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Abstract Elastographic imaging is a widely used technique

which can in principle be implemented on top of every imag-

ing modality. In elastography, the specimen is exposed to a

force causing local displacements in the probe, and imaging

is performed before and during the displacement experiment.

From the computed displacements material parameters can

be deduced, which in turn can be used for clinical diagnosis.

Photoacoustic imaging is an emerging image modality, which

exhibits functional and morphological contrast. However, op-

posed to ultrasound imaging, for instance, it is considered

a modality which is not suited for elastography, because

it does not reveal speckle patterns. However, this is some-

how counter-intuitive, because photoacoustic imaging makes

available the whole frequency spectrum as opposed to sin-

gle frequency standard ultrasound imaging. In this work, we

show that in fact artificial speckle patterns can be introduced

by using only a band-limited part of the measurement data.

We also show that after introduction of artificial speckle pat-

terns, deformation estimation can be implemented more re-

liably in photoacoustic imaging.
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1 Introduction

Elastography is an imaging technology based on biomechani-

cal contrast; among its current clinical applications are early

detection of skin, breast and prostate cancer, detection of

liver cirrhosis, and characterization of artherosclerotic plaque

in vascular imaging (see for instance [8,40,52,2,50,53,5]).

Typically, elastography is implemented as an on top imag-

ing method to various existing imaging techniques, such as

ultrasound imaging (see for instance [25,37]), magnetic reso-

nance imaging (see for instance [29,28]) or optical coherence

tomography (see for instance [48,30]). With all these tech-

niques, it is possible to visualize momentum images, from

which mechanical displacement u can be calculated, which

forms the basis of clinical examinations.

T. Glatz · O. Scherzer · T. Widlak
Computational Science Center, University of Vienna, Oskar-
Morgenstern-Platz 1, 1090 Vienna, Austria
E-mail: first.last@univie.ac.at

O. Scherzer
Radon Institute of Computational and Applied Mathematics, Aus-
trian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

For motion estimation in ultrasound elastography (USE),

optical coherence elastography (OCE) and in certain variants

of magnetic resonance elastography (MRE), common tech-

niques are optical flow and motion tracking algorithms [40,

6,46,41,42,16]; in USE and OCE, these are specifically re-

ferred to as speckle tracking methods. Speckle tracking can

only be realized if the imaging data contains a high amount

of correlated pattern information. This is the predominant

structure in ultrasound imaging.

Photoacoustic imaging is an emerging functional and mor-

phological imaging technology, which, for instance, is partic-

ularly suited for imaging of vascular systems [4,35,26]. Op-

posed to ultrasound imaging, photoacoustic imaging is con-

sidered to reveal little speckle patterns [27], which is con-

sidered an advantage for imaging but a disadvantage for

elastography. Passive coupling of photoacoustic imaging and

elastography has been reported in [11], where the contrast of

photoacoustic imaging, ultrasound, and US-elastography has

been fused (see also [40, sec.4.9]). Active coupling of photoa-

coustic and elastography has not been reported so far. The

reason for that is that motion estimation and speckle track-

ing cannot be implemented reliably because of homogeneous

regions in monospectral photoacoustic imaging, which do not

allow for detection of microlocal displacements.

In this paper, we provide a mathematically founded way

of introducing speckles in photoacoustic imaging data. The-

oretically, photoacoustic imaging is based on the assumption

that the whole frequency spectrum can be measured with the

detectors. Common ultrasound imaging, on the contrary, is

operating with a fixed single frequency mode. This super-

ficial comparison motivates us to investigate, using [18,19],

the effect band-limited measurements have on the inversion.

In fact, as we show by mathematical consideration, the use

of band-limited data enforces speckling-like patterns in the

reconstructions. Our suggested approach then consists then

of carefully choosing a frequency band of measurements and

back-projecting these data. Because these data is speckled, it

can be used to support tracking and optical flow techniques

for displacement estimations.

The structure of the article is as follows: We first review

the principles of elastography in section 2. In section 3 we

review the principles of photoacoustic imaging. Then, in sec-
tion 4, we describe the methods to create texture patterns in

photoacoustic imaging. In section 5, the methods of motion

estimation for photoacoustic elastography are described, and



in section 6, we show the results of imaging experiments. The

paper ends with a discussion (section 7).

