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Abstract

Statistical analysis has proven very successful in the image processing commu-
nity. Linear methods such as principal component analysis (PCA) measure the
degree of correlation in datasets to extract meaningful information from high-
dimensional data. PCA was successfully applied in several applications such as
image segmentation with shape priors and image denoising. The major assump-
tion in these applications is that the dataspace is a linear space. However, this
assumption is mainly wrong and as a consequence several non-linear methods
were developed, among which diffusion maps were recently proposed. In this pa-
per we develop a variational framework to compute the pre-image using diffusion
maps. The key-problem of pre-image determination consists of, given its embed-
ding, recovering a point. Therefore we propose to model the underlying manifold
as the set of Karcher means of close sample points. This non-linear interpolation
is particularly well-adapted to the case of shapes and images. We then define the
pre-image as an interpolation with the targeted embedding. The new methodology
can then be used for regularization in image segmentation as well as for shape and
image denoising. We demonstrate our method by testing our new non-linear shape
prior for shape segmentation of partially occluded objects. Further, we report re-
sults on denoising 2D images and 3D shapes and demonstrate the superiority of
our pre-image method compared to several state-of-the-art techniques in shape
and image denoising based on statistical learning techniques.
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segmentation, image denoising.

1. Introduction

An important area of image processing is the development of automated seg-
mentation and denoising algorithms. For example, the segmentation of objects in
an image provides a way to study the content of this image. Unfortunately, im-
age segmentation is an ill-posed problem due to various perturbing factors such as
noise, occlusions, missing parts, cluttered data, etc. Thus, when dealing with com-
plex images some prior knowledge comes in handy and allows to regularize the
segmentation problem. One possibility is to introduce statistical knowledge [23]
into the segmentation process. The same can be applied to image denoising [26].
So far, most of these methods have used linear learning algorithms such as Prin-
cipal Component Analysis (PCA). Linear methods show strong limitations since
most measurements do not stem from a linear space as in the case of medical
shapes and images in general [12, 21].

Recently, several new non-linear learning algorithms were proposed for ana-
lyzing high dimensional data such as characters or image sets. Generally, these
complex data sets are governed by only a few intrinsic parameters. A set of im-
ages depicting faces for instance, might be governed by three parameters: hor-
izontal rotation, vertical rotation and lighting changes [21]. Such features may
be recovered by non-linear dimensionality reduction techniques which are also
known under the more common name of manifold learning. Manifold learning,
the process of extracting the meaningful structure and correcting geometric de-
scription present in a set of training points Γ = {s0 · · · sm−1} ∈ S, has witnessed
renewed interest over the past years. These techniques are closely related to the
notion of dimensionality reduction, i.e. the process of recovering the underlying
low dimensional structure or intrinsic parameters of a manifold M that is em-
bedded in the higher-dimensional space S. Among the most recent and popular
techniques are the Locally Linear Embedding (LLE) [32], Isomap [34], Lapla-
cian eigenmaps [2], diffusion maps [7, 16, 21]. As pointed out in [14] several
of these techniques are actually kernel methods. Their nonlinearity, as well as
their locality-preserving properties, are generally viewed as a major advantage
over classical methods such as principal component analysis (PCA) and classi-
cal multidimensional scaling [7]. These techniques construct an adjacency graph
Wij (i, j ∈ 0, . . . ,m− 1) on the set Γ of training samples that captures the lo-
cal geometry of Γ - its local connectivity - through the use of a kernel function
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Wij = w(si, sj) defined on the training samples. The coefficients of the adja-
cency matrixW measure the strength of the different edges in the adjacency graph
(i.e. the similarity between samples). Typically w(si, sj) is a decreasing function
of the distance dS between the training points si and sj . In this work, we use the
Gaussian kernel w(si, sj) = e(−d2

S(si,sj)/2σ
2), with σ estimated as the median of all

the distances between all training points [1, 21].

1.1. Related Work
Statistical methods for shape processing are very common in computer vision.

A seminal work in this direction was published by Leventon et al. [23], adding
statistical knowledge into energy based segmentation methods. Their method cap-
tures the main modes of variation by performing a PCA on the set of shapes. This
was extended to non-linear statistics by Cremers et al. in [9]. The authors in-
troduce non linear shape priors by using a probabilistic version of Kernel PCA
(KPCA). Dambreville et.al [10] and Arias et al. [1] developed a method for shape
denoising based on Kernel PCA. So did Kwok et al. [20] in the context of image
denoising. All methods compute a projection of the noisy datum onto a low di-
mensional space and compute the pre-image of the projected datum. In [4, 25]
the authors propose another kernel method for data denoising, the so called Lapla-
cian Eigenmaps Latent Variable Model (LELVM), a probabilistic method. This
model provides a dimensionality reduction and reconstruction mapping based on
linear combinations of input samples. LELVM performs well on motion capture
data but fails on complex shapes (see Fig. 6). Further we would like to mention
the work of Pennec [30] and Davis et al. [11], which is related to ours, since it
considers the manifold of shapes as a Riemannian manifold to solve the average
template matching equation.

1.2. Novelty of our approach
We model a category of shapes1 as a smooth finite-dimensional sub-manifold

of the infinite-dimensional shape space, termed the shape manifold. This mani-
fold, which cannot be represented explicitly, is approximated from a collection
of shape samples using a recent manifold learning technique called diffusion
maps [7, 22]. Diffusion maps generate a mapping, called an embedding, from the
original shape space into a low-dimensional space. Advantageously, this mapping

1For the sake of simplicity, we will call shapes our training points, although our approach is
general and might be e.g. applied to images
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is an isometry from the original shape space, equipped with a diffusion distance,
into a low-dimensional Euclidean space [7] (the reduced space or feature space).
In this paper, we exploit the isometrical mapping and the Euclidean nature of the
reduced space to design a variational framework for pre-image computation to be
used for segmentation with shape priors and denoising. Doing so requires be-
ing able to estimate the manifold between training samples and to compute the
projection of a shape onto the manifold. Unfortunately, diffusion maps do not
give access to such tools. Alternatively, we propose to model the pre-image as a
Karcher-mean [17] interpolating between neighboring samples for the diffusion
distance. Previous pre-image methods were designed for KPCA. Our motivation
for using diffusion maps is derived from the fact that this framework generates a
mapping that captures the intrinsic geometry of the underlying manifold indepen-
dently of the sampling. Further, the resulting Nyström extension (see Fig. 1b) )
proves to be more “meaningful” far from the manifold and leads to quantitatively-
better pre-image estimations. Results on 2D,3D shapes and 2D images are pre-
sented and demonstrate the superiority of our method.

