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Abstract. Optical flow is a powerful tool for the study and analysis of motion in a sequence of images. In this
paper we study a Horn–Schunck-type spatio-temporal regularization functional for image sequences
that have a non-Euclidean, time varying image domain. To that end we construct a Riemannian
metric that describes the deformation and structure of this evolving surface. The resulting functional
can be seen as a natural geometric generalization of previous work by Weickert and Schnörr in 2001
and Lefèvre and Baillet in 2008 for static image domains. In this paper we show the existence
and well-posedness of the corresponding optical flow problem and derive necessary and sufficient
optimality conditions. We demonstrate the functionality of our approach in two experiments using
both synthetic and real data.
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1. Introduction.
Optical flow. Optical flow is a powerful tool for detecting and analyzing motion in a

sequence of images. The underlying idea is to depict the displacement of patterns in the
image sequence as a vector field—the optical flow vector field—generating the corresponding
displacement function. This framework has applications in a variety of areas connected to
computer graphics and video analysis, e.g., in video compressing, video surveillance, or vision-
based robot navigation.

Variational methods. In their seminal paper [20], Horn and Schunck proposed a variational
ansatz for the computation of the optical flow vector field. In this approach one minimizes
an energy functional consisting of a similarity (data) term and a regularity term:

ũ = argmin
u∈H

E(u) = argmin
u∈H

(S(u) +R(u)) .

Here H denotes an admissible space of vector fields, R denotes the regularity term for the
vector field u, and S denotes the similarity term, which depends on the image sequence I under
consideration. This method turned out to be particularly successful, as the resulting optical
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flow fields satisfy certain desirable properties governed by the choice of the regularization
term R.

In their paper, Horn and Schunck considered the optical flow problem for a sequence of
images defined on some domain in R

2. They proposed using the L2-norm of the first derivative
of the vector field u as a regularization term. The well-posedness of this ansatz was first shown
by Schnörr in [36]. There the author had to impose an additional assumption on the image
sequence in order to ensure the coercivity of the functional E ; this is mainly caused by the
so-called aperture problem, which results from the impossibility of detecting or discriminating
certain types of motion in a very regular image.

Since the development of the Horn–Schunck functional, several extensions and improve-
ments of the regularization term have been developed; see, e.g., [4, 12, 13, 29, 30, 32]. A survey
on variational techniques for optical flow can be found in [40]. In [31], Nagel proposed adding
regularization in time via smoothing across image discontinuities. Time smoothing of the flow
field, on the other hand, was introduced by Weickert and Schnörr in [42], where they consid-
ered an additional term containing the time derivative of the vector field u in the definition of
the regularization functional. This alteration still yields a convex energy functional, and thus
the well-posedness of the optical flow problem can be proved by employing methods similar
to those used for the original Horn–Schunck functional. While these results have been derived
for domains in R

2, the situation of more general—possibly curved—image domains has not
been considered in [42]. A first attempt in this direction can be found in [21, 38], where the
authors introduced the optical flow functional for images on the round sphere. Finally, the
case of an arbitrary compact two-dimensional manifold as image domain has been studied in
[26]. There the authors discuss the usage of the Horn–Schunck functional on a manifold and
prove a well-posedness result similar to that for the plane.

Time varying image domains. Recently, Kirisits, Lang, and Scherzer studied the optical flow
problem on a time varying image domain [24, 25]. The motivation for that was an application
in volumetric microscopy, where one studies the early development of a zebra fish embryo.
In this setting, almost all movement between consecutive images takes place on the surface
of the embryo’s yolk cell, which, however, is time-dependent as well. In theory, it would be
possible to use the complete volumetric data in order to compute a three-dimensional optical
flow field. In practice, however, this is not viable because of the huge amount of data involved.
Instead, it makes sense to extract the moving surface in a first step and then compute the
flow field on this surface in a second, separate step.

The main mathematical challenge at this point is the correct treatment of a vector field
on a moving manifold Mt ⊂ R

3, t ∈ [0, T ]. We assume in this paper that this manifold is
given by a family of parametrizations f(t, ·) : M → R

3, where the configuration space M is
a fixed compact two-dimensional manifold (possibly with boundary). The image sequence is
defined on this moving manifold, and it is assumed that the structure of the manifold has an
influence on the deformation of the image sequence. The difficulty is to capture the structure
of the moving manifold in the optical flow field. Therefore, one has to develop a regularization
term that depends on the induced, changing Riemannian metric.

At this point, we want to note that it would, in principle, be possible to use some fixed
Riemannian metric on M in order to obtain a regularization term as in [26]. Then one would,
however, lose all the information about the correct manifold Mt as well as its movement
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486 MARTIN BAUER, MARKUS GRASMAIR, AND CLEMENS KIRISITS

in space. In the experimental section, section 6, we will compare this naive approach to
our geometrical method, and we will see that there is a significant difference in the result-
ing optical flow fields. Furthermore, we note that similar situations and challenges occur
in other applications in biological and medical imaging, for instance, during the reconstruc-
tion of the epicardial potential, if one wants to take into account the beating of the heart,
and our approach can readily be translated to other application that require spatio-temporal
regularization on moving surfaces.

Contributions of the paper. One possibility of a regularization term capturing the structure
of a moving manifold has already been given in [24, 25]. In this paper we propose a different
term that is induced by a metric ḡ on the product manifold M̄ = [0, T ]×M . This metric ḡ is
constructed in such a way that it incorporates all available information on the moving image
domain:

ḡ(·, ·) =
(
α2 0
0 f∗〈·, ·〉R3

)
.

The constant α > 0 is a weighting parameter, and f∗〈·, ·〉R3 denotes the induced surface metric
of the parametrization f at time t. Given such a metric, we can use a weighted H1-norm as
regularization term:

R(ū) =

∫
M̄
βḡ(ū, ū) + γḡ11(∇̄ū, ∇̄ū) vol(ḡ).

This regularization term is defined for vector fields ū on the product manifold M̄ . However,
since we do not want to change the time parametrization, we will consider only vector fields
with vanishing time component; cf. Remark 7 for a more detailed explanation of this choice.
Moreover, ḡ11 denotes the extension of the metric to 1-1 tensor fields, ∇̄ denotes the covariant
derivative of ḡ, and vol(ḡ) is the corresponding volume form. Note that this term enforces
spatio-temporal regularity, as it contains derivatives in both time and space. The parameter
α that is included in the definition of the metric allows us to penalize regularity in time and
space separately. This choice for the regularization term is a natural geometric generalization
of the regularization term on the static manifold [0, T ] × R

2 from [42].

If we decide to enforce no regularity in time, then the optical flow problem reduces for
each time point ti to the optical flow problem on the static manifold Mti . In this case, our
regularization term equals the regularization term used in [26].

The similarity term we use in this paper is simply the squared L2-norm of the defect of
the optical flow equation, that is,

S(ū) =
∫
M̄
(∂tI + g(∇gI, u))2 vol(ḡ) .

Regarding the well-posedness of this optical flow problem, we obtain the following result.

Theorem 1 (well-posedness of the optical flow problem). Let Mt ⊂ R
3 be a moving two-

dimensional compact surface, the movement of which is described by a family of parametriza-
tions f : M → R

3. For all parameters β, γ > 0 and any image sequence I ∈ W 1,∞(M̄ ), the
optical flow functional

E(ū) = S(ū) +R(ū)
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has a unique minimizer in

dom(E) := {ū ∈ H1(M̄ , TM̄) : ū = (0∂t, u) with u ∈ H1(M̄ , TM)} .

A similar result is also shown under the assumption of partial Dirichlet boundary condi-
tions. The L2-norm in the regularization term is added to enforce the coercivity of the energy
functional. We also discuss under which assumptions we can set the parameter β to zero
and still obtain a well-posedness result for our functional. We compare our functional to the
functionals introduced by Kirisits, Lang, and Scherzer [24, 25] and discuss the well-posedness
of the optical flow problem using the regularization terms that are employed there.