2 Elastographic imaging

In this section we explain the basic principles of elastography.

In theory, elastography can be implemented on top of any

imaging technique. Below, we review mathematical models

which are used for qualitative elastography.

2.1 Experiments and measurement principle

According to [8], elastography consists of the following con-

secutive steps:

1. The specimen is exposed to a mechanical source. Imaging

is performed before and during source exposition.

2. Qualitative elastography: From the images the tissue

displacement u is determined.

3. Quantitative elastography: Mechanical properties are

computed from the displacement u.

In the literature there have been documented various ways to

perturb the tissue, such as quasi-static, transient and time-

harmonic excitation.

In this paper we focus on qualitative elastography in the

quasi-static case, which is reviewed below.

2.2 Quasi-static qualitative elastography

Although it is theoretically possible to perform quantitative

imaging all at once, in practice, qualitative imaging is per-

formed beforehand. Depending on the used modalities dif-

ferent models are used for qualitative elastography (see for

instance [40]):

We start from images f(x, t), which are recorded before

and during the mechanical excitation. These images can be

B-scan data in US-imaging, MRI magnitude images, OCT

images, or in principle, images from any modality [40,51].

A common model then is to assume that

f(x(t), t) = const. (1)

for every time t, assuming that the intensities are transported

along the trajectories x(t). according to the vector field u(x).

A model such as (1) can serve as a basis for an image regis-

tration model to recover the displacement u = ẋ(t) from f

(as in [23] for detection of the movement of the heart). For

smaller displacements typically encountered in elastography,

the constraint (1) can be linearized

∇f · u + ft = 0 , (2)

which can serve as a basis for inversion.

In a quasi-static experiment, there are two images: before

and after the mechanical excitation from the exterior, which

we denote as f1(x) = f(x, t1) and f2(x) = f(x, t2). We are

calculating the spatial dependent flow u(x) only. In this case

we are solving the semi-continuous equation:

∇f1 · u + (f2 − f1) = 0 . (3)

The equation is underdetermined for u and therefore regu-

larization has to be involved for stable solution.

Typically, there are some constraints here as regulariza-

tion as in the Horn-Schunck model [22]: that is

u = argmin
v
‖∇xf · v + ft‖2L2(Ω) + λ

∫
Ω

|∇xv|2 dx (4)

Other choices of regularization and data terms are possi-

ble.

An alternative to the optical flow approach is block match-

ing [6]. Here, one assumes that the displacement is constant

in defined regions; using a target block, one compares the

image patterns in subsequent frames by using a correlation

measure.

We emphasize that all these techniques assume that tex-

ture is present in the image.

In MRI, it was observed that part of tissue motion is in-

visible in magnitude images because of homogeneous regions.

To overcome this limitation, artificial tags have been intro-

duced in the image [42,16]. These make motion estimation

possible in regions where no intensity is initially present.

In ultrasound imaging and optical coherence tomography,

texture is provided by patterns in the images referred to as

speckle. These are correlated texture patterns which provide

a signature of the points. Therefore, motion estimation tech-

niques in USE or OCE are sometimes comprehensively de-

noted as speckle tracking algorithms [44,54]. Often, the term

speckle tracking is only used for the block-matching-type al-

gorithms [6,39].

In the next section, we review photoacoustic imaging and

its image model. In section 4, we investigate how the band-

limitation effect will create such a speckle-like texture pat-

tern in photoacoustic image data.

3 Photoacoustic imaging

Photoacoustic imaging (PAI) is among the most prominent

coupled-physics techniques [3]. It operates with laser excita-

tion and records acoustic pressure, as the coupled modality.

We first review the imaging formation in PAI.

3.1 Mathematical modeling

Commonly, in Photoacoustics, the wave equation is used to

describe the propagation of the acoustic pressure p:

ptt −∆xp = Itf, in Rn × (0, T ],

p = 0, in Rn × (−∞, 0).
(5)

The function I models the laser excitation and is usually

considered a time dependent δ-distribution. The function f

represents the capability of the medium to transfer electro-

magnetic waves into pressure waves; f is material dependent

and is visualized in photoacoustic imaging.

