paperwe focus onnumerical realization and regularization theory of photoacoustic imaging based
on equation (1.1) with different numerical methods. Most closely related to our numerical approach is a time
reversal algorithm from [25], which employs the formula equation (3.7) below. Recently we applied iterative
regularization techniques in the case of variable sound speed [6] and compared it with time reversal. The
goal here is to generalize time reversal and iterative regularization for photoacoustic imaging in the case of
spatially variable density and compressibility. A convergence in the least-squares-sense is thereby guaranteed
by standard results from regularization theory (see e.g. [8, 10]).

The paper is organized as follows: In Section 2 we analyze the mathematical equations describing wave
propagation in the case of spatially variable compressibility and density. Imaging based on this model is
analyzed in Section 3. Numerical results are presented for three different methods; time reversal, Neumann
series, and Landweber iteration in Section 4. The latter two seem to be new for the presented equation. We
also investigate the case of partial measurement data.

1.1 Notation

In the beginning we summarize the basic notation, which is used throughout the paper.
In the following,Ω denotes a non-empty, open, bounded and connected domain inℝn with Lipschitz and

piecewise C1-boundary ∂Ω. Moreover, S ⊆ ∂Ω is connected and relatively open. The vector n(x), with x ∈ ∂Ω,
denotes the outward pointing unit normal vector of Ω. The absorption density f , the compressibility κ and
the density ρ are supposed to satisfy:
∙ κ, ρ ∈ C1(ℝn) satisfying 0 < ρmin ≤ ρ(x) ≤ ρmax and 0 < κmin ≤ κ(x) ≤ κmax. Define cmax := (κminρmin)−1/2.

Moreover, we assume that κ, ρ are constant in CΩ, where CΩ denotes the complement of Ω, and satisfy
κρ = 1 there.

∙ The absorption density function f has support in Ω: supp(f) ⊆ Ω.
For the sake of simplicity of notation we omit space and time arguments of functions whenever this is conve-
nient and does not lead to confusions.

We use the following Hilbert spaces:
∙ We denote

L2(Ω) = {ϕ ∈ L2(ℝn) : ϕ ≡ 0 in CΩ},

with inner product

⟨ϕ1, ϕ2⟩L2(Ω) = ∫
ℝn
ϕ1ϕ2 dx.
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∙ For Ω̂ = Ω orℝn:
– Let H1

0(Ω̂) be the closure of differentiable functions on ℝn with compact support in Ω̂, associated
with the non-standard (but equivalent) inner product

⟨ϕ1, ϕ2⟩1;κ,ρ = ∫
ℝn
κϕ1ϕ2 + ρ−1∇ϕ1 ⋅ ∇ϕ2 dx. (1.4)

The associated norm is denoted by ‖ϕ‖1;κ,ρ.
– The seminorm associated to the inner product

⟨ϕ1, ϕ2⟩1;ρ = ∫
ℝn
ρ−1∇ϕ1 ⋅ ∇ϕ2 dx (1.5)

is denoted by |ϕ|1;ρ.
– The norm associated with the inner product

⟨ϕ1, ϕ2⟩1 = ∫

Ω̂

ϕ1ϕ2 + ∇ϕ1 ⋅ ∇ϕ2 dx

is denoted by ‖ϕ‖1.
– The norms ‖ϕ‖1 and ‖ϕ‖1;κ,ρ are equivalent. In fact, we have

√min{κmin, ρ−1max}‖ϕ‖1 ≤ ‖ϕ‖1;κ,ρ ≤ √max{κmax, ρ−1min}‖ϕ‖1 for all ϕ ∈ H1
0(Ω̂). (1.6)

∙ We denote by L2(S) the standard Hilbert space of square integrable functions on ∂Ω with support in S,
together with the inner product

⟨ϕ1, ϕ2⟩L2(S) = ∫
S

ϕ1(x)ϕ2(x) dS(x),

and L2(Σ) denotes the standard Hilbert space of square integrable functions on ∂Ω × (0, T)with support
in Σ := S × (0, T), together with the inner product

⟨ϕ1, ϕ2⟩L2(Σ) =
T

∫
0

∫
S

ϕ1(x, t)ϕ2(x, t) dS(x) dt.

