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INFLUENCE OF DIMENSION ON THE CONVERGENCE OF LEVEL-SETS IN

TOTAL VARIATION REGULARIZATION ∗

José A. Iglesias1 and Gwenael Mercier2

Abstract. We extend some recent results on the Hausdorff convergence of level-sets for total variation
regularized linear inverse problems. Dimensions higher than two and measurements in Banach spaces
are considered. We investigate the relation between the dimension and the assumed integrability of
the solution that makes such an extension possible. We also give some counterexamples of practical
application scenarios where the natural choice of fidelity term makes such a convergence fail.

Résumé. Nous étendons des résultats récents sur la convergence Hausdorff des lignes de niveau pour
des problèmes inverses linéaires régularisés avec la variation totale. Nous étudions la nécessaire relation
entre la dimension de l’espace ambiant et l’hypothèse d’intégrabilité de la solution qui rend cette
extension possible. Nous donnons aussi des contre exemples d’applications où le choix naturel de
l’attache aux données fait échouer ce mode de convergence.
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1. Introduction

In a few recent papers, several results have been shown linking the source condition for convex regularization
introduced in [18] to the convergence in Hausdorff distance of level-sets of total variation regularized solutions of
inverse problems, as the amount of noise and the regularisation parameter vanish simultaneously. Such a mode
of convergence, although seldom used, is of particular interest in the context of recovery of piecewise constant
coefficients as well as in the processing of images composed mainly of objects separated by clear boundaries.
In these situations, Hausdorff convergence of level-sets can be seen as uniform convergence of the geometrical
objects appearing in the data.

To be more specific, in [20] such a convergence is obtained for the denoising problem in the entire plane with
L2 fidelity term, and in [24] the authors extend the result to bounded domains and to general linear inverse
problems. These results have two common features. First, they are written in a Hilbert space framework,
allowing to easily study the convergence of dual solutions. Second, the analysis is performed in the plane where
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this Hilbert framework corresponds to the optimal scaling where weak regularity for level-sets as well as good
behavior at infinity can be proved, both of them being related to equi-integrability of these dual solutions locally
or at infinity.

In [16], similar results are obtained in the setting of imperfect forward models, with measurements in L∞

and where an L1 norm term is added to the regularization. There, it is assumed that the operators are bounded
from L1 in a bounded domain (q = 1 in the notation below), a case that we do not treat since then boundedness
in (L1)∗ = L∞ directly implies equi-integrability in Lp for any p.

Our aim is to extend this type of result to different choice of integrability and measurements made in more
general Banach spaces. We will see that this extension requires some particular choices of these ingredients,
and present some positive results as well as counterexamples.

More precisely, we study convergence, as the positive regularization parameter α and the noise w simultane-
ously vanish, of level-sets of minimizers of

inf
u∈Lq(Ω)

1

σ
‖Au− f + w‖σY + αTV(u), (Pα,w)

with q, σ > 1 and Ω ⊆ Rd, d > 1. We assume q 6 d/(d − 1), which implies that the conjugate exponent
q′ := q/(q − 1) > d. Here A : Lq(Ω) → Y is linear bounded, where Y is a locally uniformly convex Banach
space, with dual Y ∗ which is also assumed to be uniformly convex and with modulus of uniform convexity of
power type τ 6 σ′, where σ′ = σ/(σ − 1) (see Definition 1.1 and Proposition 1.6). The power σ > 1 allows for
natural choices of data term depending on the space Y , beyond the case of Hilbert space where σ = 2.

1.1. Preliminaries

A few results on geometry of Banach spaces.

We begin by making precise our requirements for the measurement space Y .

Definition 1.1. Let φ : Y → R be a convex function. We say that φ is locally uniformly convex if for any

f ∈ Y , there exists a nondecreasing real function hfφ > 0 such that for every g ∈ Y with g 6= f and 0 6 t 6 1,

φ ((1− t)f + tg)) 6 (1− t)φ(f) + tφ(g)− t(1− t)hfφ (‖f − g‖Y ) . (1)

The function φ is called (globally) uniformly convex [13, Chapter 5.3] if there exists a nondecreasing hφ > 0
such that for all f 6= g ∈ Y and 0 6 t 6 1 we have

φ ((1− t)f + tg)) 6 (1− t)φ(f) + tφ(g)− t(1− t)hφ (‖f − g‖Y ) . (2)

Furthermore, if two functions hφ, h̃φ satisfy (2), then the function s 7→ max(hφ(s), h̃φ(s)) does too, so there is
a largest such function that we denote by δφ and call the modulus of uniform convexity of φ. If δφ(ε) > Cεp

for some C > 0, p > 1 and all ε > 0, we say that this modulus of uniform convexity is of power type p.
Moreover, the function φ is said to be strictly convex when for all f, g ∈ Y with f 6= g and 0 < t < 1 we have

φ ((1− t)f + tg)) < (1− t)φ(f) + tφ(g). (3)

Clearly, uniform convexity is stronger than local uniform convexity, which in turn implies strict convexity.

The main quantitative result about uniformly convex functions that we will use is the following uniform
monotonicity inequality for subgradients:

Lemma 1.2. Let φ : Y → R be a convex function with modulus of uniform convexity δφ, and denote by
∂φ(f) ⊂ Y ∗ the subgradient of φ at f . Then, if vf ∈ ∂φ(f) and vg ∈ ∂φ(g) we have the uniform monotonicity
inequality

〈vf − vg, f − g〉(Y ∗,Y ) > 2δφ (‖f − g‖Y ) . (4)
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Proof. Since vf ∈ ∂φ(f) we can write for each 0 < t < 1

φ(f) + 〈vf , t(g − f)〉(Y ∗,Y ) 6 φ
(
f + t(g − f)

)
= φ

(
(1− t)f + tg

)
6 (1− t)φ(f) + tφ(g)− t(1− t)δφ(‖f − g‖Y ),

(5)

or
t 〈vf , g − f〉(Y ∗,Y ) 6 tφ(g)− tφ(f)− t(1− t)δφ(‖f − g‖Y ),

in which we can divide by t and take the limit as t→ 0 to obtain

φ(g) > φ(f) + 〈vf , g − f〉(Y ∗,Y ) + δφ(‖f − g‖Y ). (6)

Similarly, for vg we get
φ(f) > φ(g) + 〈vg, f − g〉(Y ∗,Y ) + δφ(‖f − g‖Y ), (7)

and using (6) in (7) we get (4). �

The uniform convexity notions of Definition 1.1 give rise to analogous ones for Banach spaces through their
norms [26, Def. 5.3.2, Thm. 5.2.5]:

Definition 1.3. A Banach space Y is said locally uniformly convex (resp. (globally) uniformly convex, strictly
convex) if (1) (resp. (2), (3)) hold for f, g belonging to the unit sphere and φ is the norm of Y . The modulus
of uniform convexity of Y is the corresponding δ‖·‖ for such points.

The uniform convexity of Y and Y ∗ that we assume is arguably not a strong restriction, since it is satisfied
by many natural spaces arising in the study of inverse problems for physical models (see [15, Prop. 11.12] for
quotients, [2, Thm. 3.9 and Thm. 3.12] for duals of Sobolev spaces, [36, Example 2.47] for the power types
and [23] for the precise moduli of Lp).

Proposition 1.4. Let 1 < p <∞, p′ = p/(p− 1) and Ω ⊆ Rd an open set.

• The space of sequences `p is uniformly convex, and in consequence so is the dual space `p
′
.

• The space Lp(Ω) is also uniformly convex, as is the dual Lp
′
(Ω).

• Sobolev spaces Wk,p(Ω). Since they can be isometrically embedded in Lp(Ω;RN ) for some N , they are

uniformly convex. The representation theorem for (Wk,p(Ω))∗ as a subspace of Lp
′
(Ω;RN ) implies that

it is also uniformly convex. Similarly, Wk,p
0 (Ω) and its dual W−k,p

′
(Ω) are also uniformly convex.

• The modulus of uniform convexity of the canonical norms of these spaces are of power type max(p, 2)
or max(p′, 2), respectively.

• Quotients of uniformly convex spaces by closed subspaces are again uniformly convex.

Example 1.5. While not apparent in the previous list, the uniform convexity of Y and of Y ∗ are independent
of each other. As a simple example, consider R2 with the norm defined for (x, y) ∈ R2 by

‖(x, y)‖C = sup {λ > 0 | (λx, λy) ∈ C}

induced (all norms in Rd are of this form, see [32, Thm. 15.2]) by the closed convex symmetric set

C := {(x, y) |ψ(x) + ψ(y) 6 1} ,

where ψ is the Huber function of parameter 1/2 defined by

ψ : R→ R+ ∪ {0}

t 7→

{
1
2 |t|

2 if |t| 6 1
2

1
2

(
|t| − 1

4

)
if |t| > 1

2 .
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Figure 1. The unit ball C of Example 1.5 and its polar C◦, the unit ball of the dual space.
The duality between uniform convexity and uniform smoothness also brings some intuition on
uniform convexity of Y ∗ being required for differentiability of ‖ · ‖2Y .