Our contribution has four aspects :
(i) we use Nyström extensions [3] which provide a sound and efficient frame-

work for extending embedding coordinates to the full shape or image space of
possibly infinite dimension,

(ii) we propose a nearest neighbor search in the reduced space to identify the
closest neighbors (in the training set) of any shape in the original infinite dimen-
sional shape space.

(iii) In light of this, we describe a variational framework to solve the pre-image
problem and show several applications of it.

(iv) Further, we introduce a new shape prior term for image segmentation
through a non-linear energy term designed to attract a shape towards its projection
onto the manifold.

The rest of the paper is organized as follows. Section 2 presents the diffusion
maps framework and the out-of-sample extension. Section 3 introduces our varia-
tional framework for solving the pre-image precisely as well as approximately for
the use as shape prior in image segmentation. Numerical experiments on real data
are reported in section 4 and the conclusion in section 5.

2. Background

The organizational power of graphs on data sets have been proven to be very
powerful within the context of machine learning [2, 3, 7]. The purpose of such
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algorithms is to extract a meaningful structure of high dimensional data and is
also commonly referred to as dimensionality reduction. In these methods the
eigenspectrum of the Graph-Laplacian [6] plays a central role. Coifman et al.
provide a new motivation for the normalized graph Laplacian by relating it to a
random walk on a graph (section 2.1). The interpretation as a random walk matrix
on a graph gives rise to a diffusion distance which measures correlation between
nodes in a probabilistic manner. Further, the diffusion distance allows to analyze
data on multiple scales depending on the number of iterations of the random walk
matrix.

2.1. Diffusion maps
We will follow the construction of diffusion maps as described in [7]. The first

step in computing diffusion maps is the construction of a symmetric graph where
each node si corresponds to a data point of Γ = {si}(i=0...m−1). The connectivity
between nodes is computed based on some user-defined and application depen-
dent scale parameter σ. Two techniques are encountered in the literature [2] for
building the adjacency graph W . First, the ε-neighborhood graph which connects
all vertices with distance ‖si − sj‖2 smaller than ε, where the norm is the usual
Euclidean norm. This construction directly yields a symmetric graph but often
produces graphs with multiple connected components. A common heuristic to
build connected ε neighborhood graph is to take the mean or median among all
entries of W [7]. The second method builds a graph where nodes are connected
to node si through an edge if they are among the nearest neighbors.

In a second step, we need to weight each edge in the graph in which the weight
reflects the similarity between two connected nodes. A common weighting func-
tion is the Gaussian kernel w(si, sj) = exp(−‖si − sj‖2/(2σ2)) which is also
used in [2, 7]. It is obvious that the distance measure between nodes in the graph
depends on the application and must be chosen by the user. But it also shows the
generality of this method because we only need to choose a similarity function
w(., .) satisfying the following two conditions: For all sj and si in Γ:

• symmetry w(si, sj) = w(sj, si) and

• non negativity w(si, sj) ≥ 0.

The weight function provides a notion of similarity and defines the amount of
local interaction between nodes. We will elaborate on this idea shortly. The com-
mon construction of Graph-Laplacian’s [6] starts with the definition of the degree
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function d : Γ 7→ R+:
d(si) =

∑
sj∼si

w(si, sj) (1)

where ∼ stands for: sj adjacent to si. Since2 W is assumed symmetric, ∼ is also
symmetric. Then the unnormalized Laplacian, also referred to as the combinato-
rial Laplacian, Lu writes as

Lu(si, sj) =


d(si), if si = sj

−w(si, sj), if si ∼ sj

0, otherwise.
(2)

In matrix form Lu writes as
Lu = D −W (3)

where D is a diagonal matrix so that Di,i = d(si) and W is the adjacency matrix
containing the weights Wij = w(si, sj). The normalized graph Laplacian Ln is
given as

Ln(si, sj) =


1− w(si,sj)

d(sj)
, if si = sj

− w(si,sj)√
d(si)d(sj)

, if si ∼ sj

0, otherwise.

(4)

Again, we can write this in matrix form as Ln = I−D− 1
2WD−

1
2 with I being the

identity matrix. In order to clarify the relation between the two Laplacian’s, we
express the normalized Laplacian in terms of the unnormalized which then writes

Ln = D−
1
2LuD

− 1
2 . (5)

Diffusion maps [7] uses a diffusion kernel w(si, sj) to build the normalized Lapla-
cian matrix

Pi,j =
w(si, sj)

d(si)
. (6)

The diffusion kernel w(si, sj) encodes the probability of transition between si and
sj and d(si) normalizes the quantity in equation (6) so that

∑
sj∼si p(si, sj) = 1.