The induced norms are denoted by ‖ ⋅ ‖L2(S), ‖ ⋅ ‖L2(Σ). Moreover, C∞0 (Σ) denotes the space of smooth func-
tions with support in Σ.

∙ The trace operator γΩ : H1(ℝn) → L2(∂Ω) restricts functions defined on ℝn onto ∂Ω, respectively. This
operator is the composition of the standard trace operator γ : H1(Ω) → L2(∂Ω) and the restriction
operator R : H1(ℝn) → H1(Ω), which are both bounded [1, Theorem 5.22], and thus itself bounded.
We denote

Cγ := ‖γ ∘ R‖. (1.7)

2 Direct problem of wave propagation
In this section we are analyzing the wave operator L mapping the absorption density f onto the solution y of
equation (1.1) restricted to Σ:

L : H1
0(Ω) → L2(Σ), f Ü→ y|Σ . (2.1)

First, we show that the operator L is bounded. Analogous to [6], we define the total wave energy by

E(t; y) := 1
2 ∫
ℝn
κy�2 + ρ−1|∇y|2 dx. (2.2)

Brought to you by | Vienna University Library
Authenticated

Download Date | 9/30/16 10:35 AM



4 | Z. Belhachmi, T. Glatz and O. Scherzer, Photoacoustics with two varying parameters

The time derivative of E, taking into account equation (1.1), is

E�(t; y) = ∫
ℝn
κy��y� − ∇ ⋅ (ρ−1∇y)y� dx = 0 for all t > 0.

Consequently,
E(t; y) = E(0; y) = 1

2 |f|
2
1;ρ for all t > 0. (2.3)

This, together with equation (2.2) shows that

∫
ℝn
κy�2 dx ≤ |f|21;ρ and |y(t)|1;ρ ≤ |f|1;ρ for all t > 0. (2.4)

A-priori this inequality does not provide a bound for y in the wholeℝn with respect to the standard H1-norm.
This is provided for instance by the following lemma:

Lemma 2.1. Let y be the solution of equation (1.1). Then

‖y(t)‖1;κ,ρ ≤ C(T)‖f‖1;κ,ρ for all t ∈ (0, T), (2.5)

where
C(T) := √max{1 + 2T2, 2}.

Proof. For arbitrary ̂t ∈ (0, T) it follows from equation (2.4) that

∫
ℝn
κ(x)(y(x, t) − y(x, 0))2 dx = ∫

ℝn
κ(x)(

̂t

∫
0

y�(x, ̂t) d ̂t)
2
dx ≤ ̂t

t

∫
0

∫
ℝn
κy�2 dx d ̂t ≤ T2|f|21;ρ .

With the elementary inequality (a − b)2 ≥ 1
2a

2 − b2 it follows that

∫
ℝn
κ(x)(y(x, t))2 dx ≤ 2 ∫

ℝn
κ(x)(y(x, t) − y(x, 0))2 dx + 2 ∫

ℝn
κ(x)(y(x, 0))2 dx

≤ 2T2|f|21;ρ + 2‖√κf‖2L2(ℝn).

This together with equation (2.4) shows the assertion.

Now, we prove boundedness of L:

Theorem 2.2. The operator L : H1
0(Ω) → L2(Σ) is bounded and

‖L‖ ≤
CγC(T)√T

√min{κmin, ρ−1max}
. (2.6)

Proof. For given f let y be the solution of equation (1.1). From equation (2.2) it follows that the solution y of
equation (2.5) is in H1(ℝn) for every t > 0. Thus from equation (1.7) and equation (2.5) it follows that

‖y‖2L2(Σ) =
T

∫
0

∫
∂Ω

y2(t) dS(x) dt ≤ C2γ

T

∫
0

‖y(t)‖21 dt ≤
C2γC(T)2T‖f‖21;κ,ρ
min{κmin, ρ−1max}

.