Now, the corresponding dual norm is induced [32, Thm. 15.1] by the polar set C◦ of C defined by

C◦ = {(x̄, ȳ) | x̄x+ ȳy 6 1 for all y ∈ C} ,

so we can denote it by ‖ · ‖C◦ . In view of the definition of C◦, it is easy to convince oneself that ‖ · ‖C◦ is
uniformly convex; roughly, the influence of the rounded corners of C will prevent the facets of C◦ from being
completely flat, see Figure 1. However, ‖ · ‖C is clearly not uniformly convex. In fact, for norms in a Banach
space the dual property to uniform convexity is uniform smoothness (in the sense that the limit defining the
Fréchet derivative exists uniformly in the point and direction taken) [13, Prop. 5.1.18 and Cor. 5.1.21] and since
ψε ∈ C1, ‖ · ‖C is uniformly smooth, which implies uniform convexity of ‖ · ‖C◦ .

Since we consider Fenchel duality for the minimization problem (Pα,w), we will need the duality mapping of
Y , that is defined as

j : Y → Y ∗

g 7→ ∂

(
1

2
‖ · ‖2Y

)
(g)

(8)

where, as before, ∂ denotes the subgradient. Note that j is one-homogeneous. We make use of the following
topological properties of Y and its dual (for the proofs, see [13, Ex 5.3.11, Thm. 5.4.6], [36, Cor. 2.43], [15, Thm.
3.31] [37, Prop. 32.22] and [26, Thm. 5.3.7]).

Proposition 1.6. Let Y be a Banach space. Then

• If Y is uniformly convex, the function ‖ · ‖pY is uniformly convex on bounded sets for any p > 1. If
additionally the modulus of uniform convexity of the norm of Y is of power type τ , then ‖ ·‖pY is globally
uniformly convex for all p > τ .

• Every uniformly convex Banach space is also reflexive, by the Milman-Pettis theorem.
• If Y ∗ is strictly convex, the duality mapping j is single valued and the map 1

2‖ · ‖
2
Y is Gâteaux dif-

ferentiable on Y \ {0} with derivative j. If Y ∗ is locally uniformly convex, then it is in fact Fréchet
differentiable. Moreover, if Y is also locally uniformly convex, j is invertible with inverse the duality
mapping of Y ∗ .

• If Y is locally uniformly convex, it has the Radon-Riesz property, that is if yn ⇀ y is a weakly convergence
sequence in Y and if ‖yn‖Y → ‖y‖Y , then the convergence is strong.

Perimeters and curvatures in a nonsmooth framework.

In the rest of the article, we deal with convergence in the Hausdorff distance of the level-sets of minimizers
of (Pα,w). Let us define this mode of convergence:
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Definition 1.7. Let E and F two subsets of Ω. The Hausdorff distance between E and F is defined as

dH(E,F ) = max

{
sup
x∈E

d(x, F ), sup
y∈F

d(y,E)

}
= max

{
sup
x∈E

inf
y∈F
|x− y|, sup

y∈F
inf
x∈E
|x− y|

}
.

If En is a sequence of subsets of Ω, we say that En Hausdorff converges to F whenever dH(En, F )→ 0.

The minimizers of (Pα,w) belong to the space of functions of bounded variation, which has a strong relation
with properties of their level-sets:

Definition 1.8. A function u ∈ L1
loc(Rd) is said to be of bounded variation (or belonging to BV(Rd)) if its

distributional derivative is a Radon measure with finite mass, which we denote by TV(u). Equivalently, when

TV(u) := |Du|(Rd) = sup

{∫
Rd
u div z dx

∣∣∣∣ z ∈ C∞0 (Rd ; Rd), ‖z‖L∞(Rd) 6 1

}
< +∞. (9)

We say that a set E is of finite perimeter if its characteristic function 1E is of bounded variation. In that
case the perimeter is defined as

Per(E) := TV(1E).

Conversely, we can recover the total variation of a function u ∈ BV(Rd) with compact support from the
perimeter of its level-sets through the coarea formula [5, Thm. 3.40]

TV(u) =

∫ ∞
−∞

Per({u > s}) ds =

∫ ∞
−∞

Per({u < s}) ds. (10)

The main geometric tool used in the rest of the article is the isoperimetric inequality for sets of finite perimeter
in Rd (see [25, Thm. 14.1], for example):

Proposition 1.9. Let E ⊂ Rd be a set of finite perimeter with |E| < +∞. Then we have

Per(E)

|E| d−1
d

> Θd, where Θd :=
Per(B(0, 1))

|B(0, 1)| d−1
d

= d|B(0, 1)| 1d = d
d−1
d Per(B(0, 1))

1
d , (11)

and equality holds if and only if |E∆B(x, r)| = 0 for some x ∈ Rd and r > 0.

We will also use extensively the notion of variational (mean) curvature, defined as follows:

Definition 1.10. Let E be a subset of Rd with finite perimeter. E is said to have variational mean curvature
κ if E minimizes the functional

F 7→ Per(F )−
∫
F

κ.

There is no uniqueness of the variational curvatures of a set. In fact, one can show that if κ is a variational
mean curvature for E, then for f > 0 in E and f 6 0 in Rd \ E, κ+ f is also a variational mean curvature for
E. Nevertheless, in [9], specific variational curvatures with particular desirable properties are introduced. Let
us briefly sketch their construction:

Proposition 1.11 ( [9, Thm. 2.1]). Let E be of finite perimeter in Rd and for λ > 0, h ∈ L1(Rd) with h > 0
and Eλ be a minimizer of

F 7→ Per(F )− λ
∫
F

h (12)
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among F ⊂ E. Then, for λ < µ, Eλ ⊂ Eµ up to a set of Lebesgue measure zero. That allows to define, for
x ∈ E,

κE(x) := inf{λh(x) > 0 | x ∈ Eλ}. (13)

One can similarly define κE outside E by stating

κE(x) := −κRd\E(x) for x ∈ Rd \ E.

As built, κE is a variational mean curvature for E. It minimizes the L1(Rd) norm among variational curvatures,
with ‖κE‖L1(Rd) = 2 Per(E) .

Remark 1.12. The appearance of the density h ∈ L1(Rd) is required for κE to be well defined, since otherwise
the functionals (12) would not be bounded below. Unfortunately, the curvatures obtained are not independent
of h, even if their L1(Rd)-norm is optimal for each h. However, if E is bounded we are allowed to choose
h(x) = 1 for all x in E or even in its convex envelope. The curvature obtained for such an h minimizes all the
Lp(E) norms for 1 < p < +∞, and its values on E are uniquely defined by this minimizing property [9, Thm.
3.2]. Consequently, there is a canonical choice for the variational curvature κE inside E, and in the rest of the
article we will use specific values of these variational curvatures only inside their corresponding sets.

Example 1.13. Following Proposition 1.11 with h(x) = 1B(0,R)(x) + 1
|x|2d 1Rd\B(0,R)(x), the ball B(0, R) in Rd

has a curvature

κ(x) =
d

R
1B(0,R)(x)− d− 1

|x|
1Rd\B(0,R)(x).

We can show this by noting that for λ > 0, a minimizer of F 7→ Per(F ) − λ|F | among F ⊂ B(0, R) is ∅ for
λ 6 d

R and B(0, R) for λ > d
R . Similarly, minimizers of

F 7→ Per(F )− λ
∫
F

h(x) dx

among F ⊃ B(0, R) are B(0, r) with r =
(

λ
d−1

) 1
2d−1

, which taking into account h as in (13) gives the second

part of κ.

For further information about functions of bounded variation and sets of finite perimeter, see [5, 25]. An
overview on variational curvatures and their interplay with the regularity of ∂E can be found in [22].

1.2. Organization of the paper

We first present an example of noisy data for total variation denoising in the three-dimensional space in
which the level-sets of the regularized solutions do not converge in Hausdorff distance to those of the noiseless
data, regardless of the parameter choice used.

Motivated by this example, we study the existence and convergence of minimizers of the regularized problem
(Pα,w) while keeping the dimension and integrability as general as possible. We compute then the dual problem
and find that in the noiseless case its solutions strongly converge under the assumption of the standard source
condition, and then study the effect of the noise by proving a quantitative stability estimate for these dual
solutions.

Next, we see how the convergence of the dual solution and a parameter choice inequality arising from the
stability estimate imply uniform weak regularity on the level-sets of the primal minimizers. Under the assump-
tion of their compact support, this regularity makes equivalent the strong convergence of the primal minimizers
in L1 and the Hausdorff convergence of their level-sets.