Therefore, the quantity p(si, sj) can be seen as the probability of a random walker
to jump from si to sj and P becomes a Markov Chain on the adjacency graph. If

2In practice symmetry is forced by setting W = 1
2 (W +WT )
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we introduce a time index t on the random walk matrix P , where t corresponds
to the t-th power of P then the kernel pt(si, sj) corresponds to the probabilities
of transition between si and sj in t time steps with the corresponding affinity
matrix is P t. For a connected graph when t = ∞ the random walk converges
to a unique stationary distribution φ0. In [2], the author proves that the Gaussian
kernel approximates the Laplace-Beltrami operator if the data lies approximately
on a Riemannian submanifold with uniform distribution. This idea goes hand
in hand with the asymptotic behavior of the diffusion kernel which converges
to a constant function and illustrates the well-known averaging behavior of the
Laplace-Beltrami operator. Therefore is φ0 an eigenvector of P t so that φT0 P

t =
φT0 . Using a well known fact from spectral graph theory, Coifman [7] shows
that the matrix P t is conjugate to a symmetric matrix verifying the following
eigendecomposition of the kernel pt :

pt(si, sj) =
m−1∑
l≥0

λtlψl(si)φl(sj). (7)

{λti} is the decreasing eigenspectrum of P t and {φl(sj)} respectively {ψl(si)} be-
ing the corresponding biorthogonal left and right eigenvectors. Then the diffusion
distance Dt(si, sj) between two points si and sj can be written as

D2
t (si, sj) =

∑
sl∈Γ

(pt(si, sl)− pt(sj, sl))2

φ0(sl)
. (8)

This simple L2 weighted distance between the conditional probabilities pt(si, .),
pt(sj, .) defines a metric on the data that measures the amount of connectivity of
the points si and sj along paths of length t (c.f. [8] for the proof). Therefore, if the
graph has a large number of paths connecting si and sj , then the diffusion distance
will be small. This behavior of the diffusion distance is used by Lafon et al. to
propose a clustering algorithm using diffusion maps [22]. In order to relate the
diffusion distance and the eigenvectors of P t we insert equation (7) into equation
(8) and use the biorthogonality between right- and left eigenvector to find:

D2
t (si, sj) =

m−1∑
i≥0

λti(ψi(si)− ψi(sj))2. (9)

ψt are the right eigenvectors associated to P t and since ψt0 is a constant vector it is
left out of the sum. Using equation (9), it can be shown that the right eigenvectors
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of P t can be used to compute the diffusion distance. To this end, we introduce the
family of diffusion maps indexed by a time parameter t

Ψt(si) =


λt0ψ0(si)
λt1ψ1(si)

...
λtm−1ψm−1(si)

 . (10)

In the sequel, we omit the parameter t and assume it is set to a fixed value [21].
From equation (9), we can see that diffusion maps generate a quasi-isometric map-
ping as the diffusion distance is approximately equal to the L2 metric in the new
coordinate system when retaining the first k eigenvectors. The parameter k is in-
timately related to the intrinsic dimension of the data. In general, the automated
estimation of k is very hard. Usually one looks at the dacey of the eigenvalues to
infer the parameter k. See [15] for an algorithm to estimate the intrinsic dimension
of submanifolds in Rd. In our method, k is a parameter to be set manually. Also
note that methods like LLE or Laplacian Eigenmaps do not provide an explicit
metric which is crucial for the contribution of this paper. Let us finally mention
that a complete density invariant Markov chain can be build by re-weighting the
kernel as:

w̃(si, sj) =
w(si, sj)

q(si)q(sj)
, (11)

with q(si) =
∑

sj∈Γw(si, sj). Then the new transition probability becomes

p(si, sj) =
w̃(si, sj)

q̃(si)
(12)

with q̃(si) =
∑

sj∈Γ w̃(si, sj). In this way one can recover the geometry of the
manifold independently of the data’s density.

2.2. Out-of-sample extension
As we have seen in the previous section, computing diffusion maps involves

the computation of eigenvectors of a symmetric matrix of size m×m. This takes
a considerable amount of time. Thus the question of how to extend an empiri-
cal function outside the range of samples, when a new datum is input, becomes
critical. In the machine learning community this problem is usually solved with
the Nyström method which numerically approximates eigenfunctions of integral
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Figure 1: Nyström extension of the first embedding coordinate (from blue corresponding to smaller
coordinates to red corresponding to larger ones) provided by the leading eigenvector in different
kernel methods, for 1000 points sampling a 2D spiral. From left to right: Kernel PCA (a) and
diffusion maps (b).

equations of the form ∫ b

a

w(x, y)ψ(y)dy = λψ(x), (13)

with w(., .) being a suitable kernel function. This eigenfunction problem can be
approximated by evaluating the equation at evenly space points η1, η2, . . . , ηn on
the interval [a, b] with the following quadrature rule

(b− a)

n

n∑
j=1

w(x, ηj)ψ̂(ηj) = λψ̂(x). (14)

Here ψ̂(x) is an approximation to the true ψ(x). In order to solve equation (14),
we set x = ηi

(b− a)

n

n∑
j=1

w(ηi, ηj)ψ̂(ηj) = λψ̂(ηi). (15)

Let [a, b] be[0, 1], we rewrite the system of equations in matrix form as

W Ψ̂ = nΨ̂Λ. (16)

Where Wij = w(ηi, ηj) and Ψ̂ =
[
ψ̂1, . . . , ψ̂n

]
are the n eigenvectors of A with

associated eigenvalues {λ1, . . . , λn}. Then substituting back into equation (14)
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yields the desired Nyström extension of x for each ψ̂i

ψ̂i(x) =
1

nλi

n∑
j=1

w(x, ηj)ψ̂i(ηj). (17)

This expression allows us to extend an eigenvector computed for a set of sample
points to an arbitrary point x in terms of a linear combination of the eigenvectors
weighted by the kernel w(., ηj).

Nyström and diffusion maps

With this powerful method, we are now able to extend the mapping Ψ outside the
training set Γ. Considering that every training sample verifies:

∀sj ∈ Γ and ∀l ∈ 1, . . . ,m,
∑
si∈Γ

p(sj, si)ψl(y) = λlψl(si), (18)

the embedding of a new datum s′ not in the set Γ can similarly be computed by a
smooth extension Ψ̂ of Ψ :

Ψ̂ :

 S→ Rm, s′ 7→ (ψ̂0(s′), . . . , ψ̂m−1(s′))

where ψ̂l(s′) = λ−1
l

∑
s∈Γ

p(s′, s)ψl(s) (∀l ∈ 0, ...,m− 1)

 . (19)

With this approximation in mind, we can introduce a variational method for inter-
polation of shapes and images in diffusion maps.