Remark 2.3. From [23, Theorem 1] it follows that the trace L[f] is in fact in H3/4
loc (∂Ω × (0, T)). Therefore,

by finite speed of propagation (Theorem 2.8), if we in addition assume that f is supported away from ∂Ω,
L[f] is in fact in H3/4(∂Ω × (0, T)). The proof does not follow in a straightforward way from standard trace
results, but utilizes the theory of Fourier integral operators and microlocal analysis. In special cases, this
result can be further improved, see [21, Remark 5] and also [4, 5]. For instance, for Ω strictly convex, we have
L[f] ∈ H1(∂Ω × (0, T)). As a consequence, L : H1

0(Ω) → L2(Σ) is compact (see e.g. [3, Theorem 2.34]).
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In the following we characterize the adjoint of L : H1
0(Ω) → L2(Σ) on a dense subset of L2(Σ). Since the oper-

ator L∗ : L2(Σ) → H1
0(Ω) is bounded (in fact, ‖L‖ = ‖L∗‖), a characterization follows by limits of convergent

sequences on dense subsets. Here we characterize L∗ on C∞0 (Σ) first and extend it by convergent sequences
to L2(Σ).

Definition 2.4. Let i be the embeddingoperator fromH1
0(Ω) to L2(Ω). Then i∗ : L2(Ω) → H1

0(Ω) is the operator
which maps a function ψ ∈ L2(Ω) onto the solution of the equation

Du = ψ in Ω, u = 0 on ∂Ω, (2.7)

with D := κ − ∇ ⋅ ρ−1∇. In other words i∗ = D−1.

In the following we derive the adjoint L∗ of the operator L, which is required for the implementation of the
Landweber iteration below, on a dense subset of L2(Σ). The boundedness of L∗ is guaranteed by elementary
Hilbert space theory. Therefore, we get a characterization on L2(Σ) by limits of convergent sequences.

Theorem 2.5. For h ∈ C∞0 (Σ) the adjoint of the operator L, defined in (2.1), is given by

L∗[h] = i∗ ∘ L∗D[h], (2.8)

where
L∗D[h] = κz

�(0)|Ω , (2.9)
and z := z(h) is the weak solution of

κz�� − ∇ ⋅ (ρ−1∇z) = 0 inℝn\∂Ω × (0, T),
z(T) = z�(T) = 0 inℝn ,

[z] = 0, [
∂z
∂n ] = h on Σ,

[z] = 0, [
∂z
∂n ] = 0 on ∂Ω \ Σ × (0, T).

(2.10)

Here
[z] := z+|Σ − z−|Σ and [

∂z
∂n ] := ∂z+

∂n
!!!!!!!Σ

−
∂z−

∂n
!!!!!!!Σ
,

where z+ := z|CΩ×(0,T) and z− := z|Ω×(0,T).

Proof. The existence of a weak solution of equation (2.10) is analogous to [6, Appendix A], where the trans-
mission problem has been studied for variable sound speed. Multiplying the first equation of equation (2.10)
by the solution of equation (1.1) y, it follows that h ∈ C∞0 (Σ):

∫
Σ

hL[f] dS(x) dt = ∫
Σ

hy dS(x) dt = ∫
Ω

κz�(0)f dx = ∫
Ω

D[D−1[κz�(0)]]f dx = ⟨i∗[κz�(0)], f⟩1;κ,ρ .

The following results on finite speed of propagation of the solution of equation (1.1) are based on the results
from [9].

Definition 2.6. Let d(x) := dist(x0, x) be the distance between x0 and x with respect to the Riemannian
metric κρ dx. Note that this metric is chosen in accordance with the principal symbol of the elliptic operator
−κ−1∇ ⋅ (ρ−1∇ ⋅ ). The coneK with respect to the space-time point (t0, x0) is defined as

K := {(x, t) : d(x) < t0 − t}.

we further introduce
Kt := {x : d(x) < t0 − t},

the cross-section ofK at fixed time t.

Remark 2.7. According to [9, p. 416] the function d solves the PDE
1
ρκ |∇d|2 = 1, d(x0) = 0. (2.11)

This relation will be used in the proof of Theorem 2.8 below.
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Theorem 2.8. Let y be the solution of equation (1.1). Assume y� ≡ 0 onK0. Then y ≡ 0 inK.