We then explore whether this compact support can be derived from the problem itself. This turns out to be
only possible for the exponent appearing in the Sobolev embedding of the space of bounded variation functions
in the whole d-dimensional space.
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Finally, we see how the previous analysis allows us to obtain analogous results in reasonable bounded domains,
with Dirichlet or Neumann boundary conditions.

2. The dimension matters: ROF denoising in 3D

We begin by justifying the need of generality in our formulation by showing through a counterexample that
convergence of level-sets of minimizers of (Pα,w) does not necessarily hold when A = Id, q = σ = 2 and
d = 3. This corresponds to an straightforward extension to three dimensions of the Rudin-Osher-Fatemi (ROF)
denoising model [34], a choice that has been made in some works, for example [11].

We recall that the level-set {u > s} of value s of the ROF solution u for some data f minimizes the functional

E 7→ αPer(E)−
∫
E

f − s, (14)

which can be easily proved using the coarea formula (10).
The functions in our counterexample will be linear combinations of characteristic functions of two balls, so

we begin by showing that in some situations the three-dimensional ROF problem can be solved explicitly for
such data.

Lemma 2.1. Assume that f is of the form

f = c11B(0,r1) + c21B(x0,r2),

with c1, c2 > 0 as well as r1, r2 > 0. Then there is a constant D (depending on r1, r2) such that if |x0| > D the
level-sets Es := {u > s} of ROF denoising satisfy Es ⊆ B(0, r1) ∪B(x0, r2) for each s > 0.

Proof. Without loss of generality, we may assume that α = 1, the other cases being obtained by rescaling of f
and s.

First, using the symmetry of revolution of the problem along the axis defined by the origin and x0 and its
strict convexity, we have that the unique solution of the ROF problem also possesses this symmetry, implying
that each Es has the same symmetry.

Then we notice that because f−s ∈ L∞ we may apply regularity theorems for Λ-minimizers of the perimeter
[25, Thm. 26.3] to obtain that the boundaries ∂Es are in fact C1,α surfaces for α < 1/2.

On the other hand, since Es minimize (14) we have that Es must be contained (up to a set of measure zero)
in E0. Indeed, by minimality of each set, we have

Per(Es)−
∫
Es

f − s 6 Per(Es ∩ E0)−
∫
Es∩E0

f − s, and

Per(E0)−
∫
E0

f 6 Per(Es ∪ E0)−
∫
Es∪E0

f.

(15)

Summing these inequalities, using the inequality (see [25, Lem. 12.22])

Per(Es ∩ E0) + Per(Es ∪ E0) 6 Per(Es) + Per(E0) (16)

and linearity of the integrals, we end up with s|Es \ E0| 6 0, so that |Es \ E0| = 0. Combining with this fact
with the regularity, we only need to prove the claim for E0.

Moreover, since connected components of E0 are also minimizers of (14), we may also assume that E0 is
connected. We can distinguish three cases: E0 could intersect neither B(0, r1) nor B(x0, r2), one of them, or
both.

The first case cannot happen, since if E0 is nonempty, it must intersect either B(0, r1) or B(x0, r2). To prove
this claim, assume otherwise and notice that since E0 minimizes (14), it admits f as a variational curvature.
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Since f > 0 and f = 0 on E0 by assumption, we would have that E0 also admits the zero function as a
variational curvature, making it an absolute minimizer of perimeter in R3, which can only be the empty set or
the whole R3.

For the second case we have that if E0 intersects one of the balls (assumed to be B(0, r1) without loss of
generality) but not the other, then it must contain the whole B(0, r1). To prove this, we note that by the
computation in Example 1.13, B(0, r1) admits an optimal variational curvature such that

κB(0,r1)1B(0,r1) =
3

r1
1B(0,r1) =

Per(B(0, r1)

|B(0, r1)|
1B(0,r1).

As before, we can use optimality to write

Per(B(0, r1))−
∫
B(0,r1)

κB(0,r1) 6 Per(B(0, r1) ∩ E0)−
∫
B(0,r1)∩E0

κB(0,r1), and

Per(E0)−
∫
E0

f 6 Per(B(0, r1) ∪ E0)−
∫
B(0,r1)∪E0

f,

(17)

which leads to (
c1 −

3

r1

)
|B(0, r1) \ E0| 6 0,

so as long as c1 > 3/r1, we have that B(0, r1) ⊆ E0. We are left with the case c1 6 3/r1, for which we will need
the isoperimetric inequality (11) that can be written as

Per(E0) > Per(B(0, r0)), with r0 =

(
3

4π
|E0|

)1/3

, (18)

with equality only when E0 is a ball of radius r0. Now, if |E0| > |B(0, r1)| (or equivalently r0 > r1) then we
must have B(0, r1) ⊆ E0, since otherwise we would have

Per(E0)−
∫
E0

f > Per(B(0, r0))− c1|B(0, r1)| = Per(B(0, r0))−
∫
B(0,r0)

f,

contradicting minimality of E0 in (14). If on the other hand r1 > r0, we obtain

Per(E0)−
∫
E0

f = Per(E0)− c1|E0 ∩B(0, r1)|

> Per(B(0, r0))− c1|E0|

> Per(B(0, r0))− 3

r1
|E0|

= 4πr2
0 −

3

r1

(
4

3
πr3

0

)
= 4πr2

0

(
1− r0

r1

)
> 0,

(19)

and this computation contradicts minimality of E0, since it implies that it has strictly higher energy in (14)
than the empty set.

Therefore, we end up with B(0, r1) ⊆ E0 but E0 ∩B(x0, r2) = ∅. We must in fact have E0 = B(0, r1), since
otherwise the isoperimetric inequality (18) would imply that B(0, r1) has a smaller perimeter than E0 and, since
f
∣∣
E0\B(0,r1)

= 0, also strictly lower energy in (14).
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Finally we are left with the third case, in which E0 is connected and intersects both balls. Using the symmetry
and regularity, we have that ∂E0 \ (∂B(0, r1) ∪ ∂B(x0, r2)) contains a minimal surface (of class C1,α, as before)
which is bounded by circles contained on planes orthogonal to x0 and of radius less than or equal to r1 and
r2 respectively. In fact, Schauder regularity theorems for elliptic equations can be used to obtain that this
surface is C∞ [25, Thm. 27.3]. We can then conclude that this situation is impossible by applying classical
results on necessary conditions for the existence of minimal surfaces bounded by planar curves (circles, in this
case) [28,29]. �

Remark 2.2. The articles [28, 29] are likely the first in the direction of understanding from which distance
D any minimal surface spanning two orthogonal circles of radii r1 and r2 cannot be connected, providing
D 6 3 max(r1, r2), while the more recent [33] improves the bound to D 6 2 max(r1, r2).

Remark 2.3. A closer examination of the arguments above shows that we have actually proved that each
connected component of E0 equals either B(0, r1) or B(x0, r2). In fact, the arguments used for components
that only intersect one ball also extend to components of Es with s > 0 by just replacing c1 by c1 − s, so that
in fact each connected component of Es equals either B(0, r1) or B(x0, r2).

Remark 2.4. In fact, Lemma 2.1 can be proved without making use of the strong C1,α regularity. After
developing the weak regularity tools that it requires, we will present in Section 5 a self-contained proof of this
lemma, with the only price to pay being a worse control on D.

Example 2.5. Assume that Ω ⊂ R3 is bounded. In this situation, we consider denoising of the function
f = 1B(0,1) and a family of perturbations

wn := cn1B(x0,rn), with x0 = (3, 0, 0) and rn 6 1.

Notice that ‖wn‖L2 = ( 4π
3 c

2
nr

3
n)1/2. By Lemma 2.1 and Remark 2.3 we can compute the solution of (Pα,w)

explicitly in this case, which will necessarily be of the form

un = bn1B(0,1) + sn1B(x0,rn),

and optimality provides

bn =

(
1− 3

2
αn

)+

, and sn =

(
cn −

3

2rn
αn

)+

.

The goal is then to show that there is a choice of cn and rn such that ‖wn‖L2 goes to zero fast enough, but for
which sn does not vanish, so the perturbation appears in the level sets of the denoised function.

In [24] Hausdorff convergence of level-sets was proved under the condition ‖wn‖L2/αn 6 C. In the limit
case αn = C‖wn‖L2 , then it suffices to choose rn = 1/n and cn = n, in which case we have ‖wn‖L2 = C/

√
n,

αn = C/
√
n, and sn = n− C

√
n, as required.

One could think that by applying more aggressive regularization (a case still covered in the condition
‖wn‖L2/αn 6 C) convergence of level-sets could be restored. In fact, this is not the case. To see this, as-
sume that we are given a strictly increasing function f(t) 6 t, with f(0) = 0. Then we can choose

αn =
2

3n
, cn =

1

nf
(

1
n

)2 + 1, and rn = f

(
1

n

)2

.