Details of deduction of (5) from the Euler equations and

the diffusion equation of thermodynamics can be found for

instance in [45].

If we assume the excitation to be perfectly focused in

time (that is I(t) = δ(t)), equation (5) can be reformulated

as a homogeneous initial value problem [45]

ptt −∆xp = 0, in Rn × (0,∞),

p(t = 0) = f, in Rn,
pt(t = 0) = 0, in Rn.

(6)



This (direct) problem is well-posed under suitable smooth-

ness assumptions on f (see, e.g., [12]). We denote by

Pf(x, t) = p(x, t), x ∈ Rn, t ∈ (0,∞) , (7)

the operator that maps the initial pressure f to the solution

of (6).

Remark 1 Since we want to apply a convolution to our solu-

tion p, we have to extend it to negative values of t in a way

that the wave equation (6) is still fulfilled. We distinguish

the causal extension Pf = 0 for t < 0 (that we denote again

with the letter P), and the even extension

Pevenf(x, t) :=

{
Pf(x, t), t ≥ 0,

Pf(x,−t), t < 0.
(8)

3.2 Photoacoustic imaging as an inverse problem

In Photoacoustics, we assume the pressure to be measured

on a surface Γ over time. The inverse problem now consists

of reconstructing the initial pressure f in (6) by these data,

ideally given as trace of the solution on Γ . For the sake of

simplicity of notation, we are denoting this operator by

Pf = p
∣∣
Γ×(0,∞) (9)

as well. Here, P is mapping f to the trace of the solution p

of (6) at the surface Γ . The Photoacoustic inverse problem

consists in solving equation (9) for f .

This problem obtains a unique solution, provided Γ is a

so-called uniqueness set (for a review over existing results

see [24]). These uniqueness sets contain the case of a closed

measurement surface surrounding the Photoacoustic source.

For some of the most important simple geometrical shapes

of closed manifolds Γ , there exist analytical reconstruction

formulae of series expansion and/or filtered backprojection

type (see again [24] and the references therein, for instance

[33,34,13,43,32,38,15,14,10]).

This paper focuses on the case where Γ is a sphere in R2

(circle) or R3. For photoacoustic reconstruction, we make use

of the explicit filtered backprojection formulas established

in [15,14]. Since we will have to deal with initial sources

not necessarily of compact support, we remark that a result

in [1] guarantees injectivity of the photoacoustic problem

provided certain integrability conditions on the source hold.

Particularly, the photoacoustic mapping is injective if and

only if the source is Lp-integrable on the entire space, where

p ≤ 2n/(n− 1).

4 Photoacoustics with band-limited data

We create speckle patterns computationally from photoa-

coustic data using band-limited measurements for backpro-

jection and approximating the initial source f . To be more

precise, instead of measuring the exact trace of the solution

of (6) at Γ , we instead assume to measure the bandlimited

data m = φ ∗t p.
The mathematical background is an application of some

results by Haltmeier [18, Lmm. 3.1] (see also [19,20]) to con-

volution kernels which do not necessarily have compact sup-

port. Before we state the theorem, we define the Radon und

Fourier transform:

Definition 1 The Radon transform Rϕ(θ, s) maps ϕ(x) to

its integrals over hyperplanes in Rn with distance s ∈ R to

the origin and unit normal vector θ ∈ Sn−1. Namely,

Rϕ(θ, s) =

∫
θ·y=s

ϕ(y)dy. (10)

In the case n = 1, the Radon transform corresponds to the

absolute value of the function. In the case where ϕ is rota-

tionally symmetric, the Radon transform Rϕ is independent

of θ. We can therefore write

Rϕ(θ, s) = φ(s) (11)

for a suitable, even function φ : R→ R.

Definition 2 The n-dimensional Fourier transform ϕ̂(κ) of

ϕ is defined as

ϕ̂(κ) =

∫
Rn

ϕ(y)e−iy·κdy . (12)

If not stated differently, the Fourier transform of a time-

dependent function q(x, t) is with respect to the time vari-

able, i.e.

q̂(x, κ) =

∫
R
q(x, t)e−itκdt .