Proof. Let
EKt (t; y) :=

1
2 ∫

Kt

κy�2 + ρ−1|∇y|2 dx (2.12)

denote the local energy. Taking the time derivative of EKt , it follows by application of the Leibniz rule for the
differentiation of evolving region integrals [9, p.713] that

E�Kt
(t; y) = ∫

Kt

κy�y�� + ρ−1∇y ⋅ ∇y� dy + 1
2 ∫
∂Kt

(κy�2 + ρ−1|∇y|2)v ⋅ n dS(x),

where v denotes the normal velocity of the moving boundary ∂Ct and n is the outward pointing unit normal
toKt. For a fixed point x ∈ Kt, we have v(x) = ∇d(x)

|∇d(x)|2 and n(x) = − ∇d(x)
|∇d(x)| . Therefore,

E�Kt
(t; y) = ∫

Kt

κy�y�� + ρ−1∇y ⋅ ∇y� dy − 1
2 ∫
∂Kt

(κy�2 + ρ−1|∇y|2) 1
|∇d|

dS(x) =: A − B. (2.13)

By application of Green’s formula, A is rewritten to

A = ∫
Kt

y�(κy�� − ∇ ⋅ (ρ−1∇y)) dx + ∫
∂Kt

ρ−1y�∇y ⋅ ∇d
|∇d|

dS(x).

The first term vanishes since y is solution to equation (1.1) and thus from equation (2.11) it follows that

|A| ≤ ∫
∂Kt

|y�|ρ−1/2|∇d||∇y|ρ−1/2

|∇d|
dS(x) = ∫

∂Kt

|y�|κ1/2|∇y|ρ−1/2

|∇d|
dS(x).

Using Cauchy’s inequality, we finally obtain

|A| ≤ 1
2 ∫
∂Kt

(κy�2 + ρ−1|∇y|2) 1
|∇d|

dS(x) = B.

Thus, from equation (2.13) it follows that E�Kt
(t; y) ≤ 0.

3 Photoacoustic imaging
The photoacoustic imaging problem can be expressed as the solution of the operator equation

L[f] = m. (3.1)

Uniqueness of the solution of equation (3.1) is closely related to a unique continuation result for the wave
equation:

Theorem 3.1 (Unique Continuation, [12, 20, 22]). Let u be a solution to equation (1.1), and assume that y ≡ 0
in (−T, T) × Bε(x0). Then

y ≡ 0 in {(x, t) ∈ ℝ ×ℝn : dist(x, x0) ≤ T − |t|}.

Uniqueness of the solution of equation (3.1) requires a sufficiently large observation time

T0 := max
x∈supp f

dist(x, S), (3.2)

where dist(x, S) is the distance of x to the closest point x� ∈ S with respect to the Riemannian metric κρ dx.

Corollary 3.2 (Injectivity of L, [21]). Let Ω be strictly convex and T > T0. Moreover, let supp f ⊂ Ω. Then
L[f] = 0 implies f = 0.

In the following we discuss several numerical algorithms for solving equation (3.1).
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3.1 Landweber iteration

We are employing the Landweber’s iteration for solving equation (3.1) and compare it with the time reversal
methods presented in Section 3.2, which are the standard references in this field. More efficient iterative
regularization algorithms are at hand [11], but these are less intuitive to be compared with time reversal. The
Landweber algorithm reads as follows:

f0 := 0 and f δk = f δk−1 − ωL
∗[L[f δk−1] − m

δ], k = 1, 2, . . . , (3.3)

where mδ stands for error-prone data with ‖mδ − m‖L2(Σ) < δ, where m = y|Σ. For a summary of results for
Landweber regularization in Photoacoustics we refer to [6] and the references therein.

We emphasize that Landweber’s iteration converges to theminimum norm solution

f † = L†[m], (3.4)

where L† is the Moore–Penrose inverse (see [18] for a survey), if the data m is an element of the range of L.
This is a property which is relevant when the observation time T is smaller than the critical time T0 which
guarantees injectivity of L.

3.2 Time reversal

In this subsection,wefirst state the conventional time reversal and give a remark onnecessary assumptions to
obtain error estimates for this method. This is followed by a description of amodified time reversal approach,
for which a theoretical analysis based on [21] can be provided.