Finally, we demonstrate the functionality of our approach in two experiments using both
synthetic and real data. In these experiments we also show the difference between our approach
and the straightforward approach, which does not use the actual structure of the moving
manifold. In both experiments one can see notably different results in regions of the manifold
where either the curvature or the deformation of the manifold is large.

Another important topic is the strong dependence of the optical flow field on the para-
metrization of the moving manifold. In Appendix A we present a brief discussion on a possible
approach to computing realistic parametrizations given an observed moving unparametrized
manifold. The long-term goal will be the combination of segmentation and computation of
the optical flow, which we hope will lead to more reliable results.

Organization of the paper. In section 2 we recall the differential geometric and functional
analytic tools that we will use throughout the paper. Readers who are acquainted with the
theory of Sobolev spaces of vector fields on Riemannian manifolds might skip this part and
directly start with section 3, which contains the rigorous mathematical formulation of the
optical flow problem studied in this paper. In section 4 we construct the regularization term
that we employ in this paper, prove the well-posedness of the corresponding functional, and
derive the optimality conditions. Up to this point all calculations and results are presented
in a coordinate-independent manner. In order to obtain an implementable version, we derive
in section 5 a coordinate version of the optimality conditions. This involves rather technical
calculations, which are partly postponed to Appendix B. In section 6 we show numerical ex-
periments that demonstrate the functionality of the proposed energy functional. Appendix A
contains a discussion on how to compute the parametrization of the moving manifold and the
actual calculations of the coordinate version of the optimality conditions.

2. Mathematical preliminaries. In this section we are going to recall the differential
geometric and functional analytic tools for Sobolev spaces of vector fields on two-dimensional
embedded surfaces, which we will need throughout the paper. A more detailed overview of
these topics can be found in, e.g., [10, sect. 3].

Riemannian geometry. We are working on two-dimensional surfaces that are embedded in
R
3 and parametrized by a mapping

f :M → R
3

from some configuration space M into R
3. We will always assume that M is a compact

two-dimensional manifold, possibly with boundary; typical examples are the two-dimensional
sphere S2 or the torus S1 × S1. The mapping f is assumed to be smooth (that is, at least
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488 MARTIN BAUER, MARKUS GRASMAIR, AND CLEMENS KIRISITS

C2) and injective with injective tangential mapping Tf : TM → R
3 (in other words, f is a

smooth embedding).
The embedding f induces in a natural way via pullback a Riemannian metric g on the

configuration space M . For tangent vectors X,Y ∈ TxM , x ∈M , it is given by

g(X,Y ) := (f∗〈·, ·〉R3)(X,Y ) := 〈Txf.X, Txf.Y 〉R3 .

Here 〈·, ·〉R3 denotes the standard scalar product on R
3, and Txf.X denotes the application of

the differential Txf : TxM → R
3 of the embedding f to the tangent vector X ∈ TxM .

In a chart (V, v) on M the expression of the metric reads as

g|V =
∑
i,j

gijdv
i ⊗ dvj =

∑
i,j

〈∂if, ∂jf〉R3dvi ⊗ dvj

with ∂i =
∂
∂vi

.
Next we note that the metric induces an isomorphism ǧ between the tangent bundle and

the cotangent bundle defined by

ǧ : TM → T ∗M, X 	→ g(X, ·) := X�,

with inverse ǧ−1. Therefore g defines a metric on the cotangent bundle T ∗M via

g−1(α, β) = α(ǧ−1(β)) .

In this paper we will need the extension of the metric to 1-1 tensor fields. The reason for this
is that this type of tensor field occurs as the derivative of a vector field on M , which will be
a part of our regularization term. On these tensor fields the metric is given by

g11 := g ⊗ g−1.

Applied to a 1-1 tensor field A, this equals the squared Hilbert–Schmidt norm of A:

g11(A,A) = Tr(A∗A),

where the adjoint A∗ is computed with respect to the Riemannian metric g. Here we have
interpreted A as a linear mapping from TxM to TxM .

Sobolev spaces of vector fields. The Riemannian metric g on M induces a unique volume
density, which we will denote by vol(g). In the chart (V, v) its formula reads as

vol(g)|V =
√

det(〈∂if, ∂jf〉R3) |dv1 ∧ dv2| .

The Levi–Civita covariant derivative of the metric g, which is the unique torsion-free
connection preserving the metric g, will be denoted by ∇g. When it is clear from the con-
text, we omit the g and simply write ∇ instead of ∇g. Note that ∇g is just the tangential
component of the usual derivative in the ambient space R

3; more precisely, for a vector field
u ∈ C∞(M,TM),

Tf.∇gu = projT 1,1M ∇R
3
(Tf.u) .
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We define the Sobolev norms of orders zero and one by

‖u‖20,g =

∫
M
g(u, u) vol(g),

‖u‖21,g =

∫
M
g(u, u) + g11(∇gu,∇gu) vol(g).

The Sobolev space H1(M,TM) is then defined as the completion of the space of all vector
fields u ∈ C∞(M,TM) with respect to the norm ‖ · ‖1,g. On a compact manifold different
metrics yield equivalent norms and thus lead to the same Sobolev spaces. We note that, as
for Sobolev spaces in R

n, there is an alternative, equivalent definition of H1(M,TM) as the
space of all square integrable vector fields with square integrable weak derivatives.

For the definition of more general Sobolev spaces on manifolds, we refer the reader to
[39]; see also [7] for an exposition in notation similar to that used in the current paper. An
extension of this theory to noncompact manifolds can be found in the book [14].

3. Problem formulation. We assume that we are given a moving two-dimensional com-
pact surface Mt ⊂ R

3, t ∈ [0, T ], the movement of which is described by a family of
parametrizations f . For the moment, we will restrict ourselves to compact surfaces without
boundary, but we will discuss the situation of manifolds with boundary later. More precisely,
we assume that there exist a two-dimensional compact C2-manifold M and a C2-mapping

f : [0, T ]×M → R
3

such that for every fixed time t ∈ [0, T ] the mapping f(t, ·) is an embedding and its image
equals Mt. The mapping f defines the movement of the manifold in the sense that the path of
a point y = f(0, x) ∈ M0 is precisely the curve t 	→ f(t, x). Or, a point y1 ∈ Mt1 corresponds
to a point y2 ∈ Mt2 if and only if there exists x ∈M with y1 = f(t1, x) and y2 = f(t2, x).

Next we model the movement of an image on this moving surface. For simplicity we will
consider only gray-scale images, although the model does not change significantly if we also
allow color, that is, vector-valued, images. We stress that in our model the movement of the
image is not driven solely by the movement of the surface, but that there is also an additional
movement on the surface, the reconstruction of which is precisely what we are aiming for.

The image sequence we are considering is given by a real-valued function I on

M :=
⋃

0≤t≤T

{t} ×Mt ⊂ [0, T ]× R
3 ;

for each t ∈ [0, T ], the function I(t, ·) : Mt → R is the image at the time t. Moreover, there
exists a family of diffeomorphisms ψ(t, ·) : M0 → Mt such that

I(0, x) = I(t, ψ(t, x)).

That is, the diffeomorphisms ψ(t, ·) generate the movement of the image on the evolving
surface.
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Next, it is possible to pull back the image and the driving family of diffeomorphisms to
the configuration space M . Doing so, we obtain a time-dependent function I : [0, T ]×M → R

defined by
I(t, x) = I(t, f(t, x))

and a family of diffeomorphisms ϕ(t, ·) of M defined by

f(t, ϕ(t, x)) = ψ(t, f(0, x))

such that

(1) I(0, x) = I(t, ϕ(t, x))

for all t ∈ [0, T ] and x ∈M .
Furthermore, we assume that the diffeomorphisms ϕ(t, ·) are generated by a time-dependent

vector field u on M . Then the curves t 	→ ϕ(t, x) are precisely the integral curves of u; that
is,

(2) ∂tϕ(t, x) = u(t, ϕ(t, x)) .