3. Shape interpolation as Karcher means

We emphasize the manifold interpretation and define the pre-image of Υ ∈ Rk

as the point s = Ψ̂−1
|M(Υ) in the manifoldM so that Ψ̂(s) = Υ with s ∈ S. As

noted by Arias [1] and Mika [26], the pre-image problem is ill-posed and such a
shape might not exist. To circumvent this problem, they search for a pre-image
that optimizes a given optimality criterion in the reduced space. This approach
was also used in [1, 10].

We are interested in estimating the manifoldM between “neighboring” train-
ing samples. Therefore, we assume that the point s ∈ S falls inside the convex-
hull of the training samples in the reduced space (the space induced by the first
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k eigenvector of equation (10) in section 2.1). In this sense, the set of training
samples must be exhaustive enough to capture the limits of the manifoldM. We
then simply exploit the Euclidean nature of the reduced space: for a given Υ, we
choose the interpolating subset as its k + 1 nearest neighbors with respect to the
diffusion distance D (c.f. equation (9)) which yields the following optimization
problem: Given a set of neighboring pointsN = {s1, · · · , sk+1} (i.e. neighboring
for the diffusion distance D), we assume that the manifoldM can be locally de-
scribed (i.e. between neighboring samples) by a set of weighted-mean samples
{sΘ} that verifies:

sΘ = arg min
z∈S

∑
1≤i≤k+1

θidS(z, si)
2, (20)

where dS is the distance in the input space and
(
θi ≥ 0,

∑k+1
i=1 θi = 1

)
. The co-

efficients Θ = {θ1, . . . , θk+1} are the barycentric coefficients of the point sΘ with
respect to its neighborsN in S. Initially proposed by Charpiat el al.[5], this model
has proven to give natural shape interpolations, compared to linear approxima-
tions. However, their work is limited to a linearized shape space with small defor-
mation modes around a mean shape

Although diffusion maps extract the global geometry of the training set and
define a robust notion of proximity, they cannot permit the estimation of the man-
ifold between training samples, i.e. the local geometry of the manifold is not
provided. Following [13, 35], we propose to approximate the manifold as the set
of Karcher means [17] interpolating (c.f. equation (20)) between correctly chosen
subsets of k + 1 sample points (k being the dimension of the reduced space). The
following sections will justify this choice rather than linear approximations. We
propose two ways of choosing the k + 1 nearest neighbors. The first approach is
as in [13], where the authors compute a k-dimensional Delaunay triangulation of
the training points in the reduced space. In practice, this limits k to small values
because most algorithms available on the Internet compute a Delaunay triangula-
tion in 2D or 3D. Therefore, when k > 3, we select the k + 1 nearest neighbors
using [27] as proposed in [35].
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Input: noisy datum s′

Output: denoised datum ŝ so
that Ψ̂(s′) = Ψ̂(ŝ)

compute the k nearest
neighbors N ;
while ‖Ψ̂(s)−Ψ(s′)‖ >error
do

1) compute∇sEψ (equation
(21));
2) compute the tangent space
TMsΘ (equation (22)) at current
sΘ;
3) project∇sEψ onto TMsΘ ;
4) integrate projected
gradient;
5) compute the extension
Ψ̂(s) for the current estimate;

end
Algorithm 1: Interpolation con-
strained to remain a Karcher mean

Input: noisy datum s′

Output: denoised datum ŝ so
that Ψ̂(s′) = Ψ̂(ŝ)

compute the k nearest
neighbors N ;
while∑

si∈N θid
2(s, si) >error do

1) compute∇sEψ (equation
(26));
2) compute the tangent space
C⊥
s ;

3) project gradient∇sEψ
onto C⊥

s ;
4) integrate projected
gradient;
5) compute the extension
Ψ̂(s) for the current estimate;

end
Algorithm 2: Interpolation with
constant embedding constraint.

3.1. Pre-Image as manifold interpolation
We propose to define the pre-image of a target point Υ in the reduced space,

as the point sΘ that minimizes the energy EΨ(sΘ) = ‖Ψ̂(sΘ) − Υ‖2, sΘ being
expressed by a Karcher mean for the neighborhoodN made of the k + 1 samples
of Γ which embedded are the k + 1-closest neighbors of Υ in the reduced space
equipped with D:

Ψ−1
|M(Υ) = arg min

sΘ

‖Ψ̂(sΘ)−Υ‖2, (21)

where sΘ = arg min
z∈S

∑
1≤i≤k+1

θidS(z, si)
2

When the input space is a certain Euclidean space Rn with its traditional L2-
norm, this indeed amounts to assuming that the manifoldM is piecewise-linear
(i.e. linearly interpolated between neighboring training samples). For shapes, we
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will see that this yields natural pre-images.By simple extension, we define the
projection of any new test sample s on the manifoldM by ΠM(s) = Ψ̂−1

|M(Ψ̂(s)).
As a first approach to solve for pre-image we propose to interpolate the solution
starting from a known sample. Therefore we compute the pre-image Ψ̂−1

|M(Υ) by
gradient descent. Instead of optimizing over Θ, we use a descent over sΘ itself
(equation ( 21)), so that sΘ remains a Karcher mean (equation (20)). This boils
down to iterated projections of the deformation field∇sEψ onto the tangent space
TMsΘ ofM at point sΘ. Note that to compute the tangent space, we are implicitly
assuming that the space S has a manifold structure, in particular that the tangent
space TS

sΘ
of S at location sΘ (i.e. the space of local deformations around sΘ) is

equipped with an inner product that we denote 〈.|.〉S.
The optimality condition of equation (20) is:

∀~β ∈ TS
sΘ
,

k+1∑
i=1

θidi〈∇sdi|~β〉S = 0, (22)

where we denote N = {s1, ..., sk+1} and di = dS(sΘ, si). In order to recover the
tangent space TMsΘ at sΘ, one needs to relate the k-independent modes of variations
of the coefficient Θ (remember that