3.2.1 Conventional time reversal

We formally define the time reversal operator

L[h] = z( ⋅ , 0), (3.5)

where z is a solution of
κz�� − ∇ ⋅ (ρ−1∇z) = 0 in Ω × (0, T),

z(T) = z�(T) = 0 in Ω,
z = h on ∂Ω × (0, T).

(3.6)

The fundamental difference between L and L∗ is that they are defined via differential equations on Ω × (0, T)
andℝn × (0, T). The conventional time reversal reconstruction [25] consists of computing

fTR = L[m]. (3.7)

Remark 3.3. Assume that S = ∂Ω, that ρ ≡ 1 and the speed of sound is non-trapping. For this case, Hristova
[13, Theorem 2] provides an error estimate for the time reversal method, employing results on the decay of
solutions of the wave equation (e.g. [27]).

3.2.2 Neumann series

Stefanov and Uhlmann [21] define the modified time reversal for equation (1.1): Rather than assuming (in
most cases unjustified) the initial data z(T) ≡ 0 we are again using the harmonic extension of the data term
h(s, T), for s ∈ ∂Ω, as initial datum at T. That is, for

−∇ ⋅ (ρ−1∇ϕ) = 0 in Ω with ϕ( ⋅ ) = m( ⋅ , T) on ∂Ω
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the modified time reversal operator

L̃[h] = z( ⋅ , 0) (3.8)

is defined by the solution of equation

κz�� − ∇ ⋅ (ρ−1z) = 0 in Ω × (0, T),
z(T) = ϕ, z�(T) = 0 in Ω,

z = h on ∂Ω × (0, T).
(3.9)

Note that this algorithm has not been used as a basis for numerical reconstruction for the generalized
equation (1.1).

Previously [21] showed stability of the modified time reversal reconstruction under non-trapping condi-
tions and for sufficiently large measurement time for equation (1.2). In fact, let c = (κρ)−1/2 be non-trapping
[14] and T1 denote the time when all singularities have left Ω. Then the result is directly convertible to equa-
tion (1.1):

Theorem 3.4 (Stability of Modified Time Reversal, [21, Theorem 1]). Let T > T1 and let S = ∂Ω be a closed
C2-surface. Moreover, let the coefficients κ, ρ ∈ C∞(ℝn). Then L̃L = Id−K, where K is a compact operator from
H1
0(Ω) → H1

0(Ω) satisfying ‖K‖ < 1.

Note that [21, Theorem 1] works only for complete boundary measurement data.
By Theorem 3.4, the initial value f can be expanded into the Neumann series

f =
∞
∑
j=0
K j[m]. (3.10)

By induction one sees that the m-th iterate can be written as

fk = fk−1 − L̃[L[fk−1] − m], (3.11)

where

fk =
k
∑
j=0
K j[m].

Remark 3.5. Note that with partial data, the Neumann series reconstruction consists in formally applying
equation (3.10) to the extended data ms, where

ms = m in Σ� ⊂⊂ Σ and ms = 0 in ∂Ω \ Σ × (0, T), (3.12)

in a way that ms ∈ H1(∂Ω × [0, T]) serves as approximation to m in Σ.

Let now S ⊂ ∂Ω relatively open. To fix the terminology, we define for (x, ξ) ∈ ℝn × Sn−1 the curve γ(x,ξ)(τ) to be
the geodesic (in the Riemannian metric κρ dx) through x in direction ξ , where τ ∈ (−∞,∞) and γ(x,ξ)(0) = x.
Note that

τ±(x, ξ) = max{τ ≥ 0 : γ(x,ξ)(±τ) ∈ Ω}

give the (possibly infinite) times when the geodesics leave the domain in positive (sgn = +) respectively neg-
ative (sgn = −) direction. Regarding stability [21, Theorem 3] provides the following result, which holds also
in the partial data case.