With this choice, we have cn > n + 1 and sn = 1, preventing convergence of the level-sets corresponding to
values less than one. Furthermore, if n is large enough so that 1/n+ f(1/n) 6

√
3/(4π) we also have

‖wn‖L2 =

√
4π

3
cnr

3
2
n =

√
4π

3

(
1

n
f

(
1

n

)
+ f

(
1

n

)2
)
6 f

(
1

n

)
= f

(
3

2
αn

)
.
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Since f was arbitrary among sublinear functions, the resulting sequences wn ‘defeat’ any sensible parameter
choice rule based on the L2 norm used in the data term.

In the sequel we will see that convergence can be restored for domains of any dimension, if the error is
measured in an adequate Lq space with q 6= 2.

3. Convergence of primal and dual solutions

We start by studying existence of minimizers for (Pα,w) and their convergence, the dual problem, and
convergence of the corresponding dual solutions.

Proposition 3.1. Assume there is at least one solution u0 of Au = f with TV(u0) < +∞, and that either
q = d/(d− 1) or Ω is bounded. Then the problem (Pα,w) possesses at least one minimizer. If A is injective, the
minimizer is unique.
In addition, if αn → 0 and wn ∈ Y are such that ‖wn‖σY /αn is bounded, and if un are minimizers of

inf
u∈Lq(Ω)

1

σ
‖Au− f + wn‖σY + αnTV(u),

then we have (up to possibly taking a subsequence) the weak convergence un ⇀ u† in Ld/(d−1)(Ω), where u† is
a solution of Au = f of minimal total variation among such solutions. Furthermore, if q̄ < d/(d− 1), we also
have un → u† in the (strong) Lq̄loc(Rd) topology.

Proof. For the existence statement, let (uk) be a minimizing sequence. Since uk ∈ Lq(Rd), we have that
uk ∈ L1

loc(Rd), so the Sobolev inequality for BV functions [5, Thm. 3.47] provides us with constants ck such
that

‖uk − ck‖
L

d
d−1 (Rd)

6 CTV(uk),

and we must have ck = 0 since uk ∈ Lq(Rd). The uk being a minimizing sequence, TV(uk) is bounded so
using a standard compactness result in BV [5, Thm. 3.23] and the Banach-Alaoglu theorem we obtain that uk
converges (up to possibly taking a subsequence) weakly in Ld/(d−1)(Rd) and strongly in L1

loc(Rd) to some limit

u ∈ Ld/(d−1)(Rd).
If q = d/(d − 1), since A : Lq(Ω) → Y is bounded linear, Auk also converges weakly to Au in Y . Lower

semicontinuity of the norm with respect to weak convergence, and of the total variation with respect to strong
L1

loc(Rd) convergence [5, Remark 3.5] imply that u realizes the infimal value in (Pα,w), and we obtain that u is
a solution of (Pα,w).

If on the contrary q < d/(d − 1), we cannot conclude that u ∈ Lq(Ω) unless |Ω| 6 +∞, in which case
‖u‖Lq(Ω) 6 |Ω|1/q−(d−1)/d‖u‖Ld/(d−1)(Ω) < +∞. This kind of inequality also provides boundedness of un in

Lq(Ω) and therefore the convergence of Auk to Au.
The proof of uniqueness, using injectivity of A and strict convexity of the data term, follows entirely along

the lines of the L2 case treated in [24, Prop. 1].
Existence of u† is covered in [35, Thm. 3.25]. Since un ∈ Lq(Rd) and ‖wn‖σY /αn is bounded implies TV(un)

is also bounded, we have that ‖un‖Ld/(d−1) is again bounded [5, Thm. 3.47], giving weak convergence of a
subsequence. The strong convergence statement relies on compact embeddings for BV along similar lines, and
a proof can be found in [1, Thm. 5.1]. �

Remark 3.2. For the counterexample of Section 2, we have that 2 = q > d/(d − 1) = 3/2. Existence of
solutions can still be proven by the above straightforward methods, but only because A is the identity, so that
the data term provides a bound in Lq.
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Proposition 3.3. The Fenchel dual problem of (Pα,w), writes, for α > 0,

sup
p∈Y ∗

A∗p∈∂TV(0)

〈p, f + w〉(Y ∗,Y ) −
α

1
σ−1

σ′
‖p‖σ

′

Y ∗ , (Dα,w)

where 1/σ+1/σ′ = 1. Moreover, strong duality holds, the maximizer pα,w of (Dα,w) is unique, and the following
optimality condition holds:

vα,w := A∗pα,w ∈ ∂TV(uα,w). (20)

Here, the subgradient is understood to be with respect to the
(

Lq(Ω),Lq
′
(Ω)
)

pairing, so that ∂TV(0) ⊂ Lq
′
(Ω).

Proof. By the assumptions on Y , we have that the duality mapping j defined in (8) is single valued and invertible
with inverse the duality mapping of Y ∗, and that the map 1

2‖ · ‖
2
Y is Gâteaux differentiable with derivative j.

Defining the functional
G : Y → R

g 7→ 1

σα
‖g − (f + w)‖σY ,

its conjugate is

G∗(p) = sup
g∈Y
〈p, g〉(Y ∗,Y ) −

1

σα
‖g − (f + w)‖σY ,

and by the Gâteaux differentiability we may take a directional derivative in direction h ∈ Y to find that at a
purported maximum point g0,

〈p, h〉(Y ∗,Y ) −
1

α
‖g0 − (f + w)‖σ−2

Y

〈
j
(
g0 − (f + w)

)
, h
〉

= 0,

or, since h was arbitrary,

p =
1

α
‖g0 − (f + w)‖σ−2

Y j
(
g0 − (f + w)

)
,

from which we get, computing norms on both sides and taking into account

‖j(g0 − (f + w))‖Y ∗ = ‖g0 − (f + w)‖Y ,

that

p =
1

α

(
α‖p‖Y ∗

)σ−2
σ−1 j

(
g0 − (f + w)

)
,

and inverting j we end up with

g0 = (f + w) + α
1

σ−1 ‖p‖
2−σ
σ−1

Y ∗ j
−1(p).

Since Y is assumed uniformly convex, the function to be maximized was strictly concave and differentiable
and g0 provides the only solution. With it we can compute, taking into account that ‖j−1(p)‖Y = ‖p‖Y ∗ and〈
p, j−1(p)

〉
(Y ∗,Y )

= ‖p‖2Y ∗ ,

〈p, g0 − (f + w)〉(Y ∗,Y ) = α
1

σ−1 ‖p‖
2−σ
σ−1 +2

Y ∗ = α
1

σ−1 ‖p‖σ
′

Y ∗ ,

1

σα
‖g0 − (f + w)‖σY =

1

σα

∥∥∥∥α 1
σ−1 ‖p‖

2−σ
σ−1

Y ∗ j
−1(p)

∥∥∥∥σ
Y

=
1

σ
α

σ
σ−1−1

∣∣∣∣‖p‖ 2−σ
σ−1 +1

Y ∗

∣∣∣∣σ
=

1

σ
α

1
σ−1 ‖p‖σ

′

Y ∗ ,
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so that finally

G∗(p) = 〈p, f + w〉(Y ∗,Y ) + α
1

σ−1

(
1− 1

σ

)
‖p‖σ

′

Y ∗ .

The rest follows by Fenchel duality in a general pair of Banach spaces [14, Thm. 4.4.3, p. 136] applied to the
choices (in their notation) X = Lq(Ω) and Y , f(·) = TV(·), g = G and A as above. The functional TV∗

is computed in [24, Thm. 1], resulting in the indicator function of ∂TV(0). Uniqueness holds because by the

assumptions on Y ∗, we have that ‖ · ‖σ′Y ∗ is strictly convex. �

Following the scheme laid out in [20, 24] for the convergence of level-sets, we now prove strong convergence
of the dual maximizers corresponding to noiseless data. It relies on the following source condition:

R(A∗) ∩ ∂TV(u†) 6= ∅, (21)

where R(A∗) denotes the range of the adjoint operator A∗.

Proposition 3.4. Assume that the source condition (21) holds. Then there is a unique maximizer p0,0 of the
problem

sup
A∗p∈∂TV(0)

〈p, f〉(Y ∗,Y )

and with minimal Y ∗ norm. Furthermore, in the absence of noise (w = 0) the sequence pα,0 of maximizers of
the dual problem (Dα,w) converges strongly in Y ∗ to it.

Proof. The existence of p0,0 follows along the same steps as the Hilbert space case treated in [24, Lem. 2], while
uniqueness is a consequence of the strict convexity of Y ∗ (and therefore of powers of its norm).