∑k+1
i=1 θi = 1) with local deformation fields

~dsΘ ∈ TS
sΘ

. To a small variation of the barycentric coefficients Θ → Θ + ~dΘ,
corresponds a small deformation of the sample sΘ → sΘ + ~dsΘ. Differentiating
the optimality condition with respect to Θ and sΘ provides the relation between
~dΘ and ~dsΘ. For example, when the input space is taken to be the Euclidean space,

i.e. S = Rn, we obviously obtain ~dsΘ =
∑k+1

1 dθisi. Remembering
∑k+1

1 dθi = 0
and fixing the dθi appropriately, we can recover TMsΘ . Therefore we optimize for
sΘ without explicitly computing Θ. The gradient descent generates a family of
samples s : τ ∈ R+ 7→ s(τ) ∈M so that

s(0) = s0,
ds

dτ
= −~vM(sτ ), (23)

with s0 ∈ N (in practice, the nearest neighbor of Υ). The velocity field ~vM(sτ ) is
the orthogonal projection of the deformation field

∇sτEΨ = (Ψ̂(sτ )−Υ)TΛΨT∇sτpsτ (24)

onto the tangent space TMsτ . Here Λ is a diagonal matrix of eigenvalues and Ψ
are the corresponding eigenvectors. Note that before projecting onto TMsτ we first
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orthogonalize the tangent space by using Gram-Schmidt. In the case of the L2-
norm, the Θ’s can be easily recovered. When using a different distance function
such as the symmetric difference or the Sobolev W 1,2-norm, one needs to solve
an additional system of linear equations in each step of the gradient descent (see
end of this section for shape metrics).

M

S = {s′ ∈ S, Ψ̂(s′) = Υ}

Embedding preserved along the line

s

~F∇E

~FM = ΠB⊥
s

(~v)

a) b)
Figure 2: Evolution towards the manifold that preserves the embedding. In a), we see a plot of
the isovalues of the extended eigenfunctions. b) illustrates the projection of the gradient ( ~F∇E)
(see equation (26)) onto the space B⊥

s (see section 3.2). This yields a new force FM attracting the
shape towardsM at constant embedding.

3.2. Pre-image with constant embedding
In this section, we develop a different way of computing the pre-image which

is well suited for the use of segmentation with shape priors. The general idea in
this section is to minimize equation (20) under the constraint that the computed
extension coordinates remain constant during the evolution. In Fig. 2a), we rep-
resent the embedding values using the Nyström extension, “around” the 1D swiss
roll manifold. We see that attracting the point s towardsM while keeping a con-
stant embedding is a natural idea. Minimization of equation (20) by unconstrained
gradient descent would alter the embedding coordinates. Therefore, we propose
an optimization procedure that preserves the embedding along the entire evolution
path. The difference to the previous optimization is that here we move along the
isolevel set of the out of sample extension. Instead of projecting the gradient flow
onto the tangent space of the manifold, we project the deformation field onto the
tangent space of the isolevel set in the reduced space. For instance, let S be the

14



iso level set of constant embedding points around s′ (see Fig.2b))

S = {s′ ∈ S, Ψ̂(s′) = Υ}. (25)

The problem is, given Υ, we evolve s on S towards M. To do so, we choose
ΠM(s) as a target point and evolve s towards ΠM(s) at constant embedding.

Using equation (19), we define the projection of any shape s on the mani-
foldM by ΠM(s) = Ψ̂−1

|M(Ψ̂(s)). To projection is computed by minimizing the
following energy functional : We define the energy EN ,Θ by the following func-
tional:

s 7→ Esp
N ,Θ(s) =

∑
si∈N

θid
2(s, si), (26)

where the coefficients Θ = {θ0, . . . , θk} are the solutions to equation (20)
with x = Ψ̂(s). Minimization of EN ,Θ by gradient flow produces an evolution
which deforms the shape s towards its projection onto the manifold ΠM(s0). Yet,
the embedding coordinates Ψ̂(s(τ)) of the evolving shape s(τ) are not guaran-
teed to remain constant during the evolution. To counteract this problem, we
project the gradient flow ∇EN ,Θ onto the tangent space of TΨ̂(s(τ)). S is the am-
bient space (the shape space in our case) that embeds the learned manifold M.
Each point s ∈ S has its associated deformation space, the tangent space denoted
Ts. For instance, when S is the shape space, Ts corresponds to normal deforma-
tion fields that can be applied to shape s. We define Bs the space spanned by
~bi = ∇Ψ̂i(s) (∀i ∈ {1, · · · , k}). The space Bs is intuitively the space of defor-
mations at s that maximally modifies the embedding. On the opposite side, the
space denoted B⊥

s , orthogonal to Bs, corresponds to the deformations that have a
minimal influence (tangential deformation field) on the value of the embedding.
We then write the deformation space at s as the direct sum between Bs and B⊥

s :

Ts = Bs ⊕ B⊥
s (27)

We finally calculate an orthonormal basis C = {~c1, · · · ,~ck} out of B⊥
s using

the orthogonalization Gram-Schmidt process. In order to preserve the embedding
during the evolution, we define the projection of any velocity field ~v onto the space
C⊥
s :

ΠC⊥
s

(~v) = ~v −
k∑
i=1

〈~v,~ci〉~ci. (28)
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As in Fig.2b), we define the force FM that attracts a point s /∈M towards the pro-
jection ΠM(s) so that the embedding is preserved. In summary, the procedure re-
lies on the out-of-sample extension equation (19) and the fact that the reweighted
kernel equation (12), TΨ̂(s) can be expressed by k simple orthogonality conditions
in the tangent space TS(sτ ) of S at sτ :

TΨ̂(s) =

{ −→v ∈ TS(s) such that ∀l = 1, . . . , k∑
y∈Γ 〈∇sp(s, y)|−→v 〉L2Ψl(y) = 0

}
, (29)

where 〈.|.〉L2 corresponds to the L2-dot product in the tangent shape space TS(s).
Projection of the velocity field −∇EN ,Θ onto TΨ̂(s) by using equation (28).