Theorem 3.6. Assume that (τsgn(x, ξ), γ(x,ξ)(τsgn(x, ξ)) ∈ Σ holds for all (x, ξ) ∈ Ω1 × Sn−1 in at least one of the
two directions sgn = +, sgn = −. Then there exists a constant C > 0 such that for any f ∈ C∞0 (Ω1), withΩ1 ⊂⊂ Ω,
the estimate

‖f‖H1
0(Ω1) ≤ C‖Lf‖H1(Σ)

is valid.
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4 Numerical experiments and results
Wecompare conventional time reversal equation (3.7), theNeumann series approach equation (3.11) and the
Landweber iteration equation (3.3) for the photoacoustic imaging problem based on equation (1.1). Similar
studies have been performed in [6] for photoacoustic imaging based on equation (1.2). Figure 1 displays the
involved parameters, including absorption density f , material compressibility κ and density ρ.

For the numerical solution of the involved wave equations equation (1.1) and equation (2.10), we use
a straight-forward adaptation of the BEM-FEM scheme outlined in [6]. equation (3.6) and equation (3.9) are
discretized by finite element discretization.

For the simulation of the data, for all different wave equations, the mesh size has been chosen as
∆x = 0.0095 and ∆t = ∆x/(15 ∗ cmax), leading to about 40000 nodal points in Ω. For all wave equations
involved in reconstruction, we use a grid with ∆xR = 0.01 and ∆tR = ∆xR/(15 ∗ cmax).

Measurement data are assumed to be recorded on 630 detection points on the unit circle. In the partial
data example, the measurements are restricted to the lower half of the circle.

The total measurement time was varied as multiples of T0, which is defined as in equation (3.2).

4.1 Test Example 1 – Reconstruction from either noisy or partial data

We investigate the performance of the different photoacoustic imaging techniques, time reversal, Neumann
series and Landweber iteration, respectively, with spatially varying κ and ρ. We show different test cases
(a) for partial measurement data (see Figure 2), wherewe show the imaging results for T = 2T0 and T = 4T0,

where T0, defined in equation (3.2), denotes the minimal time that guarantees unique reconstruction of
the absorption density f ,

(b) as well as reconstructions from full data in the presence of noise (Figure 3). The noise level is stated as
SNR (signal to noise ratio, in dB scale) with respect to the maximum signal value. The examples include
moderate noise (SNR = 10dB) and high noise (SNR = 5dB).

Figure 1. Parameters: First row: Test Example 1 –Mandrill. Second row: Test Example 2 – Fish. From left to right: initial
pressure f , compressibility κ, density ρ.
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Figure 2. Partial data reconstructions: Data are recorded on the lower unit half-circle and the parameters κ, ρ are exactly given.
Data are noise free and recorded for T = 2T0, 4T0. Reconstructions for T = 2T0, 4T0 are shown in the first and second row,
respectively. From left to right: time reversal, Neumann series with k = 5, Landweber iterate k = 5.

Figure 3. Reconstruction with complete, but noisy measurements and correct parameters κ, ρ, measurement time T = 2T0.
First row: SNR = 10dB. Second row: SNR = 5dB. From left to right: time reversal, Neumann series with k = 5, Landweber
iterate k = 5.
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4.2 Test Example 2 – Effect of modeling errors on reconstruction

The second test concerns a parameter setting κ, ρ and associated sound speed c = (κρ)−1/2, which is recon-
structed with inversions (time reversal, Neumann series, Landweber iteration) based on equation (1.2) and
equation (1.3). This results in a modeling error, whose effect depends on the magnitude of the gradient of ρ,
respectively κ.

First, we use theMandrill phantom and according acoustic parameters from Section 4.1. Here, the max-
imum gradient magnitude of the density and compressibility functions is relatively small. In addition, the
initial pressure given by theMandrill phantomdoes not show too large gradients as well. By employing equa-
tion (2.4), we can thus argue that the second term on the right-hand side in ∇ ⋅ (ρ−1∇y) = ρ−1∆y + ∇ρ−1 ⋅ ∇y
is negligible. A similar argument gives a justification for the approximation by equation (1.3).