Now we are ready to state the theorem:

Theorem 1 Let p = Pf be a solution of (7) with initial

pressure f ∈ C∞c (Rn). Furthermore, assume that Ψ ∈ Lp(Rn),

for some p such that 1 ≤ p < n/(n − 1), is a radially sym-

metric convolution kernel, i.e., Ψ(x) = ψ(|x|). Then

(P(Ψ ∗x f))(x, t) = (RΨ ∗t Pevenf)(x, t) , (13)

for all x ∈ Rn, t > 0. The convolution acts with respect to

the x-variable on the left hand side and with respect to the

t-variable on the right hand side of (13), respectively.

Proof First we note that P(Ψ ∗x f) ∈ Lp(Rn): Since we have

Ψ ∗x ∆f = ∆(Ψ ∗x f), in Rn × (0,∞) ,

we immediately conclude that

P(Ψ ∗x f) = Ψ ∗x Pf, in Rn × (0,∞) . (14)

Young’s inequality ensures that

Lp(Rn) ∗ L1(Rn) ⊆ Lp(Rn) ,

so that

P(Ψ ∗x f) = Ψ ∗x Pf ∈ Lp(Rn) ,

since Pf ∈ C∞c (Rn) ⊆ L1(Rn) for every t > 0. The rest

of the proof is essentially the same as in [18, Lemma 3.1]:

We start proving the result for one spatial dimension, i.e.

n = 1, and write here x instead of x for the spatial variable.

To avoid confusion later on, we write P̄ instead of P for the

wave operator in one dimension. Using D’Alembert’s formula

it follows that

P̄ (Ψ ∗x f) (x, t)

=
1

2

(∫
R
ψ(|y|)f(x− t− y)dy +

∫
R
ψ(|y|)f(x+ t− y)dy

)
∀ t > 0 .



Fig. 1: Point source (left) and textured reconstruction (right)

Then, by substituting y by −y in the first integral it follows

that for all t > 0,

P̄ (Ψ ∗x f) (x, t)

=
1

2

(∫
R
ψ(|y|)

(
f(x− (t− y)) + f(x+ (t− y))

)
dy

)
.

(15)

According to D’Alembert’s formula,

1

2

(
f(x−(t−y)) + f(x+(t−y))

)
= P̄f(x, t−y) for t−y > 0 .

Due to our choice of extension to negative times in (8), we

also have

1

2

(
f(x−(t−y)) + f(x+(t−y))

)
= P̄evenf(x, t−y) for all t .

Therefore, it follows from (15) that

P̄(Ψ ∗x f)(x; t) =

∫
R
ψ(|y|)P̄evenf(x, t− y)dy . (16)

Using the definition of the Radon transform in 1D it follows

then that

P̄(Ψ ∗x f)(x; t) =

∫
R
Rψ(y)P̄evenf(x, t− y)dy .

For n > 1 we note that for all h ∈ C2(Rn),

(R∆h)(θ, s) = (∂2sRh)(θ, s) , for all s ≥ 0 ,

see e.g. [21, p.3]. By applying the Radon transform to the

wave equation, we can therefore conclude

(RPf) (θ, s; t) =
(
P̄Rf

)
(θ, s; t) . (17)

Now we use the convolution theorem of the Radon transform

(see e.g. [31]), which states that

R(f ∗x g)(θ, s) = (Rf ∗s Rg)(θ, s), (18)

where the convolution on the left-hand is n-dimensional,

whereas the convolution on the right-hand side is taken in

one dimension. By applying (14), (18) and (17), (14) and

(16), and again (17), it follows that:

(RP)(Ψ ∗x f) = RΨ ∗s P̄Rf = (RΨ) ∗t (P̄evenRf)

= (RΨ) ∗t (RPevenf).