If the image I is sufficiently smooth, it is possible to compute the time derivative of (1). Using
the relation (2) and the fact that ϕ(t, ·) is surjective, we then see that the image I and the
vector field u satisfy the optical flow equation

(3) 0 = ∂tI(t, x) +DxI(t, x)u(t, x)

on [0, T ] ×M . We do note that in (3) all information about the movement of the manifold
is suppressed, as all the functions have been pulled back to M . It is, however, possible to
reintroduce some knowledge of M by formulating the optical flow equation not in terms of
differentials but rather in terms of gradients. To that end we denote by g the time-dependent
Riemannian metric on M that is induced by the family of embeddings f(t, ·). Since by
definition ∇gI(t, ·)� = DxI(t, ·), we can rewrite the optical flow equation as

(4) 0 = ∂tI(t, x) + g(∇gI(t, x), u(t, x))

for all (t, x) ∈ [0, T ]×M .
Now assume that the model manifold M is a compact manifold with boundary. Then the

same model of a moving image on the embedded manifolds Mt is possible, as long as it is
guaranteed that the boundary of the manifold acts as a barrier for the movement of I. That is,
the diffeomorphisms ϕ(t, ·) satisfy the additional boundary condition ϕ(t, x) = x for x ∈ ∂M .
In this case, one arrives at the same optical flow equation (4), but, additionally, one obtains
(partial) Dirichlet boundary conditions of the form u(t, x) = 0 for all (t, x) ∈ [0, T ] × ∂M .

The situation is different when the image I actually moves across the boundary of Mt,
which can occur if the manifold with boundary Mt represents the limited field of view on
a larger manifold that contains the moving image. Then it is not reasonable to model the
movement of the image by a family of global diffeomorphisms ψ(t, ·). However, locally it can
still be modeled as being generated by a family of local diffeomorphisms, which in turn can
be assumed to be generated by a time-dependent vector field on M . With this approach,
one arrives, again, at the same optical flow equation (4). The difference from the situations
discussed above is that the integral curves of u may be defined only on bounded intervals.
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The inverse problem. Now we consider the inverse problem of reconstructing the movement
of a family of images from the image sequence. We assume that we are given the family
of manifolds Mt together with the parametrizations f(t, ·) and the family of images I(t, ·)
(already pulled back to M). Our task is to find a time-dependent vector field u on M that
generates the movement of I; in other words, a vector field u that satisfies the optical flow
equation (4).

Solving this equation directly is not sensible, as, in general, the solution, if it exists, will
not be unique: The optical flow equation does not “see” a flow that is tangential to the level
lines of the image I. Thus, if u is any solution of (4) and the vector field w satisfies

g(∇gI(t, x), w(t, x)) = 0,

then u + w is also a solution; this is called the aperture problem (see [16]). In addition, the
whole model fails in the case of noise leading to nondifferentiable data I. In order to be still
able to formulate the optical flow equation, it is possible to presmooth the image I, but this
will invariably lead to errors in the model, and thus the optical flow equation will be satisfied
only approximately by the generating vector field u. For these reasons, it is necessary to
introduce some kind of regularization. Note that the main focus here lies in the problem of
solution selection.

Intrinsic invariances. Usually, there is no canonical way of choosing the model manifold M
and the initial parametrization f(0, ·) of M0. However, the optical flow problem is invariant
with respect to reparametrizations in the following sense: If N is another (diffeomorphic)
manifold and χ : N →M a diffeomorphism, then we can pull back everything to N . That is,
we obtain parametrizations fN(t, ·) := f(t, ·) ◦ χ and images IN (t, ·) := I(t, ·) ◦ χ. Following
the same steps as before, we see that the movement of the image IN is generated by a time-
dependent vector field uN on N that satisfies the optical flow equation on N ,

(5) 0 = ∂tIN (t, x) +DxIN (t, x)uN (t, x).

By construction, ∂tIN (t, x) = ∂tI(t, χ(x)), and DxIN (t, x) = DxI(t, χ(x)) ◦ Dχ(x). As a
consequence, the vector field u(t, χ(x)) := Dχ(x)uN (t, x), which is the pushforward of uN
by means of χ, satisfies the optical flow equation on M . In other words, the solutions of the
optical flow equation onM are simply the pushforward of solutions of the optical flow equation
on N via the diffeomorphism χ connecting N and M . One main goal of the regularization
method we will develop in the following is to retain this invariance also for the inverse problem.

4. Classical variational regularization. One of the most straightforward regularization
methods is the application of Tikhonov regularization, where we try to minimize a functional
composed of two terms—a similarity term, which ensures that the equation is almost satisfied,
and a regularity term, which ensures the existence of a regularized solution and is responsible
for the solution selection.

4.1. Spatial regularization. If we consider only spatial regularity, the definition of the
regularity term is straightforward, using for each time point t the pullback metric

g(t)(·, ·) = f(t, ·)∗〈·, ·〉R3 .
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This leads to the energy functional

E(u) := S(u) +R(u)

=

∫ T

0

∫
M

(∂tI + g(∇gI, u))2 + βg(u, u) + γg11(∇gu,∇gu) vol(g) dt,

where β and γ are weighting parameters. In this case the problem completely decouples in
space and time; i.e., the optimal vector field u has to be minimal for each time point separately.
Thus the problem reduces for each time t to the calculation of the optical flow on the (static)
Riemannian manifold (M,g(t)), which yields for each time point t the energy functional

E(u(t, ·)) :=
∫
M

(∂tI + g(∇gI, u))2 + βg(u, u) + γg11(∇gu,∇gu) vol(g).

This functional is well investigated. For β > 0 the coercivity of the energy functional is clear,
and one can easily deduce the well-posedness of the optical flow problem. In [26, 36] it was
shown that one can guarantee the coercivity of the energy functional for β = 0 by requiring
the image sequence to satisfy additional conditions. The conditions in [36] for optical flow in
the plane require that the partial derivatives of the image I are linearly independent functions.
This is equivalent to the requirement that no nontrivial constant vector field u satisfies the
optical flow equation for the given image. Similar requirements are commonly found for
Tikhonov regularization with derivative-based regularization terms; see, e.g., [1, 5, 17] and [34,
sect. 3.4]. In the case of a nonflat manifold M , the condition translates to the nonexistence of
a nontrivial covariantly constant vector field satisfying the optical flow equation. Obviously,
this condition is automatically satisfied if the only covariantly constant vector field is u = 0,
and thus it may be omitted in manifold settings; see [26].

In addition, note that the energy functional defined above does not depend on the para-
metrization of M. That is, assuming that χ : N →M is a diffeomorphism between a manifold
N and M , we can pull back the optical flow equation to N as in (5). If we then use the same
method as above to define an energy functional, then the resulting functional EN will satisfy
EN (u(t, ·)) = E(Dχ ◦ u(t, ·)) whenever u is a time-dependent vector field on N . In particular,
this implies that the minimizer of E on M is the pushforward of the minimizer of EN on N ,
which further means that the resulting vector fields on Mt are identical. We remark that this
property does not hold if one uses an arbitrary Riemannian metric on M that is not inherited
from M. For instance, if M ⊂ R

2 is an open set, it is in principle possible to compute an
energy functional based on the Euclidean metric. In this case, a reparametrization of M will
in general yield a different flow field.

4.2. Regularization in time and space. In the following we will look for solutions that
additionally satisfy a regularity constraint in time t. For the optical flow in the plane R

2,
this method has been introduced in [42]. Spatio-temporal regularization of the optical flow on
moving manifolds has also been considered in [24], but with a different regularity term from
the one we will construct in the following.

In order to construct the regularity term, we consider the product manifold

M̄ := [0, T ]×M
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OPTICAL FLOW ON MOVING MANIFOLDS 493

and equip it with the almost product metric

ḡ(·, ·) =
(
α2 0
0 f∗〈·, ·〉R3

)
.