By optimality in their corresponding maximization problems, we have

〈pα,0, f〉(Y ∗,Y ) −
α

1
σ−1

σ′
‖pα,0‖σ

′

Y ∗ > 〈p0,0, f〉(Y ∗,Y ) −
α

1
σ−1

σ′
‖p0,0‖σ

′

Y ∗ , (22)

and
〈p0,0, f〉(Y ∗,Y ) > 〈pα,0, f〉(Y ∗,Y ) . (23)

Summing these inequalities we obtain ‖pα,0‖Y ∗ 6 ‖p0,0‖Y ∗ . Since Y ∗ is uniformly convex, it is also reflexive
and the sequence pα,0 can be assumed [15, Cor. 3.30] (up to taking a subsequence) to converge weakly in Y ∗

to some limit p∗. Furthermore A∗p∗ ∈ ∂TV(0) by weak closedness of subgradients in Banach spaces [21, Cor.
I.5.1, p. 21]. Passing to the limit in both inequalities we obtain

〈p∗, f〉(Y ∗,Y ) = 〈p0,0, f〉(Y ∗,Y ) ,

so that p∗ is a maximizer of p 7→ 〈p, f〉(Y ∗,Y ) over p such that A∗p ∈ ∂TV(0). Using (22) and weak lower

semicontinuity of the norm we get that

‖p∗‖Y ∗ 6 lim inf ‖pα,0‖Y ∗ 6 ‖p0,0‖Y ∗ . (24)

This implies that p∗ is of Y ∗ minimal norm, and since ‖ · ‖σ′Y ∗ is strictly convex, such a minimizer is unique and
we must have p∗ = p0,0 and the whole sequence pα,0 converging to it. Moreover, since Y ∗ has the Radon-Riesz
property, (24) implies that the convergence is in fact strong in Y ∗. �

In the sequel, we will need stability estimates for solutions of the dual problem (Dα,w), so that pα,w can be
related to pα,0, which was just proved to converge strongly. In the simple case where σ = 2 and Y is a Hilbert
space H, the maximization to be performed corresponds to

sup
p∈H

A∗p∈∂TV(0)

2

〈
p,

f + w

α

〉
H

− ‖p‖2H , (25)
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which after adding the constant term −‖(f + w)/α‖2H has the same maximizers as the problem

sup
p∈H

A∗p∈∂TV(0)

−
∥∥∥∥f + w

α

∥∥∥∥2

H

+ 2

〈
p,

f + w

α

〉
H

− ‖p‖2H = − inf
p∈H

A∗p∈∂TV(0)

∥∥∥∥p− f + w

α

∥∥∥∥2

H

, (26)

which is solved by computing the projection of (f + w)/α onto the convex set

{p ∈ H |A∗p ∈ ∂TV(0)} .

Convexity of the set implies that this projection is nonexpansive, providing a straightforward stability estimate
for this case.

In analogy with the Hilbert framework, we can define the functional

V (p, g) :=
1

σ′
‖p‖σ

′

Y ∗ − 〈p, g〉(Y ∗,Y ) +
1

σ
‖g‖σY , (27)

which in the case σ = 2 is used in [3] to define a generalized projection for Banach spaces, mapping the dual
space Y ∗ onto Y . In the following we use the methods introduced in [3, 4] to derive the estimates we require.

Proposition 3.5. For g ∈ Y and any weak-* closed and convex set K ⊂ Y ∗ The problem

inf
p∈K

V (p, g) (28)

has a unique solution, which we denote by πK(g). Furthermore, it satisfies〈
πK(g)− q, g − ‖πK(g)‖σ

′−2
Y ∗ j−1(πK(g))

〉
(Y ∗,Y )

> 0 for each q ∈ K. (29)

Proof. Existence follows by the Banach-Alaoglu theorem and closedness, while uniqueness is a consequence of
the strict convexity of the function ‖ · ‖σ′Y ∗ .

For the second part, we have that
V (πK(g), g) = min

p∈K
V (p, g), (30)

and since we have Gâteaux differentiability of the squared dual norm ‖ ·‖2Y ∗ and that the duality mapping of Y ∗

is j−1 by Proposition 1.6, we can differentiate V at (πK(g), g) in its first argument in direction q−πK(g) ∈ Y ∗,
to obtain 〈

q − πK(g), ‖πK(g)‖σ
′−2
Y ∗ j−1(πK(g))

〉
(Y ∗,Y )

− 〈q − πK(g), g〉(Y ∗,Y ) > 0, (31)

from which (29) follows directly. �

Since we have assumed that Y ∗ is uniformly convex with modulus of uniform convexity of power type σ′,
we have by Proposition 1.6 that ‖ · ‖σ′Y ∗ is also globally uniformly convex. This allows us to formulate stability
estimates for the generalized projection:

Proposition 3.6. We have the estimate:

‖πK(g1)− πK(g2)‖Y ∗ 6 ρY,σ
(

1

2
‖g1 − g2‖Y

)
, (32)

where ρY,σ is defined as the inverse of the function

t 7→
δ‖·‖σ′

Y ∗/σ
′(t)

t
, (33)
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where δ‖·‖σ′
Y ∗/σ

′ is the modulus of uniform convexity of the functional ‖ · ‖σ′Y ∗/σ′. In consequence, the solutions

of (Dα,w) satisfy

‖pα,w − pα,0‖Y ∗ 6 ρY,σ
(
‖w‖Y
2α

1
σ−1

)
, (34)

Proof. We denote φ(p) = ‖p‖σ′Y ∗/σ′, so that φ is Gâteaux differentiable with derivative

dφ(p) = ‖πK(p)‖σ
′−2
Y ∗ j−1(πK(p)).

We compute
〈πK(g1)− πK(g2), dφ(πK(g1))− dφ(πK(g2))〉(Y ∗,Y )

= 〈πK(g1)− πK(g2), dφ(πK(g1))− g1〉(Y ∗,Y )

− 〈πK(g1)− πK(g2), dφ(πK(g2))− g2〉(Y ∗,Y )

+ 〈πK(g1)− πK(g2), g1 − g2〉(Y ∗,Y )

6 〈πK(g1)− πK(g2), g1 − g2〉(Y ∗,Y )

6 ‖πK(g1)− πK(g2)‖Y ∗‖g1 − g2‖Y ,

(35)

where we have used Proposition 3.5 twice and the Cauchy-Schwarz inequality. On the other hand, Lemma 1.2
provides us with

〈πK(g1)− πK(g2), dφ(πK(g1))− dφ(πK(g2))〉(Y ∗,Y ) > 2δφ (‖πK(g1)− πK(g2)‖Y ∗) , (36)

which combined with the above delivers (32). Note that the inverse function ρY,σ is well defined, since the
property δφ(ct) > c2δφ(t) for all c > 1 [13, Fact 5.3.16] implies that t 7→ δφ(t)/t is strictly increasing.

Now, we notice that we can divide by α1/(σ−1) in the problem (Dα,w), to obtain the equivalent problem

sup
p∈Y ∗

A∗p∈∂TV(0)

〈
p,

f + w

α
1

σ−1

〉
(Y ∗,Y )

− 1

σ′
‖p‖σ

′

Y ∗ ,

which in turn has the same solutions as

inf
p∈Y ∗

p∈∂TV(0)

V (p, α−
1

σ−1 (f + w)).

Using (32) with g1 − g2 = α−1/(σ−1)w, we get the expected estimate (34). �

Remark 3.7. A straightforward computation shows that in the case σ′ = 2 and Y = H a Hilbert space, we
have for any u, v ∈ H ∥∥∥∥1

2
(u+ v)

∥∥∥∥2

H

=
1

2
(‖u‖2H + ‖v‖2H)− 1

4
‖u− v‖2H ,

so that the best modulus of convexity of ‖ · ‖2H/2 is the function defined by δ‖·‖2H/2(t) = t2/2 and ρH,2(t/2) = t,

recovering that the projection is nonexpansive, as used in [24].

4. Convergence of level-sets with assumed compact support

Our next goal is to relate the convergence of the sequence pα,w with that of the level-sets. For the sake
of clarity we assume throughout the section that the minimizers considered have a common compact support,
and the possibility to lift this assumption will be discussed in Section 5. We start by recalling some known
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properties of the subgradient of the total variation, which allow us to interpret the optimality condition (20) in
terms of the level-sets of uα,w.

Proposition 4.1. Let u ∈ Lq(Rd). Then, the following assertions are equivalent

(1) v ∈ ∂TV(u),
(2) v ∈ ∂TV(0) and ∫

uv = TV(u)

(3) v ∈ ∂TV(0) and for a.e. s,

Per({u > s}) = sign(s)

∫
{u>s}

v.

(4) Almost every level-set {u > s} minimizes

E 7→ Per(E)− sign(s)

∫
E

v.

Proof. The equivalence between statements 1 and 2 follows from the (Lq,Lq
′
) pairing used and the fact that

TV(·) is one-homogeneous, and a proof can be found in [24, Lem. 10], for example. The equivalence between
statements 3, 4 and 1 is a consequence of statement 2 and the coarea formula, for a proof see [20, Prop. 3]. �

The proof of Hausdorff convergence of level-sets goes along the lines of the proof of Theorem 2 in [24], and
is centered around uniform density estimates for the level-sets, that is, bounds on volume fractions of the type

|{uα,w > s} ∩B(x, r)|
|B(x, r)|

> C, for x ∈ ∂{uα,w > s} and r small,

the uniformity referring to the fact that the constant in the right hand side should be independent of α and w,
as long as they are related by a suitable parameter choice.