3.3. Shape metrics
In order to make use of diffusion maps, we need to define a similarity measure

for shapes. One classical choice is the area of the symmetric difference between
the regions bounded by the two shapes:

dsd(s1, s2) =
1

2

∫
|χΩ1 − χΩ2| , (30)

where χΩi is the characteristic function of the interior of shape si. This distance
was recently advocated by Solem in [33] to build geodesic paths between shapes,
however, it yields no unique geodesics. Another definition has been proposed
[5, 23, 31], based on the representation of a curve in the plane, of a surface in 3D
space, by its signed distance function. In this context, the distance between two
shapes can be defined as the L2-norm or the Sobolev W 1,2-norm of the difference
between their signed distance functions. Let us recall that W 1,2(Ω) is the space of
square integrable functions over the domain Ω with square integrable derivatives:

dL2(s1, s2)2 = ||Ds1 − Ds2 ||2L2(Ω,R) , (31)

dW 1,2(s1, s2)2 = ||Ds1 − Ds2 ||2L2(Ω,R) + ||∇Ds1 −∇Ds2||2L2(Ω,Rn) , (32)

where Dsi denotes the signed distance function of shape si (i = 1, 2), and ∇Dsi

being its gradient.
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4. Experimental Results

Our experimental section runs on several examples using synthetic and real
data. It is organized around the two optimization problems presented in the pre-
vious section. First, we validate the purpose of the projection of the gradient onto
the tangent space. Then, we test the Karcher mean interpolation on the recon-
struction problem of occluded 3D medical shapes as presented in [10]. A last
experiment demonstrates the superiority of our method for a standard denoising
problem on images. For the second optimization problem we applied the same
testing protocol. First, we perform a proof of concept and show how it can be
applied to the problem of denoising. When comparing to previous method, we
used the parameter settings as described in the original papers. Then, we focus on
image segmentation incorporating statistical information.
We work on two types of data. The first type are images and the second type
are shapes. In this work images are represented as vectors by concatenating the
columns of an image into a vector. When dealing with shapes, we will use a
level set representation of the shape. For a good introduction on the numerical
implementation and calculus with the level set method please refer to [29]. When
dealing with shapes (or distance functions), we use a level set implementation for
the gradient flow where the evolution reads as : St = NF . F weights the normal
flow according to the image content and, in some of our experiments, and some a
priori knowledge.
Please note that we don’t report any timing measures for our method as the com-
putational effort involved to compute a solution is neglectable. And by neglectable
we mean fractions of seconds. This is due to the local nature of our optimization
problems.

4.1. Remaining on the manifold
To validate both the Karcher means modeling of the manifold and our project-

ing constraint (Section 3.1), we generate a set of 200 synthetic shapes (or distance
functions) parameterized by an articulation angle and a scaling parameter (Fig.
3a). The corresponding embeddings are shown Fig. 3b). Choosing two distant
shapes A and B, we compute a path s(τ) from A to B by mean of a gradient
descent starting from s(0) = A and minimizing dS(s(τ), B). Fig. 3c) and 3b)
show the intermediate shapes and the corresponding embeddings in red. In purple
the same path is shown when projecting the gradient in order to remain on the
manifold. Observe how, in that case, the intermediate shapes look more like the
original sample ones. Note also, that when remaining onM, the interpolating path
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is almost a straight line with respect to the diffusion distance. The implementa-
tion is done using a level set implementation where the force F is computed from
equation (22). The overall optimization is done using Algorithm (1). The gradient
in each iteration is weighted with 0.6.

Figure 3: Synthetic sample of 200 articulated and elongated shapes. From left to right: (a) a subset
of the sample. (b) triangulated 2-dimensional embedding computed using diffusion maps and a
gradient descent from an initial shape to a target one, without (red dots) and with (purple dots)
remaining on the interpolated manifold. (c) Some shapes of the resulting evolution (left column:
without projection, right column: with projection.

4.2. Maintaining the embedding constant
We now use a dataset of 39 ventricles nuclei from Magnetic Resonance Image

(MRI). The shapes are aligned using their principal moment before computing
their diffusion coordinates. In this experiment, we compare the projection at con-
stant embedding, the neighbors in the Delaunay triangulation of the reduced space
and the mean shape obtained from these neighbors. Our deformation surface is

Figure 4: Interpolation using Karcher means for 39 three-dimensional sample shapes. From left to
right: a) a new shape not in the given sample b) the same shape with an occlusion c) the 3 nearest
neighbors of the corrupted shape according to the diffusion distance (in red, green and blue) d) the
original shape (in yellow) and our interpolation (in red). See Table 1 for quantitative results.
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Figure 5: The ventricle manifold: Comparison of the evolution towards the mean shape and the
evolution at constant embedding
.

again implemented in the level set framework: the distance functions of the ven-
tricle shapes are encoded in 140 × 75 × 60 images. To perform the projection,
we start from an ellipsoid aligned on the 3D shape set. Its embedding is indicated
by the black point in Fig. 5. The nearest shapes in the corresponding Delaunay
triangle are easily identified in order to compute the mean shape target and the
projection at constant embedding. The projection at constant embedding captures
details (on the right side of the ventricle) of closest shapes (38 & 22) that the
mean shape lose due to its smoothing properties. Again, we implemented this
method using a level set representation where the force term F is derived from
equation (24). Following Algorithm (2), we perform a weighted gradient descent
with weight a constant weight 0.65.