The term RΨ = φ(| · |) on the right-hand-side is independent

of θ due to the rotational symmetry of Ψ . We therefore can

write (see also Remark 1):

(RP)(Ψ ∗x f)(θ, s; t) = R
(
φ(| · |) ∗t Pf

)
(θ, s; t). (19)

Due to our choice of p, the Radon transform is injective

on Lp(Rn) (see [47]). From (19), we therefore derive (13). ut

Theorem 1 is the main ingredient to relate the convolved

measurement data with a convolution of f . Note, however,

that on the right-hand side of statement (13), the quantity

Pevenf appears, whereas our measurements give only knowl-

edge of φ∗Pf as in (9). For application of Theorem 1 to our

case of bandlimited data, we therefore need a relation be-

tween Pevenf and φ ∗Pf , which is provided by the following

corollary.

Corollary 1 Let Ψ : Rn → R be radially symmetric and

Ψ ∈ Lp(Rn), for some 1 ≤ p < n/(n − 1), and let RΨ be

represented as

RΨ(θ, s) = Φ(θ, |s|) = φ(|s|) ,

for an even function φ : R→ R as in (11). Moreover, let our

measurements be given by

m(x; t) = (φ ∗t Pf)(x; t) on Γ × (0,∞) .

Then, the function

meven(x, t) := (φ ∗t Pevenf)(x, t) on Γ × (0,∞) , (20)

where x ∈ Γ , t ∈ (0,∞), can be computed analytically from

the causal measurement data m(x, t). Furthermore,

meven(x; t) = (P(Ψ ∗x f))(x, t) on Γ × (0,∞) . (21)

Proof Let p denote the solution of (6). Since p(x; t) is real-

valued, it follows that

p̂(x,−κ) = p̂(x, κ) ∀x ∈ Rn, κ ∈ R ,

and therefore

P̂evenf(x, κ) = 2 Re (p̂(x, κ)) ∀x ∈ Rn, κ ∈ R .

Thus, from (20) it follows that

m̂even(x, κ) = φ̂(κ)P̂evenf(x, κ)

= φ̂(κ) 2 Re
(
P̂f(x, κ)

)
= 2 Re

(
φ̂(κ) P̂f(x, κ)

)
= 2 Re (m̂(x, κ)) ∀x ∈ Γ, ∀κ ∈ R ,

where in the third equality we use that φ̂ is real-valued, since

φ is a real-valued and even function. The function meven =

φ ∗t Pevenf is of the appropriate form to apply (13), which

allows us to derive (21). ut

Corollary 1 gives a simple relation between causal and even

data convolved in time. Using Theorem 1, the even data can

be related to an initial source convolved in space by a point-

spread function (PSF) that is given in terms of an inverse

Radon transform of the radially symmetric extension of the

impulse-response function (IRF), previously denoted by the

letter φ.



5 PAI elastography using texture information

The results of Section 4 give the theoretical description for

the influence of using band-limited data in the photoacoustic

reconstruction. In the following subsection, we describe how

to find pairs of filter functions φ and Ψ in practice. More-

over, we give an example of a pair of oscillating functions,

that we use in what follows to create speckle-like patterns

on photoacoustic images. The rest of the paper will treat the

case of two spatial dimensions. Since the theoretical consid-

erations from Section 4 are valid in any spatial dimension,

the application to 3D images works in complete analogy to

the two-dimensional case described below.

5.1 Speckle generation in 2D Photoacoustics

We assume to measure the bandpass data

m = φ ∗t Pf ,

where we choose φ as follows: The time-domain equivalent

of the bandpass

φ̂(x, κ) = χ[κmin,κmax](|κ|) (22)

is given by the IRF

φ(t) =
cos(κ0t)

2a
sinc

(
t

4πa

)
, (23)

where 2a = κmax−κmin is the bandwidth and κ0 = κmin + a

is the center frequency of our window. Note that with the

formulation above, we cover the cases where our detector

measures the described signal as well as the case where we

manipulate the data by a post-processing step.

Now assume that we have computedmeven as described in

Corollary 1. The results of Section 4 in principle describe the

relationship of the filter in time and a resulting filter in space.

But since we actually want to compute this space filter ex-

plicitly, it is convenient to make use of the so-called Fourier-

slice theorem for the Radon transform [21,47], that relates

the Fourier transform of the Radon transform (in radial di-

rection) to the Fourier transform of the image (in all spatial

dimensions). In 2D, the Radon transform of a radially sym-

metric function is nothing else than the Abel transform [31].