The first ingredient for such density estimates is the following comparison formula for intersections with
balls, whose proof can be found, for example, in [24, Lemma 3]. Remembering that vα,w = A∗pα,w, this formula
applies to the level sets {uα,w > s} by the last item of Proposition 4.1.

Lemma 4.2. Let E minimize the functional F 7→ Per(F ) −
∫
F
vα,w. Then for any x and almost every r we

have

Per(E ∩B(x, r))−
∫
E∩B(x,r)

vα,w 6 2 Per(B(x, r) ; E(1)). (37)

Remark 4.3. Lemma 4.2 only depends on basic properties of the perimeter and minimality, so it’s also valid
when considering the relative perimeter Per(F ; Ω) corresponding to Neumann boundary conditions (see Section
6).

With the comparison formula above, to arrive at density estimates one needs precise control on the term∫
E∩B(x,r)

vα,w as r → 0. Since vα,w = A∗pα,w, this control is attained by combining the estimates of Proposition

3.6, the equiintegrability of vα,0 and a parameter choice satisfying

‖w‖Y
α

1
σ−1

6 2
‖A∗‖
η

δ‖·‖σ′
Y ∗/σ

′

(
η

‖A∗‖

)
, with η < Θd, (38)

Θd being the isoperimetric constant of Proposition 1.9. As in Remark 3.7, in the case of σ = 2, d = 2 and Y a
Hilbert space H, the expression (38) simplifies to ‖w‖H‖A∗‖/α 6 η < Θ2, the parameter choice used in [24].
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Remark 4.4. Although the right hand side of the inequality (38) might look involved, it just provides the
optimal constant for the ratio ‖w‖σ−1

Y /α for which the convergence of level-sets can be proved by the methods

presented. In particular, any choice such that ‖w‖σ−1
Y /α → 0 satisfies (38). The choice α ∼ ‖w‖σ−1

Y also
appears as a sufficient condition for linear convergence rates in Bregman distance when the source condition
(21) is assumed (see [35, Thm. 3.42] or [36, Prop. 4.19]). One might wonder whether using an a posteriori choice
rule is possible. Such linear convergence rates can also be proved using the Morozov discrepancy principle and
under source conditions ( [12, Thm. 4.2], [7, Thm. 5.3]), but typically only ‖w‖σY /α→ 0 can be ensured for the
ensuing parameters [7, Thm. 4.5], which is not enough to conclude (38).

Assuming that the parameter choice satisfies (38), we are now ready to prove the anticipated uniform density
estimates:

Theorem 4.5. Assume that the parameter choice satisfies (38) and that the source condition (21) holds. Let
E be a minimizer of

F 7→ Per(F )−
∫
F

vα,w.

Then, there exists C > 0 and r0 > 0, independent of α and w such that for every ball B(x, r0) with x ∈ ∂E,
one has, for any r 6 r0,

|E ∩B(x, r)|
|B(x, r)|

> C and
|E \B(x, r)|
|B(x, r)|

> C. (39)

Proof. Using Hölder’s inequality, that q′ = q/(q − 1) > d, the parameter choice (38) and the estimate (32), we
obtain that for any F ⊂ Rd with |F | <∞,

‖vα,w − vα,0‖Ld(F ) 6 |F |
q′−d
q′d ‖vα,w − vα,0‖Lq′ (Rd) 6 |F |

q′−d
q′d η. (40)

With this, we obtain∣∣∣∣∣
∫
E∩B(x,r)

vα,w

∣∣∣∣∣ 6 |E ∩B(x, r)|
d−1
d ‖vα,w‖Ld(E∩B(x,r))

6 |E ∩B(x, r)|
d−1
d

(
‖vα,0‖Ld(E∩B(x,r)) + ‖vα,w − vα,0‖Ld(E∩B(x,r))

)
6 |E ∩B(x, r)|

d−1
d

(
‖vα,0‖Ld(E∩B(x,r)) + |E ∩B(x, r)|

q′−d
q′d η

)
.

(41)

Now, by Proposition 3.4, vα,0 converges strongly in Ld as α → 0, and |vα,0|d is therefore equiintegrable. This
implies that for each ε > 0, there exists rε such that for all r < rε we have ‖vα,0‖Ld(E∩B(x,r)) < ε. Moreover,
by possibly reducing rε we may assume that

|E ∩B(x, r)|
q′−d
q′d 6 1.

Assuming ε < Θd − η we can use then (41) in (37) and the isoperimetric inequality (11) to obtain

2 Per(B(x, r) ; E(1)) > Per(E ∩B(x, r))− |E ∩B(x, r)|
d−1
d (ε+ η)

> |E ∩B(x, r)|
d−1
d (Θd − ε− η) .

(42)

Additionally, we have that for almost every r

Per(B(x, r) ; E(1)) = Hd−1(∂B(x, r) ∩ E(1)), (43)
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which in turn is the derivative with respect to r of the function g(r) := |E ∩ B(x, r)|, turning (42) into the
variational inequality

2g′(r) > (Θd − ε− η) g(r)
d−1
d . (44)

Integrating on both sides taking into account g(0) = 0, we end up with

2dg
1
d (r) > (Θd − ε− η) r (45)

which in turn implies the density estimate

|E ∩B(x, r)|
|B(x, r)|

>
(Θd − ε− η)

d
rd

(2d)d|B(x, r)|
=

(Θd − ε− η)
d

(2d)d|B(0, 1)|
, (46)

where the right hand side is uniform in α, w, r small enough and also in x. �

Remark 4.6. Note that if q < d/(d − 1) (that is, q′ > d), the second term inside the parenthesis in the right
hand side of (41) tends to zero as r → 0, which implies that in this case the density estimates still hold for any
parameter choice (see (38)) that ensures that ‖w‖Y /α1/(σ−1) remains finite.

Combining the compact support assumption with the density estimates of Theorem 4.5, we arrive at the
desired convergence result.

Theorem 4.7. Let f and A satisfy (21), αn, wn → 0 satisfying (38) and un := uαn,wn the corresponding
minimizer of (Pα,w). We assume that all the un have a common compact support (we will see in Section 5 how
to lift this artificial assumption). Then, for almost every s ∈ R, as n grows to infinity, the level-sets {un > s}
converge to {u† > s} in the sense of Hausdorff convergence.

Proof. We saw in Proposition 3.1 that un → u in L1
loc. Combined with the compact support assumption for un,

it leads to the full L1 convergence. This implies, using Fubini’s theorem (see [24, Section 3.1]) that for almost
every s, ∣∣{un > s}∆{u† > s}

∣∣→ 0.

Now, let us assume that the Hausdorff distance between these two level-sets does not go to zero. That means,
using the definition of this distance, that there exists a constant L > 0 and either a sequence of points xn ∈
{un > s} such that d(xn, {u† > s}) > L or a sequence yn ∈ {u† > s} such that d(yn, {un > s}) > L. We will
treat the first case. One can assume that xn ∈ ∂{un > s}.

Using then the density estimates (39), one concludes that for r 6 min(r0, L),

|B(xn, r) ∩ {un > s}| > C|B(xn, r)|.

On the other hand, since r 6 L, one has B(xn, r) ∩ {u† > s} = ∅ which implies that B(xn, r) ∩ {un > s} ⊂
{un > s}∆{u† > s} and contradicts the L1 convergence.

The second case is treated similarly, but the contradiction is obtained using the density estimates on {u† >
s}. �

5. Behavior at infinity

We now discuss whether it is possible to remove the assumptions on compact support of the solutions that
were used in the previous section. In view of the proof of Theorem 4.7, this amounts to being able to infer that
uα,w → u† strongly in L1(Ω).
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5.1. The critical case

The following lemma, analogous to [24, Lemma 5], tells us that this is indeed possible for the critical exponent
q = d/(d− 1), with the same parameter choice as in Section 4.

Lemma 5.1. Let q = d/(d− 1), and assume (38) and (21). Then, the elements of

E :=

{
E ⊂ Ω

∣∣∣∣Per(E) =

∫
E

vα,w

}
, (47)

have the following properties:

(1) There exists a constant C > 0 such that for all E ∈ E, Per(E) ≤ C,
(2) There exists a constant R > 0 such that for all E ∈ E, E ⊆ B(0, R).

Proof. The proof is very similar to what is done in [20,24].

Here, by Proposition 3.4, we have that vα,0 → v0 strongly in Lq
′

= Ld, and therefore the family (vα,0) is
Ld(Rd)-equiintegrable, which in particular means that for every ε > 0, one can find a ball B(0, R) such that∫

Rd\B(0,R)

|vα,0|d 6 ε.