4.3. Projection and manifold as Karcher means
Here we test the validity of using Karcher means as a manifold interpola-

tion model.We consider the space of two-dimensional surfaces embedded in R3.
For such a general space, many different definitions of the distance between two
shapes have been proposed in the computer vision literature but, there is no agree-
ment on the correct way to measure shape similarity. In this work, we represent
a surface si in the Euclidean embedding space R3 by its signed distance function
Dsi . In this context, we define the distance between two shapes to be the L2-norm
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of the difference between their signed distance functions [23]:

dS(s1, s2)2 = ||Ds1 − Ds2||2L2

Note that, in order to define a distance between shapes that is invariant to rigid
displacements (e.g. rotations and translations), we first align the shapes using their
principal moments before computing distances. Note also that the proposed method
is obviously not limited to a specific choice of distance [5, 13]. We use a dataset of
39 ventricles nuclei extracted from Magnetic Resonance Image (MRI). We learn
a random subset of 30 shapes and corrupt the nine remaining shapes by an oc-
clusion (Fig.4a,b). In order to recover the original shapes with our method, we
project the shapes onto the shape manifold with our method. We then compare
the reconstruction results with the nearest neighbor, the mean of the m+1 nearest
neighbors and the method of Dambreville [10]. The parameters of this experiment
are k = 2. In Fig. 4d) one example of a reconstructed shape (red) is obtained from
the k + 1 nearest neighbors of s• (Fig. 4c)). In order to quantitatively evaluate
the projection, we define the reconstruction error as e(s) = dS(s◦, s)/σ, where s◦
is the original shape and s is the reconstructed shape. The occluded shape has an
error of e(s•) = 4.35, while the nearest-neighbor has an error of 1.81. In table 1
we see that our method is superior to the one proposed by Dambreville et.al. [10].

Average error of shapes with occlusion Nearest neighbors(NN) Mean of NN
4.67 1.81 1.96

Dambreville et al. Our method /
1.1 0.58 /

Table 1: Average reconstruction error for a set of 9 noisy shapes

4.4. Denoising of Digits
To test the performance of our approach on the task of image denoising, we

apply the algorithm on the USPS dataset of handwritten digits3. In a first exper-
iment, we compare our method to five state-of-the-art algorithms [10], [10]+[1],
[20], [20]+[1] and [4]. For each of the ten digits, we form two training sets com-
posed of randomly selected samples (60 and 200 respectively). The test set is
composed of 40 images randomly selected and corrupted by some additive Gaus-
sian noise at different noise levels. The process of denoising simply amounts to

3The USPS dataset is available from http://www.kernel-machines.org.
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Figure 6: Digit images corrupted by additive Gaussian noise (from left to right, σ2 =
0.25, 0.45, 0.65, 0.85). The different rows respectively represent, from top to bottom: the orig-
inal digits; the corrupted digits; denoising with [10] ; with [10]+[1] ; with [20] ; with [20]+[1] ;
with [4]; with our Karcher mean interpolation based method. See Table 2 for quantified results

estimating the pre-images of the feature vectors given by the Nyström extension
of the noisy samples. For all the methods, we take k = 8 for the reduced dimen-
sion (number of eigenvectors for the kernel-PCA based methods). Table 2 shows
a quantitative comparison based on the pixel-signal-to-noise ratio (PSNR). Our
method visually (Fig. 6)) and quantitatively outperforms other approaches. Inter-
estingly, it is less sensitive to noise than other ones and yields good results even
under heavy noise.

4.5. Image segmentation
One way to segment an image into foreground (the object of interest) and

background is to define an energy

E(C) = Eexternal(C, I) + Einternal(C) (33)

depending on the curve C (the boundary between foreground and background).
This objective function has two terms. Eexternal measures how well the current
curve separates the two regions andEinternal measures the smoothness of the curve
and is a regularization term. A concrete model for computation is the active con-
tour model[18]. When used to minimize the equation (33), we have the following
minimzation problem

E(C, I) =

∫ L(C)

0

∥∥∥∥∂C∂s
∥∥∥∥2

ds+

∫ L(C)

0

g(‖∇I(C(s)))‖)ds. (34)

L(C) is the length of the curve. Minimizing the previous equation is equivalent to
solving a length minimizing curve of

E(C) =

∫ L

0

g(‖∇I(C(s)))‖)ds. (35)
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σ2 Dambreville et al. Kwok and Tsang Carreira-Perpiñan and Lu

0.25 8.50 15.71 14.01
0.45 9.05 13.87 13.91
0.65 9.78 13.10 13.89
0.85 9.06 12.58 13.87
0.25 9.35 16.08 15.27
0.45 9.64 15.70 14.85
0.65 9.41 13.97 14.13
0.85 9.24 13.06 14.07
σ2 Arias et al. Arias et al. Our method

+Dambreville et al. +Kwok and Tsang
0.25 10.17 16.18 17.71
0.45 9.98 15.42 17.52
0.65 9.58 13.60 17.38
0.85 8.61 13.91 17.32
0.25 11.97 16.21 17.95
0.45 10.18 15.98 17.85
0.65 10.26 15.85 17.79
0.85 10.25 15.07 17.75

Table 2: Average PSNR (in dB) of the denoised images corrupted by different noise levels σ.
Training sets consist of 60 samples (first 4 rows) and of 200 samples (last 4 rows).

on a Riemannian space with the metric defined using the image function. A local
minimum to equation (35)can be obtained by gradient descent. When taking only
the normal component of the gradient, the curve evolution is

∂C
∂τ

(s) = F (K, C(s), I)N (36)

C(s, 0) = C0(s), (37)

where F controls the speed of the normal flow. The speed depends on the contour
mean curvature and the image data. N is the normal to the curve. When the shape
is represented as the zero level set of some distance function D, then we can write
the evolution equivalently [19]

∂D(x, y)

∂τ
= F (K(x, y), I(x, y))|∇D(x, y)| ⇔ ∂C

∂τ
(s) = F (K, C(s), I)N (38)
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where K(x, y) = ∇
(
∇D(x,y)
|∇D(x,y)|

)
. The evolution of the implicit representation,

on the left hand side of equation (38), is computed pointwise over the domain.
From the previous equation, we see that the evolution is driven by the speed term
F . Model-based segmentation incorporates a priori knowledge on the shape to
segment. This can be done by extending the model in equation (33) by a third
term :