The parameter α > 0 is a weighting parameter, which is included in order to be able to
penalize spatial regularity and regularity in the time variable differently. This metric is called
the almost product metric due to the dependence of the metric g(·, ·) = f∗〈·, ·〉R3 on the time t.
In order to simplify notation we denote ∇ḡ by ∇̄ from now on.

Remark 2. In the following, we will always indicate by a “bar” (̄·) that an object is related
to the product manifold M̄ . For instance, ḡ denotes a metric on M̄ , whereas g denotes a
(time-dependent) metric on M . Similarly, ū will later denote a vector field on M̄ , whereas u
will denote a time-dependent vector field on M .

Remark 3. We could also consider M as an embedded submanifold of R× R
3:

f̄ :

{
[0, T ]×M → R× R

3 ,
(t, x) 	→ (t, f(t, x)) .

We stress here that the metric ḡ is not the pullback of the (time-scaled) Euclidean metric on
M by the parametrization f̄ . Instead, it is constructed in such a way that the paths of the
points on M are at each time t orthogonal to the manifold Mt. Moreover, these paths are
geodesics with respect to ḡ. These properties do not, in general, hold for the usual pullback
metric.

From now on we will identify a time-dependent vector field u on M with the vector field

ū(t, x) := (0∂t, u(t, x)) ∈ C∞(M̄ , TM̄)

and define both the similarity term and the regularization term in terms of ū. Taking the
squared L2-norm with respect to the metric ḡ of the right-hand side of the optical flow equation
(3), we obtain for the similarity term the functional

S(ū) = ‖∂tI + g(∇gI, u)‖20,ḡ
=

∫
M̄

(∂tI(t, x) + g(∇gI(t, x), u(t, x)))2 vol(ḡ)

= α

∫ T

0

∫
M

(∂tI(t, x) + g(∇gI(t, x), u(t, x)))2 vol(g) dt.

Here we used the fact that the volume form on M̄ splits into vol(ḡ) = α vol(g) dt.
For the regularization term we use a weighted H1-norm of the vector field ū, that is,

R(ū) = β‖ū‖20,ḡ + γ‖∇̄ū‖20,ḡ ,(6)

where β and γ are weighting parameters. In (6), the term ‖ū‖20,ḡ denotes the L2-norm of the

vector field ū, and ‖∇̄ū‖20,ḡ denotes the norm of its derivative with respect to the Riemannian
metric ḡ; that is,

‖ū‖20,ḡ = α

∫ T

0

∫
M
g(u, u) vol(g) dt,(7)

‖∇̄ū‖20,ḡ = α

∫ T

0

∫
M
ḡ11(∇̄ū, ∇̄ū) vol(g) dt.(8)

D
ow

nl
oa

de
d 

03
/1

2/
15

 to
 1

31
.1

30
.1

88
.2

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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To summarize, we propose to solve the optical flow problem on a moving manifold by
minimizing the energy functional

(9)
E(ū) := S(ū) +R(ū)

= ‖∂tI + g(∇gI, u)‖20,ḡ + β‖ū‖20,ḡ + γ‖∇̄ū‖20,ḡ ,

which is defined on
dom(E) = {

ū ∈ H1(M̄ , TM̄) : ū = (0∂t, u)
}
.

Remark 4. Note that the regularization term depends implicitly on the parameter α as
well. However, a large value of α leads to less time regularity, which is in contrast to the
influence of the parameters β and γ. Formally, the limit α → ∞ corresponds to no time
regularization at all.

Remark 5. We stress the difference between the regularization term proposed in this paper
and the one from [25], which is given by

R(u) =

∫ T

0

∫
Mt

λ0|projTMt
∂t(Tf.u)|2 + λ1‖projT 1,1Mt

∇R
3
(Tf.u)‖2.

Even though the latter functional is also a natural generalization of [42]—from an embedded
point of view—there is no obvious metric on M̄ for which it is a weighted homogeneous
H1-norm.

Remark 6. In the case β = 0, where R is the homogeneous Sobolev seminorm, only
variations of the movement on the manifold are penalized but not the overall speed of the
movement. In contrast, a positive value of β encourages a low speed, which may lead to
a systematic underestimation of the magnitude of the computed flow. For this reason the
choice β = 0 is usually preferable. Note, however, that one of the basic assumptions in our
model is that most of the movement of the image is driven by the movement of the manifold.
Thus, using a positive value of β can be justified and is somehow natural, provided that this
assumption holds. In addition, the actual numerical computation of the flow field is easier for
β > 0 because the condition of the resulting linear equation becomes better with increasing
β. Still, we have used the parameter choice β = 0 for our numerical experiments later in the
paper.

Remark 7. It is also possible to identify the nonautonomous vector field u on M with the
vector field û(t, x) := (1∂t, u(t, x)) on M̄ , which incorporates the movement of the image in
both time and space. If one does so, however, one has to be careful about the regularity term.
Simply using the squared (weighted) H1-norm of û has the undesirable effect that the natural
movement of the manifold, which is given by the vector field û0 := (1∂t, 0), need not be of
minimal energy for the regularization term: The vector field û0 is in general not covariantly
constant. Instead of the norm of the vector field û itself, one should therefore penalize the
norm of the difference between û and û0. Doing so, one arrives at the same regularization
term (8) as above, although the interpretation is slightly different.

Remark 8. From the construction of the Riemannian metric, it follows that the proposed
energy functional is invariant under diffeomorphisms of the model manifold M : If we pull
back the optical flow equation to a manifold N by means of a diffeomorphism χ as in (5) and
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use the same method for constructing an energy functional EN on [0, T ] ×N , then for every
vector field ū = (0∂t, u) on [0, T ]×N , the equality EN (ū) = E((0∂t,Dχ ◦ u)) holds.

4.3. Well-posedness. The proof of the well-posedness of our model, that is, the question
of whether the proposed energy functional E attains a unique minimizer in dom(E), is quite
straightforward. In the following result, we denote by W 1,∞(M̄) the space of functions on M̄
with an essentially bounded weak derivative.

Theorem 9. Assume that α, β, γ > 0 and that I ∈W 1,∞(M̄). Then the functional

E(ū) = S(ū) +R(ū)

defined in (9) has a unique minimizer in dom(E).
Remark 10. We will see in section 4.4 that this optimization problem is in a natural

way connected to Neumann boundary conditions. If we want to consider mixed boundary
conditions instead—Dirichlet in space and Neumann in time—we have to restrict the domain
of the energy functional to

dom0(E) := {ū ∈ dom(E) : ū = 0 on [0, T ]× ∂M}.
The well-posedness result remains valid on dom0(E).

Proof. The condition I ∈ W 1,∞(M̄) guarantees that the similarity term S(ū) is finite for
every square integrable vector field on M̄ ; in particular, it is proper. From the condition
β > 0 we obtain that the regularization term R and therefore also the energy functional E are
coercive. Thus E is a proper and coercive, quadratic functional on the Hilbert space dom(E),
which implies the existence of a unique minimizer (cf. [34, sect. 3.4] or [36]).

Remark 11. The condition β > 0 is not necessary if there is another way of guaranteeing
the coercivity of the regularization term. This is possible, for instance, if there exists no
nontrivial covariantly constant vector field of the form ū = (0∂t, u) on M̄ . In that case, the
homogeneous Sobolev seminorm ‖∇̄ū‖20,ḡ is, in fact, a norm on dom(E) that is equivalent to
the standard Sobolev norm, and therefore also the parameter choice β = 0 guarantees the
coercivity of E . Note that this condition is independent of the moving image I.

More generally, even if there are nontrivial, admissible, covariantly constant vector fields
on M̄ , the energy function will still be coercive for β = 0, as long as no such vector field satisfies
the optical flow equation ∂tI+g(∇gI, u) = 0. Note, however, that the numerical computation
of a minimizer may become difficult because the problem, though still well-posed, may become
ill-conditioned as the parameter β approaches zero.