Then, for every E with finite mass belonging to E and provided α and w satisfy (38) we get as in (40) that

Per(E) 6

∣∣∣∣∫
E

(vα,w − vα,0)

∣∣∣∣+

∣∣∣∣∣
∫
E∩B(0,R)

vα,0

∣∣∣∣∣+

∣∣∣∣∣
∫
E\B(0,R)

vα,0

∣∣∣∣∣
6 η|E|

d−1
d + |B(0, R)|

d−1
d ‖vα,0‖Ld + |E \B(0, R)|

d−1
d ε

6

(
η + sup

α
‖vα,0‖Ld

)
|B(0, R)|

d−1
d + (η + ε)|E \B(0, R)|

d−1
d .

Now, the isoperimetric inequality (11) and sub-additivity of the perimeter (16) lead to

|E \B(0, R)|
d−1
d 6

1

Θd
Per(E \B(0, R)) 6

1

Θd

(
Per(E) + Per(B(0, R))

)
,

which when used in the previous equation, since ε is arbitrary and η < Θd, implies that Per(E) is bounded
uniformly in α. Once again using the isoperimetric inequality yields the boundedness of |E| independently of
α, as long as (38) is satisfied.

We now prove that the mass and perimeter of level-sets of uα,w are bounded away from zero. The equiinte-
grability of (vα,0) ensures that there is no concentration of mass for vα,0, that is, for any ε > 0 we can ensure∫
E
|vα,0|d 6 ε if |E| small enough. Then, if E belongs to E , Hölder inequality provides an inequality of the type

Per(E) 6 ε
1
d |E|

d−1
d ,

which together with the isoperimetric inequality, implies Per(E) 6 ε1/dΘ−1
d Per(E), which is not possible for

ε too small. Therefore, |E| must be bounded away from zero (and Per(E) as well thanks to the isoperimetric
inequality).

Similarly to what is done in [20,24], one can (see [6, Thm. B.29]) decompose any E ∈ E into

E =
⋃
i∈I

Ei, Per(E) =
∑
i

Per(Ei)
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with I being finite or countable and all the Ei being indecomposable (“connected”). By splitting the equation
defining E into the Ei (similarly to [20, Remark 4]), one infers that each Ei satisfies

Per(Ei) =

∫
Ei

vα,w (48)

which implies, using the same reasoning as before, that both |Ei| and Per(Ei) are bounded away from zero, by
constant that does not depend on i, w nor α.

We show now that each Ei must have a bounded diameter. This step will actually make use of the density
estimates we showed in Theorem 4.5 (the proof of which does not make use of the compact support of uα,w).
If it were not the case, there would exist a sequence of points xn ∈ ∂Ei → ∞ such that |xj − xk| > 2r0 for
j 6= k, where r0 is defined in Theorem 4.5. Using the same theorem, one obtains that |B(xj , r0) ∩ Ei| > Crd0 .
Summing over the (disjoint) balls B(xj , r0), we get a contradiction with the boundedness of |Ei|. Since both r0

and C are uniform, the bound on the diameter is actually independent from i, w, α.
Finally, since (vα,w) is equiintegrable in Ld, one can find R̃ > 0 such that

‖vα,w‖Ld(Rn\B(0,R̃)) 6
Θd

2
.

Then, if one component Ei had an empty intersection with B(0, R̃), we would have, using (48) and Hölder
inequality

Per(Ei) 6
Θd

2
|Ei|

d−1
d .

We can then make use of the isoperimetric inequality to obtain

Per(Ei) 6
Θd

2
|Ei|

d−1
d 6

Θd

2

Per(Ei)

Θd
,

a contradiction. Then, any component of E intersects B(0, R̃) and the bound on their diameter implies the
existence of R such that that E ⊂ B(0, R). �

This lemma actually provides (for the particular value of q assumed) the common compact support that was
assumed in Theorem 4.7. This assumption can therefore be removed from that result, and we obtain:

Theorem 5.2. Assume q = d/(d − 1), and let A, f , and αn, wn → 0 as in Theorem 4.7, with un minimizing
(Pαn,wn). Then, for almost every s ∈ R, as n grows to infinity, the level-sets {un > s} converge to {u† > s} in
the sense of Hausdorff convergence.

An elementary proof of Lemma 2.1.

Arguing as in the proof of Lemma 5.1, it is possible to obtain a fairly elementary proof of Lemma 2.1 that
doesn’t require strong regularity results. To see this, consider

E0 ∈ arg min
F

Per(F )−
∫
F

f , with f = c11B(0,r1) + c21B(x0,r2),

and assume c1 > 3/r1, c2 > 3/r2, and E0 connected.
For simplicity, we denote B(0, r1) by B1 and B(x0, r2) by B2 in the rest of this argument. First, we notice

that the L1-optimal variational curvature κ of B1 ∪B2 of Proposition 1.11 satisfies

κ 1B1∪B2 =
3

r1
1B1 +

3

r2
1B2 .



20 TITLE WILL BE SET BY THE PUBLISHER

Therefore, even without knowledge of κ outside B1 ∪B2 we can write

Per(B1 ∪B2)−
∫
B1∪B2

κ 6 Per((B1 ∪B2) ∩ E0)−
∫

(B1∪B2)∩E0

κ

Per(E0)−
∫
E0

f 6 Per((B1 ∪B2) ∪ E0)−
∫

(B1∪B2)∪E0

f,

(49)

where summing and using the union-intersection inequality (as in (16)) we get

0 >
∫

(B1∪B2)\E0

f − κ =

(
c1 −

3

r1

)
|B1 \ E0|+

(
c2 −

3

r2

)
|B2 \ E0|,

which, as ci > 3/ri, implies B1 ⊂ E0 and B2 ⊂ E0. Since supp f = B1 ∪ B2, these inclusions mean that we
can reformulate the problem for E0 as minimizing perimeter with an inclusion constraint (as in the obstacle
problem of [10, Lemma, p.132] and [24, Lemma 9]), so that

E0 ∈ arg min
F⊇B1∪B2

Per(F ).

Now, this variational problem and the isoperimetric inequality provide us with the bound

|E0| 6 Θ
− d
d−1

d Per(E0)
d
d−1 6 Θ

− d
d−1

d

(
Per(B1) + Per(B2)

) d
d−1 . (50)

On the other hand, for a point x ∈ ∂E0 and a radius r such that B(x, r)∩B1 = ∅ and B(x, r)∩B2 = ∅ we have
that f

∣∣
B(x,r)

= 0, implying the density estimate

|E0 ∩B(x, r′)| > C|B(x, r′)| for r′ 6 rε < r,

the constant C and the maximal radius rε at which the estimate holds being independent of x, of c1, c2 and of
the separation |x0| between the centers of B1 and B2. As in Lemma 5.1, if |x0| is large we may use many disjoint
balls (connectedness and the fact that E0 intersects B1 and B2 imply that we can find at least (|x0|− r1− r2)/r
of them) to obtain a contradiction with the mass bound (50).

5.2. The subcritical case

If q < d/(d − 1), unless we work in a bounded set (see Section 6) there is no hope to obtain a consistent
regularization scheme with Hausdorff convergence of level-sets, since the data term fails to control the behavior
at infinity of the solutions and subgradients. This is already hinted at in Proposition 3.1, where we cannot
guarantee obtaining a minimizer in Lq(Rd).

To demonstrate further, we have a closer look at the two-dimensional Radon transform in R2 with mea-
surements in L2. We construct a sequence of perturbations and regularization parameters which satisfy the
parameter choice inequality (38), but nevertheless force the level-sets of potential solutions to escape to infinity.
The implication is that in this setting it is advisable to work in a bounded domain. For example, in [17] a model
is presented, which uses total variation regularization and a L2 data term as an approximation of the Poisson
noise model for photon emission tomography (PET) reconstruction. For this model, the analysis performed is
indeed done on bounded domains.