E(C) = Eexternal(C, I) + Einternal(C) + Eshape(C). (39)

4.5.1. Ventricle nucleus segmentation from MRI with occlusion
We consider a simple segmentation task which consists of segmenting the ven-

tricle nucleus from an MRI that was corrupted by white noise and degraded with
an artificial occlusion (clearly visible in Fig. 7a). Motivated by our choice of rep-
resenting a shape s by its signed distance function Ds, our surface deformation
is implemented in the level set framework. The level set evolution is guided by
a simple intensity-based velocity term[23], a curvature term κ, and the non-linear
shape prior term vM

∂Ds(x, y, z)

∂τ
= [β(I(x, y, z)− T (x, y, z))− κ(x, y, z)]|∇D(x, y, z)|

− αvM(x, y, z) · D(x, y, z)
(40)

where I(x, y, z) and κ represent respectively the image intensity and mean
curvature at location (x, y, z), T is a threshold (c.f.[23]) computed locally from
image intensities, β = 0.1 and α = 0.1 are two weigthing coefficients. Figure 7
displays our segmentation results. Despite the artificial occlusion, the shape prior
term was able to recover the correct shape by attracting the shape onto the shape
prior manifold. Yet, the final surface is geometrically accurate because the active
contour can evolve freely inside the manifoldM subject to the image term. Fi-
nally, note that, in practice, the shape prior term is not used during the first steps
of the evolution (a robust alignment being impossible).

4.5.2. Segmentation of 2D Cars
In this example, we illustrate the shape prior term in segmentation tasks of

2D car shapes. We are aiming at segmenting partly occluded cars. In this experi-
ment, the non-linear prior is the manifold of the 2D shapes observed while turning
around different cars. The used dataset is made up of 17 cars whose shapes are
quite different : Audi A3, Audi TT, BMW Z4, Citroën C3, Chrysler Sebring,
Honda Civic, Renault Clio, Delorean DMC-12, Ford Mustang Coupe, Lincoln
MKZ, Mercedes S-Class, Lada Oka, Fiat Palio, Nissan 200sx, Nissan Primera,
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Figure 7: a) Coronal, horizontal, and sagittal slices of the MRI volume with the final segmentations
without (top) and with (bottom) the shape prior. b) Some snapshots of the shape evolution - the
shape prior term was not used during the first steps. c) The closest neighbors of the final surface.

Hyundai Santa Fe and Subaru Forester. For each car, we extracted 12 shapes
from the projection of the 3D CAD model (Fig. 8a) forming a dataset of 204
shape samples . The shapes are finally stored in the form of distance functions by
means of 160×120 images. In the learning stage, the embedding of the car shape
manifold is estimated using diffusion maps over the dataset. In Fig. 8b), we repre-
sented the two first dimensions of the diffusion coordinates, which represents the
reduced space, and the corresponding Delaunay triangulation. Note that the car
shapes have a coherent spatial organization in the reduced space. Actually, diffu-
sion maps provide a parameterization of the car manifold [21]. In this example,
the manifold is parameterized by the viewing angles. For the segmentation, we

Figure 8: a) 12 shapes for one of the 17 cars used in the dataset. b) Reduced space of the car data
set and its Delaunay triangulation.

define the speed function F (K, I, vM) as in [23] with a further dependency on the
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shape prior. This yields the following evolution equation

∂Ds(x, y)

∂τ
= −(g(ν +K(x, y))|∇D(x, y)|+∇D(x, y) · vM(x, y)). (41)

(42)

Note that at each step of the evolution, we have to align the shape with the training
samples using the principal moments before computing its embedding and deriv-
ing the shape prior term vM. The data term designed to attract the curve towards
image edges [28] push or pulls the contour towards edges because of the stopping
function g(∇I) = 1

1+||∇I||2 . And ν is a constant baloon force as in [24]. In or-

Figure 9: Segmentation of a Peugeot 206 (first row) and a Suzuki Swift (second row). First
column: Segmentation with data term only. Second column: segmentation with our shape prior.
The embedding of the final shape is denoted by a blue cross and a green cross respectively for
the Peugeot 206 and the Suzuki Swift in Fig. 8 b) Third column: Segmentation with the nearest
neighbor in the shape space as prior (such choice is not relevant compared to the nearest neighbors
in the diffusion coordinates

der to demonstrate the influence of our shape prior, we achieved segmentation of
partly occluded cars which are not in the initial data set. We also chose images
whose points of views are completely different. We initialized the contour with an
ellipse around the car, with and without our shape prior, to segment and observe
the evolution in both cases. The final results are presented in Fig. 9). Without
the shape prior, the energy is obviously minimized on the image edges. However,
when the shape prior is incorporated, the new energy overcomes local minima of
the data term energy and finally computes a more accurate segmentation.
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5. Conclusion

In this paper, we focused on diffusion maps as a framework for shape mod-
eling and processing. Our contribution is threefold. First, we use Nyström ex-
tensions [3] which provide a sound and efficient framework for extending embed-
ding coordinates to the full shape or image space of possibly infinite dimension.
Second, we formulated a variational framework based on distance minimization
between the nearest neighbors in feature space. We applied our variational for-
mulation to several applications such as the computation of the pre-image for
denoising and image segmentation with a non-linear energy term. Results on real
world data, such as 3D shapes and noisy 2D images, demonstrated the superiority
of our approach over KPCA methods or linear energy terms.

In the continuation of this work several ideas may be exploited. In the perspec-
tive of working on complex shape spaces, our projection operator, defined from
a manifold point-of-view, could be used in different tasks in interpolation and re-
construction of shapes and manifold denoising. Interestingly, our approach is able
to deal with manifolds of complex topology. In the context of manifold denoising
this property can be useful. So far, none of the pre-image problems were tested
when the training data itself contains noise. We are currently looking into these
possibilities.
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