Remark 12. With a similar argumentation one can show that the functionals proposed
in [24, 25] are well-posed, provided that they are coercive; cf. Remark 5. Because the regular-
ization terms in these papers penalize only the derivative of the vector field u but not its size,
the coercivity (and thus well-posedness) will hold only if one of the conditions in Remark 11
is satisfied.

4.4. The optimality conditions.
Lemma 13. The L2-gradient of the optical flow energy functional E is given by

grad E(ū) = 2
(
∂tI + g

(∇gI, u
))

(0,∇gI) + 2βū+ 2γΔBū .
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• For E seen as functional on dom(E), its domain of definition is the set of all vector
fields ū ∈ dom(E) satisfying Neumann boundary conditions, i.e.,

dom(grad(E)) = {
ū ∈ dom(E) : ∇̄ν ū

∣∣
∂M̄

= 0
}
,

where ν denotes the normal to the boundary of M̄ with respect to ḡ.
• For E restricted to dom0(E), its domain of definition is the set of all vector fields
ū ∈ dom0(E) satisfying mixed boundary conditions, more precisely,

dom0(grad(E)) =
{
ū ∈ dom0(E) : ∇̄ν ū

∣∣
{0,T}×M

= 0
}
.

Note here that on {0, T} ×M the normal vector ν is given by ν = ∂t.
Here ΔB denotes the Bochner Laplacian of ḡ, which is defined via

ΔB = ∇̄∗∇̄,
with ∇̄∗ denoting the L2-adjoint of the covariant derivative. The Bochner Laplacian differs
only by a sign from the usual Laplace–Beltrami operator.

Proof. We calculate the gradients for the two terms separately. Using a variation δu =
(0, δu), we obtain the following expression for the variation of the similarity term:

D (S(ū)) (δu) = 2α

∫ T

0

∫
M

(
∂tI + g

(∇gI, u
))
g
(∇gI, δu

)
vol(g) dt.

From this equation one can easily read off the L2-gradient of the similarity term. It reads as

gradL
2
(S(ū)) = 2

(
∂tI + g

(∇gI, u
))

(0,∇gI).

The variation of the regularization term is given by

D (R(ū)) (δu) = 2αβ

∫ T

0

∫
M
ḡ(ū, δu) vol(g) dt + 2αγ

∫ T

0

∫
M
ḡ11(∇̄ū, ∇̄δu) vol(g) dt

= 2αβ

∫ T

0

∫
M
ḡ(ū, δu) vol(g) dt + 2αγ

∫ T

0

∫
M
ḡ(∇̄∗∇̄ū, δu) vol(g) dt

+ 2αγ

∫ T

0

∫
∂M

ḡ(∇̄ν ū, δu) vol(g)|∂Mdt+ 2αγ

∫
M
ḡ(∇̄∂t ū, δu) vol(g)

∣∣∣T
0
.

The second step consists of a partial integration using the L2-adjoint of the covariant deriva-
tive, which we denote by ∇̄∗. The last two terms in the above expression are the boundary
terms that result from the partial integration. From this we can read off the formula for the
gradient of the regularization term. Taking into account that the outer normal vector to the
boundary of {0, T} × M is given by ν = ∂t, this concludes the proof on dom(E). For the
proof on dom0(E) the situation is simpler, since the first boundary integral is already zero if
δu ∈ domo(E).

Because of the strict convexity of the energy functional E , a vector field ū is a minimizer if
and only if it is an element of dom(grad(E)) and grad E(u) = 0. Thus we obtain the following
result.
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Theorem 14.The minimizer of the energy functional E on dom(E) defined in (9) is the
unique solution ū = (0∂t, u) of the equation

(
∂tI + g

(∇gI, u
))

(0,∇gI) + βū+ γΔBū = 0 in M̄,

∇̄ν ū = (0,∇νu) = 0 in [0, T ]× ∂M,

∇̄∂t ū = 0 in {0, T} ×M.

If we restrict the energy functional to dom0(E), it is the unique solution of

(
∂tI + g

(∇gI, u
))

(0,∇gI) + βū+ γΔBū = 0 in M̄,

∇̄∂t ū = 0 in {0, T} ×M,

ū = 0 in [0, T ]× ∂M.

5. The optimality conditions in local coordinates. The aim of this section is to express
the previously derived optimality conditions in a local coordinate chart in order to obtain an
implementable version of the previous sections. To simplify the exposition, we will restrict
ourselves to the case of mixed boundary conditions. Note that this includes in particular the
situation where M is a compact manifold without boundary.

Let (V, v) be a local chart on M with coordinate frame ∂1, ∂2. In the following we will
use the Einstein summation convention in order to simplify the notation.

The main computational difficulty is the computation of the Bochner Laplacian ΔB =
∇̄∗∇̄, as it involves the adjoint of the covariant derivative. This is most easily done in an
orthonormal frame with respect to the metric ḡ. We stress here that the natural frame
(∂t, ∂1, ∂2) is, in general, not orthonormal, because ḡ(∂1, ∂2) = g(∂1, ∂2) = 〈∂1f, ∂2f〉R3 will be
different from 0. Note, however, that the construction of the metric implies that ḡ(∂t, ∂i) = 0
for i = 1, 2. We can therefore obtain an orthonormal frame by scaling the vector ∂t to unit
length and, for instance, applying the Gram–Schmidt orthogonalization process to the (time-
and space-dependent) vectors ∂1, ∂2. Doing so, we obtain an orthonormal frame of the form

X̄0 =

(
1

α
∂t, 0

)
, X̄1 = (0,X1), X̄2 = (0,X2)

with space-dependent vector fields X1(t, ·) and X2(t, ·) on M ∩ V . The (time- and space-
dependent) coordinate change matrix between these two bases will be denoted by Ā; we have

⎛
⎝X̄0

X̄1

X̄2

⎞
⎠ = Ā

⎛
⎝∂t∂1
∂2

⎞
⎠ =

⎛
⎝

1
α 0 0
0 a11 a21
0 a12 a22

⎞
⎠

⎛
⎝∂t∂1
∂2

⎞
⎠ .

Note that the coefficient function a21 will be the constant 0 if the Gram–Schmidt process is
used for orthogonalization.

In the orthonormal frame {X̄i}, the norm of ∇̄ū can be written as

ḡ11(∇̄ū, ∇̄ū) =
∑
i

ḡ(∇̄X̄i
ū, ∇̄X̄i

ū),
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where ∇̄X̄i
ū denotes the covariant derivative of the vector field ū along X̄i. Writing ū as ūjX̄j ,

the covariant derivative can be computed as

∇̄X̄i
ū =

(
X̄iū

j + ūkω̄j
ik

)
X̄j,

where ω̄j
ik are the connection coefficients. These are defined by the equations

ω̄m
ikX̄m = ∇̄X̄i

X̄k.

In order to actually compute the connection coefficients, we use the fact that they are
related to the Christoffel symbols Γ̄i

k� of ḡ with respect to (∂t, ∂1, ∂2) via

ω̄j
ik =

(
ā�i∂�ā

m
k + ā�i ā

n
k Γ̄

m
�n

)
āhj ḡmh.

Finally, the Christoffel symbols are defined as

Γ̄i
k� =

1

2
ḡim

(
ḡmk,� + ḡm�,k − ḡk�,m

)
,

where {ḡik} denote the coefficients of the inverse metric ḡ−1, and {ḡik,�} denotes the partial
derivatives of the coefficients of the metric ḡ with respect to (∂t, ∂1, ∂2).

Applying these definitions to our special situation, we arrive at the following explicit
formula for the optimality conditions in local coordinates.