The Fourier-transform of a two dimensional radially sym-

metric function is the so-called Hankel transform. The 2D

version of the Fourier slice theorem for radially symmetric

functions is therefore often written as

FA = H,

also called the FHA-cycle. In order to find the correspond-

ing Ψ to the function φ in (22), we make use of the tables

in literature describing important pairs of the above men-

tioned Fourier, Abel and Hankel transforms (see, e.g., [7,

36]). In fact, for our given hard bandpass (22), it suffices to

compute its (inverse) Hankel transform, so that the corre-

sponding point-spread function Ψ is given by

Ψ(x) =
2π

|x|
[(κmax)J1 ((κmax)|x|)− (κmin)J1 ((κmin)|x|)] ,

(24)

where J1 is the first-kind Bessel function of order 1. By using

an asymptotic estimate of J1 for large arguments, it is easy to

check that Ψ ∈ Lp(R2) iff p > 4/3, which means that Ψ fulfils

the integrability requirements demanded in Corollary 1. This

ensures that the result actually applies to the used filter.

Our suggested approach for texture generation then is

this: We choose κmax and κmin to determine the IRF φ. Then

we compute meven and solve the photoacoustic inverse prob-

lem with data meven. Theorem 1 then ensures that this yields

the perturbed reconstruction

f ∗x Ψ (25)

With the right choice of κmin and κmax, this is a natural can-

didate for a textured variant of the photoacoustic contrast

in the initial pressure f .

In Figure 1, a point source and its photoacoustic re-

construction from band-limited data (i.e., data convolved

with the IRF in (23)) are shown. The oscillations intro-

duced by the present band-limited photoacoustic reconstruc-

tion method introduce additional texture on the image. The

use of this texture in estimating the optical flow between two

photoacoustic images is investigated in the following sections.

5.2 Principle of PAI elastography

In the previous subsection, we introduced a texture method

for photoacoustic images. We now will study how motion

estimation can be performed and amended by adding texture

to photoacoustic images.

We emphasize that the initial pressure f introduced in

(6) in the photoacoustic forward problem is spatially varying

and can either represent the image before (i.e., f1) or after

(f2) mechanical deformation as described in Section 2.2.

The main concept in the proposed method of photoacous-

tic elastography is to perform the following steps in the first

step in section 2.1:

a) record a PAI image f1 using the texture-generating method

b) perturb the tissue using a mechanical source

c) record the perturbed configuration f2 using the texture-

generation method

We will now estimate the displacement u as in the second

step in section 2.1.

In the following, we evaluate the motion estimation using

the Horn-Schunck model (4) with or without speckle gener-

ation.

6 Experiments

There are many different varieties of experiments one can

perform. In this section, we present a first selection, using

structures which contain homogeneous regions, similar to

vascular structures.

6.1 Simulations

We simulate photoacoustic forward data using the k-wave

toolbox [49]. For reconstruction, we use a filtered back-projection

algorithm. Displacement vector fields have been simulated

using the FEM and mesh-generating packages GetDP and

Gmsh [9,17].



6.2 Material, displacement and parameters

The synthetic material was chosen to exhibit homogeneous

regions surrounded by edges. In each experiment, we evalu-

ated a rigid deformation and a non-rigid deformation.

In Experiments 1 and 2, we use a tree structure designed

by Brian Hurshman and licensed under CC BY 3.01.

6.3 Texture Modes

The purpose of experiments is to evaluate the influence of

the texture pattern introduced by (25) to the images, using

the basic filtered-backprojection reconstruction of the image.

Letting κmax = 10, we choose different values of choose

κmin and record the error with respect to the measures de-

fined below 6.4.

On the one hand, these are compared with the motion

reconstructions from the unperturbed images. On the other

hand, we compare the pictures to the following Gaussian

texture explained in the sequel.