We will need the following lemma:

Lemma 5.3. Let r1 < r2, B1 = B(0, r1), B2 = B(0, r2) and Ar1,r2 := B2 \ B1 be an annulus in R2. We
denote by κA an optimal curvature in the sense of Proposition 1.11. Then, κA is constant on Ar1,r2 , with value
2(r1 + r2)/(r2

2 − r2
1).
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Proof. Thanks to the rotational invariance of the problem, there exists a minimizer of

F 7→ Per(F )− λ|F |

among F ⊆ Ar1,r2 which is rotationally invariant. We can furthermore decompose it into “connected compo-
nents” as in Lemma 2.1: there is a minimizer which is an annulus Ara,rb . Computing the energy of this annulus
makes clear that such a minimizer is actually either empty (if λ 6 2(r1 + r2)/(r2

2 − r2
1)) or equal to Ar1,r2 (if

λ > 2(r1 + r2)/(r2
2 − r2

1)). �

Example 5.4. We consider A = R the Radon transform in the plane, Y = L2([0, 2π) × R+), σ = 2 and
q = 4/3. We note that in the plane R is a bounded operator from L4/3 to L2 [30, 31]. The starting point is
the noiseless measurement f := R1B(0,1), which since R is injective, gives rise to the corresponding minimal

variation solution u† = 1B(0,1). For a fixed δ ∈ (0, 1/2), we define the perturbation

wn := Rzn, for zn :=
1

n3/2+δ
1An with An := B(0, 2n) \B(0, n). (51)

The corresponding sequence of regularization parameters is defined as αn = `n−δ → 0 for a constant `, for
which we can compute

1

αn
‖wn‖Y 6 C

1

αn
‖zn‖L4/3(Rd) = Cα−1

n n−3/2−δ|An|3/4 = C`−1n−3/2|An|3/4 6 C`−1,

meaning that the parameter choice inequality required for Hausdorff convergence of level-sets (38) holds if ` is
chosen large enough. Notice also that the condition listed in Proposition 3.1 for convergence of minimizers is
also automatically satisfied, since in addition to the above we have ‖wn‖Y → 0.

Now, assume for the sake of contradiction that we had a sequence un of minimizers of (Pα,w), all of them
supported in a compact set B. Using Ru† = f , the optimality condition for (Pα,w) reads

vn := − 1

αn
R∗R

(
un − u† − zn

)
∈ ∂TV(un).

However [27, Thm. 1.5], the operator R∗R is proportional the Riesz potential operator of order one,

R∗Ru = 2 I1u, with I1u(x) :=

∫
R2

u(y)

|x− y|
dy,

which allows us to consider x ∈ An (for which we have u†(x) = 0) and estimate vn(x) for large n. On the one
hand we have the common compact support B for all un, implying that

1

αn
I1un(x) =

1

αn

∫
R2

un(y)

|x− y|
dy 6

1

αnd(x, suppun)
‖un‖L1(Rd)

6
1

αnd(x,B)
‖un‖L1(Rd) 6 C`

−1n−1+δ,

(52)

where we have used x ∈ An, the common compact support and Proposition 3.1 to conclude that ‖un‖L1(Rd) is

a bounded sequence, since un → u† in L1(Rd). Notice that (52) also holds when replacing un by u†. On the
other hand, we have

1

αn
I1zn(x) =

1

αn

∫
R2

zn(y)

|x− y|
dy =

1

αn

∫
An

zn(y)

|x− y|
dy >

1

αn diam(An)

∫
An

zn(y) dy

>
C

nαn

∫
An

zn(y) dy =
C|An|n−3/2−δ

nαn
= C`−1n−1/2,

(53)



22 TITLE WILL BE SET BY THE PUBLISHER

from which, in combination with (52) and since δ < 1/2, we can conclude that in fact also vn(x) > Cv`−1n−1/2

for all x ∈ An, some constant Cv and n large enough. Additionally, by Lemma 5.3 the optimal curvature κAn
of An satisfies κAn(x) 6 Ck/n for all x in An and some constant Ck. Combining these two estimates we have
therefore for n large enough the pointwise curvature comparison

vn(x)− κAn(x) >
(
Cv`

−1 − Ckn−1/2
)
n−1/2 >

1

2
Cv`

−1n−1/2 > 0,

which in turn (comparing as in (49)) implies that any minimizer of

F 7→ Per(F )−
∫
F

vn

must contain An, a contradiction with the common compact support for all un.

6. Remarks on bounded domains and boundary conditions

So far, the convergence results that we have proved hold for functions defined in the whole Rd. Nevertheless,
our results also apply to bounded domains with either Dirichlet or Neumann boundary conditions on a bounded
set Ω that satisfies mild regularity assumptions. This adaptation has been explained in detail for solutions in
L2(R2) in [24], and as we have seen, restricting to bounded domains is also necessary for the case q < d/(d− 1).
We now briefly present the required constructions.

Bounded domain with Dirichlet conditions.

Here, u ∈ Lq(Ω) and TV(u) is the total variation, computed in Rd, of the extension ũ of u by zero outside
Ω. Differently said, it means that the jump of u to zero at the boundary of Ω is taken into account. This is
well defined if Ω is an extension domain, for example Lipschitz. In the following, we will need that Ω has also
a variational curvature κΩ that satisfies

κΩ

∣∣
Rd\Ω ∈ Ld(Rd \ Ω). (54)

In particular, any convex or C1,1 domain will satisfy this assumption.
The existence of a minimizer for the approximate problem and its convergence in L1 to a minimal total

variation solution (Proposition 3.1) as well as the duality analysis (Propositions 3.3 and 3.4) still hold with no
modification. The results related to the parameter choice (Propositions 3.5 and 3.6) depend only on the space
Y and the dimension and therefore are not affected by changing the boundary conditions.

However, the proof of density estimates has to be slightly modified, since it is not possible anymore to
consider, for a level-set E of uα,w, the competitor E ∪Br. Indeed, such a set E would minimize

F 7→ Per(F )− sign(s)

∫
F

vα,w

only among the subsets F of Ω. The strategy is then to relax the constraint F ⊂ Ω and introduce

κα,w := sign(t)vα,w1Ω + κΩ1Rd\Ω

where κΩ is a variational curvature for Ω. One can then show (see [24, Lemma 9]) that E minimizes

F 7→ Per(F )−
∫
F

κα,w

among F ⊂ Rd (without inclusion constraint). Then, provided (54), density estimates are obtained as before,
since the functions (κα,w) are also equiintegrable in Rd.
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Bounded domain with Neumann boundary conditions.

In this case, u ∈ Lq(Ω) and one uses TV(u ; Ω), the total variation computed in Ω (the jumps at the boundary
of Ω are not taken into account). In this case, the proof of the existence result (Proposition 3.1) needs to take
into account the behaviour of the operator A on constant functions, in exactly the same way as done in [24, Prop.
2]. Other than that, everything until Proposition 3.6 works similarly. Proposition 4.1 then implies that any
level-set E of a minimizer uα,w minimizes among F ⊂ Ω

F 7→ Per(F ; Ω)−
∫
F

vα,w,

where Per(F ; Ω) := TV(1F ; Ω) is the perimeter in Ω, defined as in (9), but with test functions in C∞0 (Ω;Rd).
For this relative perimeter, the standard isoperimetric inequality does not hold. To see this, consider for example
that if x ∈ ∂Ω and r → 0+, then Per(Ω \B(x, r); Ω)→ 0 while |Ω \B(x, r)| → |Ω|. Nevertheless, provided Ω is
Lipschitz, the Sobolev inequality [5, Remark 3.50] writes for u ∈ BV(Ω),∥∥∥∥u− 1

|Ω|

∫
Ω

u

∥∥∥∥
L

d
d−1 (Ω)

6 CΩ TV(u ; Ω). (55)

Taking u = 1F for any F ⊂ Ω, we obtain [24, Section 4.3]

CΩ Per(F ; Ω) >
|F |

d
d−1 |Ω \ F |

d
d−1

|Ω|
d
d−1

.

which can play the role of the isoperimetric inequality in the proof of density estimates. Note that now the
parameter choice (38) has to be made relatively to the constant CΩ, that is η < CΩ in (38).

Periodic boundary conditions.

It is also possible to treat the case of periodic boundary conditions, commonly used in image processing (see
for example [8, Sec. 3.3]). A reasonable definition of periodic total variation is given in [19], which we now
describe using their same notation. Let Q = (0, 1)d be the d-dimensional cube. For u ∈ BV(Q) we denote by
u∂Q ∈ L1(∂Q) its trace on ∂Q (which exists by [5, Thm. 3.87]). Moreover, we define the part of the boundary

∂0Q := ∂Q ∩
{
x = (x1, . . . xd)

∣∣∣∣ d∏
i=1

xi = 0

}
,

where jumps should be accounted for in the variation. To accomplish this, one can use the boundary map
ζ : ∂0Q→ ∂Q defined by

ζ(x) = x+

d∑
i=1

γi(x)ei, for γi(x) = 1 if xi = 0 and γi(x) = 0 otherwise.

With it, one can define the periodic total variation of u ∈ BV(Q) to be

TVper(u ; Q) := TV(u ; Q) +

∫
∂0Q

∣∣u∂Q(x)− u∂Q
(
ζ(x)

)∣∣dHd−1(x), (56)

and the corresponding perimeter of a set E ⊂ Q as TVper(1E ; Q). With these definitions, we can just notice

TVper(u ; Q) > TV(u ; Q),



24 TITLE WILL BE SET BY THE PUBLISHER

so that the Sobolev inequality (55) remains valid with the same constant, allowing us to proceed as in the
Neumann case for the proof of the density estimates. Existence is likewise treated as in the Neumann case, and
all the other results hold with no modification. Notice in particular that even if the expression (56) of TVper

contains boundary terms, periodicity implies that the difficulties that make the Dirichlet case require extensions
do not arise.
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