Theorem 15 (optimality conditions in local coordinates). In the chart (V, v), the unique min-
imizer

ū = (0∂t, u) =
(
0, uiXi

)
of the energy functional E defined in (9) solves the equation(

Aj +Bj
mu

m + Cmj
k ∂mu

k +D�m∂�mu
j
)
Xj = 0 in V × (0, T ),(10) (

1

α
∂tu

j + ukω̄j
0k

)
Xj = 0 on V × {0, T},(11)

where

Aj = ∂tI∂iIg
ikbjk,

Bj
m = ∂�Ia

�
m∂iIg

ikbjk + βδjm − γ
∑

i(ā
�
i∂�ω̄

j
im + ω̄n

imω̄
j
in)− γ

α ω̄
j
0mΓ̄n

n0,

Cmj
k = −γ∑i(δ

j
k ā

�
i∂�ā

m
i + 2ω̄j

ikā
m
i )− γ

αδ
j
kā

m
0 Γ̄n

n0,

D�m = −γ∑i ā
�
i ā

m
i ,

and bjk is the Xj-component of ∂k.

The connection coefficients ω̄j
ik of {Xi} are given by

(12) ω̄j
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j = 0 and either i = 0 or k = 0,

αa�ia
n
i Γ̄

0
�n if j = 0 and i, k �= 0,

0 if j �= 0 and i = k = 0,
1
α

(
∂ta

m
k + ank Γ̄

m
0n

)
ahj gmh if i = 0 and j, k �= 0,

1
αa

�
ia

h
j gmhΓ̄

m
�0 if k = 0 and j, i �= 0,(

a�i∂�a
m
k + a�ia

n
kΓ

m
�n

)
ahj gmh if j, i, k �= 0.
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Moreover, the Christoffel symbols Γ̄j
ik have the form

(13) Γ̄j
ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if j = 0 and either i = 0 or k = 0,

−∂tgik
2α2

if j = 0 and i, k �= 0,

0 if j �= 0 and i = k = 0,

gj�∂tgk� if i = 0 and j, k �= 0,

gj�∂tgi� if k = 0 and j, i �= 0,

2gj�〈∂ikf, ∂�f〉R3 if j, i, k �= 0.

The derivations of this equation and of the coordinate expression of the connection symbols
and the Christoffel symbols are postponed to Appendix B.

6. Experimental results.

Numerical implementation. We illustrate the behavior of the proposed model in two ex-
periments. In both, the moving surface Mt ⊂ R

3 is parametrized globally by a function
f : [0, T ] ×M → R

3, where M ⊂ R
2 is a rectangular domain. Note that, due to the cho-

sen images, we can always set β = 0 and still have well-posedness; cf. Remark 11. We also
conducted experiments with a positive value of β, which yielded faster convergence of the
numerical method. The main difference from the results with β = 0 was shortened flow fields.

We solve the optimality conditions from Theorem 15 with finite differences on a k×m×n
grid approximation of M̄ . Derivatives in all three directions are approximated by central
differences, and the resulting sparse linear system is solved with the standard MATLAB
implementation of the generalized minimal residual (GMRES) method.

Remark 16. In the two examples that we present in the following, the moving surface is
of a relatively simple nature: It is quite smooth, and, moreover, there will (up to corners and
periodic boundary conditions) exist a global chart for the surface at each time step. This will
allow us to compare the resulting optical flow field obtained with our method to the optical
flow field that is computed using the standard metric on the plane. We emphasize, however,
that this naive approach of computing the optical flow field on the plane depends highly on
the chosen charts, i.e., parametrizations, and a different atlas will yield completely different
results. This observation shows the necessity of our intrinsic definition of the optical flow
problem. Furthermore, the possibility of computing everything in the plane will fail in the
case of more complicated surfaces that do not admit global charts or have large or rapidly
varying curvature.

Experiment I, synthetic data. The first image sequence we apply our model to consists of 20
frames of the well-known Hamburg Taxi sequence,1 scaled to the unit interval. The sequence
has a resolution of 255 × 190, which leads to a total number of 9.7 · 105 grid points.

The surface we consider is a ring torus whose major circle turns into an ellipse while its

1The movie can be downloaded from http://i21www.ira.uka.de/image sequences/.
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500 MARTIN BAUER, MARKUS GRASMAIR, AND CLEMENS KIRISITS

Figure 1. The data considered in Experiment I at frames 1, 6, 11, 16, and 20. Top row: The pulled back
image sequence I. Middle row: The moving surface Mt. Bottom row: The image sequence I.

tube of uniform thickness grows ripples over time. The corresponding embedding reads as

f(t, x1, x2) =

⎛
⎝(R + t

T + r(t, x1) cos x2) cos x1
(R + r(t, x1) cos x2) sinx1

r(t, x1) sin x2

⎞
⎠ ,

where R = 2, r(t, x1) = 1 + t
5T sin 8x1, and (x1, x2) ∈ [0, 2π)2. In Figure 1 we show I, Mt,

and I.
In Figures 2 and 3 results for the parameter choice α = γ = 1 and β = 0 are depicted.

The finite difference step size h was set to 1 for all three directions. The GMRES algorithm
was terminated after a maximum of 2000 iterations with a restart every 30 iterations. This
led to a relative residual of 5.1 · 10−3. In Figure 3 we use the color coding from [6] to visualize
the optical flow. This is done by applying it to the pulled back vector field first, and drawing
the resulting color image onto Mt via f afterwards.

Finally, we illustrate how the moving surface influences the optical flow vector field. To
that end we repeat Experiment I on the flat torus with all parameters unchanged. That is, we
compute the optical flow from the Hamburg Taxi sequence according to the model of Weickert
and Schnörr [42] but with periodic boundary conditions. Note that this is indeed the more
realistic model in this case, since this synthetic video sequence is not influenced by the actual
structure of the manifold, but is only projected on the moving manifold. The reason that
we still decided to conduct this experiment was to demonstrate the existence of a significant
difference in these two approaches. However, the advantage of our method is present only if
the image sequence is indeed influenced by the structure and movement of the manifold.

In Figure 4 we juxtapose the resulting vector field with the optical flow computed on the
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OPTICAL FLOW ON MOVING MANIFOLDS 501

Figure 2. The optical flow vector field resulting from Experiment I at frames 1, 10, and 19. Top row: The
pullback of the vector field. Bottom row: The vector field on the moving surface. The vectors have been scaled
for better visibility.

Figure 3. The color-coded optical flow vector field resulting from Experiment I at frames 10, 11, 12, and 13.
First row: Image sequence with pulled back vector field superimposed. Second row: Vector field on the moving
surface. The color wheel is shown at the bottom right.

deforming torus. A common measure for comparing two optical flow vector fields u and v is
the angular error

arccos
〈(1, u), (1, v)〉R3

|(1, u)|R3 |(1, v)|R3

.

See [6], for example. The main purpose of adding the additional component 1 to both vectors
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502 MARTIN BAUER, MARKUS GRASMAIR, AND CLEMENS KIRISITS

Figure 4. Comparison of the optical flow from Experiment I with the optical flow computed in the plane.
First row: Optical flow from Figure 3 (first row), with removed image. Second row: Optical flow computed in
the plane with periodic boundaries. The color wheel is shown at the bottom right.

Figure 5. Angular errors at frame 19 between the optical flow vector fields computed on the flat and the
deforming torus, respectively. Left: R

2 angular error between the pulled back vector fields. Right: R
3 angular

error between the pushed forward vector fields.

is to avoid division by zero. Extending the above definition in a straightforward way to vector
fields in R

3, we show in Figure 5 the angular error between the optical flow computed on the
deforming and the flat torus, respectively, both before and after pushforward to the deforming
torus. Note that two unit vectors u, v ∈ R

2 standing at an angle of π/5 would have an angular
error of approximately 0.44. Another common measure is the so-called endpoint error |u−v|R3 ,
which also takes into account the lengths of the vectors. However, since vector lengths are
typically affected by the choice of regularization parameters and finding comparable values for
the flat and the deforming torus is not straightforward, we chose not to visualize the endpoint
error.
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Experiment II, microscopy data. Finally, we test our model on real-world data. The image
sequence under consideration in this section depicts a living zebra fish embryo during the
gastrula period and has been recorded with a confocal laser-scanning microscope. The only
visible feature in this dataset are the embryo’s endodermal cells, which, expressing a green
fluorescent protein, proliferate on the surface of the embryo’s yolk. Understanding and re-
constructing cell motion during embryogenesis is a major topic in developmental biology, and
optical flow is one way to automatically extract this information [2, 3, 25, 35]. See [23] for a
detailed account of the embryonic development of a zebra fish, and [27] for more information
on laser-scanning microscopy and fluorescent protein technology.