Figure 4. Reconstructions of theMandrill phantom with T = 2T0. First row: Reconstruction using correct parameters κ1 = κ,
ρ1 = ρ as pictured in the second row of Figure 1. Second row: Reconstruction with parameters κ1 = κρ, ρ1 ≡ 1. Third row:
Reconstruction with parameters ρ1 = κρ, κ1 ≡ 1. From left to right: Time reversal, Neumann series with k = 5, Landweber
iterate k = 5.
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Figure 5. Reconstructions of the Fish phantom with T = 2T0. First row: Reconstruction using correct parameters κ1 = κ, ρ1 = ρ
as pictured in the second row of Figure 1. Second row: Reconstruction with parameters κ1 = κρ, ρ1 ≡ 1. Third row: Reconstruc-
tion with parameters ρ1 = κρ, κ1 ≡ 1. From left to right: Time reversal, Neumann series with k = 5, Landweber iterate k = 5.

The second phantom simulates a water-like body (e.g. soft tissue) containing an inclusion with signifi-
cantly different acoustic properties, like the air-filled swim-bladder of a fish (see lower row of Figure 1). We
choose the parameters to be bounded in the intervals 0.02 ≤ ρ ≤ 1 and 1 ≤ κ ≤ 14.3, with high gradients in
the transition between the inclusion and the rest of the domain (see also Figure 1).

Moreover, we include the achievable results when only c = (κρ)−1/2 is known, leading to amodeling error
in the reconstructions.
(a) In the first row of Figure 4, respectively Figure 5, we display the reconstructions with correct parameters

κ, ρ as depicted in the second row of Figure 1.
(b) Next, reconstructions are performedbyusing the parameters κ1 = κρ and ρ1 = 1, which nowplay the role

of κ and ρ in (1.1). This is equivalent to the usually considered approximation given by equation (1.2)
(see second row of Figure 4, Figure 5).

(c) We also try it the other way round by setting ρ2 = κρ, and κ2 ≡ 1 (third row of Figure 4, Figure 5). This
leads to the wave equation in pure divergence form, and displays the case where the compressibility
variations are negligible.
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Asmentioned above, the visible error obtained by the approximations in (b) and (c) depends on the gradient
magnitude of the given parameters f, κ, ρ. The results are discussed in Section 4.

4.3 Results

In the presented test examples, all three methods qualitatively reconstruct the same features. Time rever-
sal however fails to give quantitatively correct results, due to the relatively short measurement times in use
(a more detailed comparison of the performance of time reversal relative to the reconstruction time can be
found in [6]). Neumann series and Landweber iteration perform at a comparable level. As expected from
theory, the Landweber reconstructions appear slightly smoother, specifically in Figure 3, whereas the noise
is amplified in the Neumann series approach. In the case of partial data, there is no theoretical convergence
result for the Neumann series approach available (note, however, Theorem 3.6), whereas Landweber con-
verges to the minimum norm solution (see Section 3.1, Section 5 and Table 1).

The second test clearly indicates that a modeling error in the reconstruction method can lead to severe
artifacts near regions where the magnitude of the parameter gradient is large. However, in cases where the
parameters are relatively slowly varying, the modeling error is negligible, as it is displayed in Figure 4.

5 Conclusions
In this work we have studied photoacoustic imaging based on a general wave model with spatially variable
compressibility and density, respectively. We have implemented Neumann series and Landweber iteration
for photoacoustic imaging based on this general equation and we compared the result to conventional time
reversal as discussed in [25].

The numerical methods for photoacoustic imaging reveal the differences as outlined in Table 1 with
respect to convergence, stability and robustness against noise at the present stage of research. Stability is
understood in the sense of regularization theory [10], meaning that the Landweber iterates determined by
a discrepancy principle approximate the minimum norm solution.

Numerical results show the reconstructions in the case of error prone data and under modeling errors.
We emphasize that, so far, an error analysis is only possible for the Landweber iteration.

Time reversal Neumann Landweber

Convergence best approximate solution
measurement time T → ∞ T > T1 T > 0
sound speed non-trapping non-trapping arbitrary
data full full partial

Stability regularized solution
measurement time T > T1 T > T1/2 T > 0
sound speed non-trapping non-trapping arbitrary
data full partial partial

L2-noise no no yes

Table 1. Overview on the different photoacoustic imaging methods.
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