We will produce the Gaussian texture in the image as

follows: We take an image f(x) and apply Gaussian noise to

the image f , producing a reference image

f1(x) = f(x) + α r(x), (26)

where α is a constant and r(x) is a noise function governed

by Gaussian noise. Then we warp the textured image using a

certain vector field u, producing the reference image f1 and

the target image

f2(x) = f1(x + u(x)). (27)

At last, we compute the optical flow between f1 and f2 and

then determine whether the computed field is approximately

the correct motion field.

We emphasize that due to (26) and (27), the artificial

texture pattern thus introduced behaves like a material char-

acteristic which is advected by the vector field u.

In contrast to that, the in using the texture method (25),

we have recourse to the principle outlined in section 5: to

arrive at the target image f2

– (sec. 5, step b) the mechanical deformation is applied

– (sec. 5, step c) the texture method is applied.

6.4 Validation

The field which is computed with the optical flow algorithm

should approximately match the correct motion field. In or-

der to study how PAI and textured PAI images behave under

mechanical deformations, we adopt the following validation

procedure:

Synthectic Data verification

– Choose a particular vector field u0, as well as a reference

image f1
– Compute the warped image f2 by interpolation, i.e. f2 =

f1(x + u0(x))

– Compute the optical flow u(x) from f1 and f2
– Compare the result u against the ground-truth vector

field u0

1 http://thenounproject.com/term/tree/16622/

Error measures To compare the computed flows produced

to the ground truth field, we use the angular and distance

error, and to assess the prediction quality of the flow, we

calculate the warping error. To define these error measures,

write

u0(x) = r0(x) eiϕ0(x)

u(x) = r(x) eiϕ(x).

Then we define the

– average angular error (AAE)∫
Ω

|ϕ(x)− ϕ0(x)|dx

– average endpoint error (AEE)∫
Ω

‖u− u0‖dx

– average relative endpoint error (AEErel)∫
Ω

1

‖u0‖
‖u− u0‖dx

– warping error∫
Ω

‖f2(x)− f1(x + u(x))‖dx.

7 Discussion

As mentioned in the introduction, elastography often re-

lies on speckle tracking methods, including correlation tech-

niques and optical flow. It is clear that such methods have a

problem with homogeneous regions. As for the optical flow,

this can be seen from (2), where the data term for homoge-

neous regions gives no information.

In Experiments 1-4, we used several pieces of synthetic

data showing homogeneous regions and investigated the ef-

fect of the homogeneity in several regions of the data (see

Figs. 2a-5a.

The visualization of the computed motion fields in Figs.

2c, 3c, 4c and 5c shows aberrations from the respective ground

truth fields. Comparing the values for the angular, distance

and warping errors in Table 1 to 2 shows these aberrations,

if one restricts to the untextured original images.

We then applied the texture generation methods intro-

duced in Section 5. The results in section 6 show that addi-

tion of texture is able to alleviate this problem of homoge-

neous regions to a considerable amount. The effect shows up

in the different error types.

For the specimens we used, the angular error decreases

about 20-30 % compared to the original error, and in extreme

cases the decrease is as high as 75 % (as seen from Table 1b).

As seen from Figs. 2h-5h, where the errors were plotted as a

function of the regularization parameters, the distance error

and in the warping error reach their minimum in the tex-

tured variant at lower regularization values than the original

data. In this context, we note that the angular error is a

monotonically increasing function of the regularization pa-

rameters in the cases we investigated. In some cases (as seen

from Fig. 2h and Fig. 4h), the textured versions give also

a lower distance error for the optimal regularization value;



in other cases, with the motion estimation we used, the dis-

tance error is about the same magnitude as in the original

versions.

The optimum frequency windows for the texture generat-

ing method also seem to differ for the rigid and the non-rigid

deformations we used. Whereas for the rigid deformations,

the window with κmin = 0.4 gave better results, the non-rigid

deformations gave better results with κmin = 1.8.

The effect of adding texture seems to come from a filling-

in-effect in the optical flow equation (2). Although the regu-

larization term is responsible for such an interpolation usu-

ally, here this filling-in-effect originates from the data term;

the function Ψ seems to propgate the information from within

the objects out across the edges and boundaries. This seems

also to alleviate the aperture problem in optical flow, as the

new texture creates also new gradients around edges. This

may account for the lessening of the angular error.