The considered data do not depict the whole embryo but only a cuboid section of approx-
imately 540 × 490 × 340μm3. They have a spatial resolution of 512 × 512 × 40 voxels, and
the elapsed time between two consecutive frames is about four minutes. As in [25, 35] we
avoid computational challenges by exploiting the fact that during gastrulation endodermal
cells form a monolayer. This means that they can be regarded as sitting on a two-dimensional
surface. Therefore, by fitting a surface through the cells’ positions, we can reduce the spatial
dimension of the data by one. We refer the reader to [25] for details on how this surface
extraction was done.

In this particular experiment we apply our model to 21 frames of the resulting two-
dimensional cell images with a resolution of 373 × 373 and again scaled to the unit interval.
The extracted surface can be conveniently parametrized as the graph of a function z(t, x1, x2)
describing the height of the surface. That is, f takes the form

f(t, x1, x2) = (x1, x2, z(t, x1, x2)).

In Figure 6 we show I, Mt, and I. The regularization parameters were set to α = 10, β = 0,
γ = 1, and for the spatial boundaries we chose homogeneous Dirichlet boundary conditions.
The GMRES solver converged faster this time and was terminated after the relative residual
dropped below 10−3. Results are shown in Figure 7. In Figure 8 we juxtapose the pulled back
optical flow with the optical flow computed in the plane with the same parameters. Finally,
we again compare the two vector fields by computing their angular error (see Figure 9). This
time we do so after pushforward only, since for real-world data we are primarily interested in
the vector field on the embedded surface.

7. Conclusion. Choosing a suitable regularization term is a major challenge in the com-
putation of the optical flow on a moving manifold when using variational methods. The main
question is how to incorporate the structure of the manifold and its movement into the regu-
larization. In this paper we have approached this problem from a purely differential geometric
point of view. We have constructed a Riemannian metric on the time-dependent manifold in
such a way that the paths of points on the manifold are geodesics with respect to this metric.
We have then used a Horn–Schunck-type quadratic regularization term with additional time
smoothing for the computation of the optical flow. The experiments performed within this
setting indicate the viability of this approach and also show that using the manifold structure
can have a significant influence on the computed optical flow field. Still, because of the us-
age of a quadratic regularization term that is not adapted to the image structure, the resulting
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504 MARTIN BAUER, MARKUS GRASMAIR, AND CLEMENS KIRISITS

Figure 6. The data considered in Experiment II at frames 1, 6, 11, 16, and 20. Top row: The pulled back
image sequence I. Middle row: The moving surface Mt. Bottom row: The image sequence I.

Figure 7. The color-coded optical flow vector field resulting from Experiment II at frames 1, 4, 7, 10, 11,
14, 17, and 20.
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OPTICAL FLOW ON MOVING MANIFOLDS 505

Figure 8. Comparison of the optical flow from Experiment II (frames 11 14, 17, 20) with the optical flow
computed in the plane. First row: Pullback of the optical flow from Figure 7 (second row). Second row: Optical
flow computed in the plane. The color wheel is shown at the bottom right.

Figure 9. R
3 angular errors at frame 20 between the optical flow computed on the zebra fish surface and

the optical flow computed in the plane, but pushed forward to the same surface.

flow fields tend to be oversmoothed. The next step is therefore the extension to more compli-
cated, anisotropic regularization terms as discussed in [41], which may be more accurate for
certain applications of optical flow.

Appendix A. Finding the parametrization. So far we have assumed that we are given the
moving surface with a fixed parametrization. In applications this parametrization might be
unknown; i.e., one might observe only the shape of the surface but not its actual parametriza-
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tion. Thus one will need to extract the parametrization from the observed data. In this
appendix we will briefly sketch a possible approach to achieve this goal.

Remark 17. Note that the choice of parametrization will have a tremendous influence on
the resulting optical flow field. In particular one can choose a parametrization such that the
optical flow field is almost zero. To achieve this one can take any fixed parametrization f(t, ·)
and solve the optical flow problem for this parametrization using small regularization parame-
ters. Then one can use the resulting optical flow field v to generate a path of diffeomorphisms
ϕ(t, ·) ∈ Diff(M). Then the path f̃(t, x) = f(t, ϕ(t, x)) has the desired property.

In the following we will assume that the evolution of the image has no influence on the
evolution of the surface—the influence of the surface evolution on the image evolution is taken
into account by the nature of the regularization term. Furthermore, we assume that we are
given only the shape of the surface at each time point t, but not the actual parametrization,
i.e., that we are given a path in the space of unparametrized, embedded surfaces; see [28, 18]
for a rigorous mathematical definition of this infinite-dimensional manifold.

At each time point t we can now choose any parametrization of the surfaces yielding a
path of embeddings

f : [0, T ] ×M 	→ R
3.

Thus we have reduced the problem to finding the path of reparametrizations that best corre-
sponds to the observed shape evolution.

One way to tackle this problem is to define an energy functional on the space of embeddings
that incorporates the available information on realistic shape evolutions. In order to be
independent of the initial parametrization of the path of surfaces, we require that the energy
functional be invariant under the action of the diffeomorphism group, i.e., E(f(t, ϕ(x)) =
E(f(t, x)) for all ϕ ∈ Diff(M). In this case, the energy functional on the space of parametrized
surfaces induces an energy functional on the shape space of unparametrized surfaces. Such
a functional can be defined using a Riemannian metric, a Finsler-type metric, or some even
more general Lagrangian; see, e.g., [9, 11, 37, 22, 33, 19, 8].

For the sake of simplicity, we will focus on the Riemannian case only, i.e.,

E(f) =

∫ T

0
Gf (ft, ft)dt,

where G is some reparametrization invariant metric on the manifold of all embeddings.
For historical reasons going back to Euler [15], these metrics are often represented via the

corresponding inertia operator L:

GL
f (ft, ft) :=

∫
M
〈ft, Lfft〉 vol(g).

The simplest such metric is the reparametrization invariant L2-metric—or H0-metric. This
metric is induced by the operator L = Id:

G0
f (ft, ft) =

∫
M
〈ft, ft〉 vol(g).

In order to guarantee that the bilinear form GL really induces a Riemannian metric, we
require L to be an elliptic pseudodifferential operator that is symmetric and positive with
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respect to the L2-metric. In addition, we assume that L is invariant under the action of the
reparametrization group Diff(M). The invariance of L implies that the induced metric GL

is invariant under the action of Diff(M), as required. Using the operator L, one can include
physical or biological model parameters in the definition of the metric.

Now we want to find the optimal reparametrization of the initial path f with respect to
this energy functional. Therefore we have to solve the optimization problem

ψ(t, x) = argmin
ϕ∈C∞([0,T ],Diff(M))

E(f(t, ϕ(t, x))).

Further expanding the energy functional using the invariance of the Riemannian metric yields

E(f(t, ϕ(t, x))) =

∫ T

0
Gf (ft, ft) +Gf (ft, T f(ϕt ◦ ϕ−1))

+Gf (Tf(ϕt ◦ ϕ−1), T f(ϕt ◦ ϕ−1))dt.

Remark 18. As an example we want to consider this functional for the L2-metric. There-
fore we decompose ft for each time point t into a part that is normal to the surface f and a
part that is tangential:

ft = Tf.f�t + f⊥t .

Since these parts are orthogonal to each other—with respect to the L2-metric—the energy
functional reads as

E(f(t, ϕ(t, x))) =

∫
M
〈f⊥t , f⊥t 〉 vol(g) +

∫
M
g(f�t + ϕt ◦ ϕ−1, f�t + ϕt ◦ ϕ−1) vol(g).

This functional is minimal for
ϕt ◦ ϕ−1 = −f�t .

This, however, corresponds to a reparametrization ϕ such that f̃ = f ◦ ϕ consists only of a
deformation in normal direction.

Remark 19. For a more general metric GL this will no longer hold, since normal and
tangential vector fields might not be orthogonal with respect to the GL-metric. Instead one
can show that for the optimal path f̃ we will have that Lf̃t is normal; cf. [9].

Appendix B. Proof of Theorem 15. In the following we give a sketch of the derivation
of the formulas in Theorem 15.

Lemma 20.The Christoffel symbols of the metric ḡ have the form given in (13).
Proof. This is a straightforward computation using the definition of the Christoffel symbols

as

Γ̄i
kl =

1

2
ḡim

(
ḡmk,l + ḡml,k − ḡkl,m

)
and the fact that the metric ḡ and its inverse have the forms

ḡ =

⎛
⎝α

2 0 0
0 g11 g12
0 g12 g22

⎞
⎠ and ḡ−1 =

⎛
⎝α

−2 0 0
0 g11 g12

0 g12 g22

⎞
⎠ ,
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respectively, and
gij = 〈∂if, ∂jf〉R3 .

Lemma 21.The symbols ω̄j
ik have the form given in (12).

Proof. The connection coefficients ω̄j
ik are defined as

ω̄j
ik =

(
ā�i∂�ā

m
k + ā�i ā

n
k Γ̄

m
�n

)
āhj ḡmh .

Moreover, the coordinates ā�i have the form

ā�i =

⎧⎪⎨
⎪⎩
α−1 if i = � = 0,

0 if i = 0 and � �= 0, or i �= 0 and � = 0,

a�i if i, � �= 0.

Using these facts and the form of the Christoffel symbols derived in (13), the result follows
from a straightforward calculation.

Lemma 22. The L2-gradient of the similarity term S in the energy functional E can be
written for ū = (0, ujXj) as

gradS(ū) = 2
(
∂tI + ∂�Ia

�
mu

m
)
∂kIg

ikbjkXj .

Proof. As shown in Theorem 13, the gradient of S has the form

gradS(ū) = 2
(
∂tI + g(∇gI, u)

)
(0,∇gI) .

Denote now by ũj the coordinates of u with respect to ∂j , that is, u = ũj∂j . Then

g(∇gI, ū) = (DxI)ū = (∂�I)ũ
�.

Moreover, we have

ũ� = a�mu
m.

In addition, the coordinate expression of ∇gI is (∂kI)g
ik∂i. Therefore we obtain

gradS(ū) = 2
(
∂tI + ∂�Ia

�
mu

m
)
∂kIg

ik∂i.

Since ∂i = bjkXj , we obtain the claimed representation.
Lemma 23. In the local coordinate frame X̄0 =

1
α∂t, X̄1, X̄2, the Bochner Laplacian on the

Riemannian manifold (M̄, ḡ) of a vector field ū satisfying Neumann boundary conditions

∇̄ν ū
∣∣
∂M̄

= ∇̄∂t ū(·, x)
∣∣T
0
= 0

is given by

(14) ΔBū = ∇̄∗∇̄ū = −
2∑

i=0

∇̄2
X̄i,X̄i

ū− Tr(g−1∂tg)

2α
∇̄X̄0

ū .
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Proof. To calculate the expression of the Laplacian, we have to compute the formula for
the L2-adjoint of the covariant derivative. Taking two vector fields ū, v̄, we have∫ T

0

∫
M
ḡ(ΔBu, v̄) vol(g) dt =

∫ T

0

∫
M
ḡ11(∇̄ū, ∇̄v̄) vol(g) dt

=

2∑
i=0

∫ T

0

∫
M
ḡ(∇̄X̄i

ū, ∇̄X̄i
v̄) vol(g) dt.

Using (∇̄X̄i
ḡ) = 0, we obtain the following expression for the first summand (i = 0):

1

α2

∫ T

0

∫
M
ḡ(∇̄∂t ū, ∇̄∂t v̄) vol(g) dt

=
1

α2

∫ T

0

∫
M
∂t

(
ḡ(∇̄∂t ū, v̄)

)
vol(g) dt −

∫ T

0

∫
M

1

α2
ḡ
(∇̄∂t

(∇̄∂t ū
)
, v̄
)
vol(g) dt

=
1

α2

∫ T

0
∂t

(∫
M
ḡ(∇̄∂t ū, v̄) vol(g)

)
dt−

∫ T

0

∫
M

1

α2
ḡ(∇̄∂t ū, v̄)∂t vol(g) dt

−
∫ T

0

∫
M

1

α2
ḡ(∇̄2

∂t,∂tū, v̄) vol(g) dt .

Using the variational formula [10, sect. 4.6]

∂t vol(g) = Tr(g−1∂tg) vol(g)

yields

1

α2

∫ T

0

∫
M
ḡ(∇̄∂t ū, ∇̄∂t v̄) vol(g) dt

=
1

α2

(∫
M
ḡ(∇̄∂t ū, v̄) vol(g)

) ∣∣∣T
0

−
∫ T

0

∫
M

1

α2
ḡ(∇̄∂t ū, v̄)Tr(g

−1∂tg) vol(g) dt

−
∫ T

0

∫
M

1

α2
ḡ(∇̄2

∂t,∂t ū, v̄) vol(g) dt .

Note that for Neumann boundary conditions the first term in the above expression vanishes.
Since M has no boundary, the other summands in the formula for ΔB are similar but

simpler:

2∑
i=1

∫ T

0

∫
M
ḡ(∇̄X̄i

ū, ∇̄X̄i
v̄) vol(g) dt

=

2∑
i=1

∫ T

0

∫
M

0− ḡ(∇̄Xi

(∇̄Xi ū
)
, v̄) vol(g) dt

= −
2∑

i=1

∫ T

0

∫
M
ḡ(∇̄2

Xi,Xi
ū, v̄) vol(g) dt .
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Combining these equations, we obtain the desired formula for ΔB.
Proof of Theorem 15. We have already derived the representation of the Christoffel sym-

bols and connection coefficients.
Next, we will derive an explicit representation of the Bochner Laplacian in coordinates.

To that end, we treat the two terms in (14) separately. For the second term we note that

∇̄X̄0
ū = (ām0 ∂mu

j + umω̄j
0m)Xj ,

and thus we obtain

− 1

2α
Tr(g−1∂tg)∇̄X̄0

ū = − 1

2α
gik∂tgiku

mω̄j
0m.

Moreover, we obtain from (13) that

gik∂tgik = Γ̄n
n0.

Hence, the first term becomes

(15)
Tr(g−1∂tg)

2α
∇̄X̄0

ū = − 1

2α
Γ̄n
n0(ā

m
0 ∂mu

j + umω̄j
0m)Xj .

For the second term, we compute

(16)

∇̄X̄i

(∇̄X̄i
ū
)
= ∇̄X̄i

(
ā�i∂�u

j + ukω̄j
ik

)
X̄j

=
(
āmi ∂m

(
ā�i∂�u

j + ukω̄j
ik

)
+

(
ā�i∂�u

m + ukω̄m
ik

)
ω̄j
im

)
Xj

=
(
(āmi ∂mω̄

j
ik + ω̄m

ik ω̄
j
im)uk + āmi ∂mā

�
i∂�u

j

+ 2āmi ω̄
j
ik∂mu

k + āmi ā
�
i∂�mu

j
)
Xj.

Combining Lemma 22, equations (15) and (16), and the fact that the gradient of ‖ū‖20,ḡ
is simply 2ujXj , we arrive, after dividing everything by 2, at (10); equations (11) are simply
the Neumann boundary conditions in coordinate form.
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