Overall, the results point at the phenomenon that an ef-

fect which has deteriorating the image quality in one con-

trast (here the photoacoustic contrast) can have an advan-

tageous effect on another contrast (here the mechanical con-

trast, which is inherent in the displacement u).

8 Conclusion

We studied the topic of texture generation in photoacoustics,

and applied bandwidth filter techniques for generating such

texture in the reconstructed images. This kind of texture was

mathematically characterized. Then we tested an application

of the PAI texture for elastography purposes. It turned out

that the texture generation technique has the potential to

fill in otherwise untextured regions. The displacements can

be better measured then, making photoacoustic elastography

viable.
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(a) Visualized mask (b) Ground truth (c) none (d) Gauss α = 0.3

(e) Band κmin = 0.4 (f) Band κmin = 1.8 (g) Angular error (h) Distance error

Fig. 2: (Experiment 1) (c)-(f): Computed vector fields for λ = 12.5893. (g), (h): different error measures for regularization

parameters 100.5 ≤ λ ≤ 102.5, full line: original data; dashed line: band-limitation texture κ = 0.4

(a) Visualized mask (b) Ground truth (c) none (d) Gauss 0.3

(e) Band 0.4 (f) Band 1.8 (g) Angular error (h) Distance error

Fig. 3: (Experiment 2) (c)-(f): Computed vector fields for λ = 12.5893. (g), (h): different error measures for regularization

parameters 100.5 ≤ λ ≤ 102.5, full line: original data; dashed line: band-limitation texture κ = 1.8

Table 1: Experiments 1 and 2: Error analysis

(a) Rigid experiment, λ = 12.5893 (see Figure 2)

Texture Mode AAE AEEabs AEErel Warping

none 0.2499 0.0445 3.3232 0.3739
Gauss 0.3 0.2499 0.0445 3.3237 0.3797
Band 0.4 0.1880 0.0101 0.7548 0.0737
Band 1.8 0.2382 0.0114 0.8546 0.0345

(b) Non-rigid experiment, λ = 12.5893 (see Figure 3)

Texture Mode AAE AEEabs AEErel Warping

none 0.1780 0.0617 2.9980 0.4886
Gauss 0.3 0.1784 0.0617 2.9990 0.4923
Band 0.4 0.0928 0.0135 0.6595 0.1189
Band 1.8 0.0447 0.0190 0.9232 0.0494



(a) Visualized mask (b) Ground truth (c) none (d) Gauss α = 0.3

(e) Band κmin = 0.4 (f) Band κmin = 1.8 (g) Angular error (h) Distance error

Fig. 4: (Experiment 3) (c)-(f): Computed vector fields for λ = 11.2202. (g), (h): different error measures for regularization

parameters 100.5 ≤ λ ≤ 102.5, full line: original data; dashed line: band-limitation texture κ = 0.4

(a) Visualized mask (b) Ground truth (c) none (d) Gauss 0.3

(e) Band 0.4 (f) Band 1.8 (g) Angular error (h) Distance error

Fig. 5: (Experiment 4) (c)-(f): Computed vector fields for λ = 11.2202. (g), (h): different error measures for regularization

parameters 100.5 ≤ λ ≤ 102.5, full line: original data; dashed line: band-limitation texture κ = 1.8

Table 2: Experiments 3 and 4: Error analysis

(a) Rigid experiment, λ = 11.2202 (see Figure 4)

Texture Mode AAE AEEabs AEErel Warping

none 0.1089 0.0635 4.7460 0.4382
Gauss 0.3 0.1090 0.0635 4.7465 0.4430
Band 0.4 0.0840 0.0211 1.5807 0.1753
Band 1.8 0.1344 0.0094 0.7024 0.0533

(b) Non-rigid experiment, λ = 11.2202 (see Figure 5)

Texture Mode AAE AEEabs AEErel Warping

none 0.2962 0.0112 1.3676 0.2053
Gauss 0.3 0.2956 0.0112 1.3680 0.2127
Band 0.4 0.3251 0.0026 0.3236 0.0191
Band 1.8 0.2115 0.0043 0.5228 0.0216


