
IMA Journal of Applied Mathematics (2018) Page 1 of 19
doi:10.1093/imamat/drnxxx

The electromagnetic scattering problem by a cylindrical
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We consider the direct electromagnetic scattering problem of time-harmonic obliquely incident waves by
a infinitely long, homogeneous and doubly-connected cylinder in three dimensions. We apply a hybrid
integral equation method (combination of the direct and indirect methods) and we transform the scat-
tering problem to a system of singular and hypersingular integral equations. The well-posedness of the
corresponding problem is proven. We use trigonometric polynomial approximations and we solve the
system of the discretized integral operators by a collocation method.
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1. Introduction

The scattering problem of electromagnetic waves by a penetrable medium generates theoretical and
numerical questions. Even if it is the direct (given the medium, compute the scattered wave) or the
inverse (recover the medium from the far-field pattern) problem, the main and first question to ask is
that of the unique solvability. Numerically, both problems can be solved using similar techniques but
the nonlinearity and the ill-posedness of the inverse problem have to be taken into account. For a review
on scattering theory for solving direct and inverse problems, we refer to the books by Cakoni & Colton
(2006); Colton & Kress (2013a,b); Kirsch & Hettlich (2015).

Since we use electromagnetic waves as incident fields the mathematical model is based on Maxwell’s
equations and the transmission conditions describe the continuity of the tangential components of the
electric and magnetic fields. The three-dimensional problem can, however, be reduced to simpler prob-
lems for the Helmholtz equation given some assumptions on the incident illumination and the optical
properties of the medium.

We specify the medium to be a infinitely long, penetrable cylinder embedded in a homogeneous
dielectric medium. The incoming electromagnetic wave is a time-harmonic plane wave at oblique inci-
dence (transverse magnetic polarized). This problem has been considered by many researchers from
different fields because of its applications in industry and medical imaging, (see, e.g., Erturk & Rojas,
2000; Lucido et al., 2010; Rojas, 1988; Sarabandi & Senior, 1990). From a mathematical point of view,
this scattering problem has also attracted considerable attention. Many methods have been considered
for the numerical solution of this problem, (see, e.g., Cangellaris & Lee, 1991; Tsalamengas, 2007; Tsit-
sas et al., 2007; Wu & Lu, 2008), but only recently the well-posedness of the direct problem has been
addressed (see Gintides & Mindrinos (2016); Nakamura & Wang (2013); Wang & Nakamura (2012)).

In this work we extend the results of Gintides & Mindrinos (2016) to the case of a doubly-connected
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cylinder. The interior simply connected domain is a perfect electric conductor. This setup is motivated
by the analysis of the behavior of antennas and tubes. We consider the Leontovich impedance boundary
condition on the inner boundary together with transmission conditions on the outer boundary. Following
the work of Wang & Nakamura (2012), we see that the three-dimensional scattering problem is reduced
to a system of four two-dimensional Helmholtz equations for the interior and the exterior electric and
magnetic fields. The complication of the problem lies in the reformulated boundary conditions where
the tangential derivatives of the fields appear.

We consider a hybrid integral equation method, introduced by Kleinman & Martin (1988), meaning
a combination of the direct (Green’s formulas) and the indirect (single-layer ansatz) methods. The
method of boundary integral equations has been considered for solving both direct and inverse scattering
problems in different regimes. For some recent applications we refer to the works of Boubendir et al.
(2016); Cakoni & Kress (2012); Chapko et al. (2013, 2017); Gintides & Mindrinos (2017); Ivanyshyn
& Louër (2016); Wang & Nakamura (2012). We transform the direct problem to a system of singular
and hypersingular integral equations. This system is of Fredholm type (uniqueness of solution) and the
Fredholm alternative theorem gives existence. We use the collocation method to solve numerically the
system of integral equations and we consider the Maue’s formula for reducing the hypersingularity of
the normal derivative of the double-layer potential (see Kress (1995, 2014a)).

The paper is organized as follows: In Section 2 we formulate the direct scattering problem and we
gather the necessary equations and boundary conditions. The existence and uniqueness of solutions,
using Green’s formulas and the integral equation method, are proved in Section 3. In the last section we
present numerical examples with analytic solutions that justify the applicability of the proposed scheme.

2. Formulation of the problem

In this work we consider the scattering of a time-harmonic electromagnetic wave by an infinitely long,
penetrable and doubly-connected cylinder in three dimensions. We assume that the cylinder Ωint ⊂R3

is oriented parallel to the z−axis and that it is homogeneous, meaning its properties are described by the
constant electric permittivity ε1 and the magnetic permeability µ1. The exterior domain Ωext :=R3\Ω int
is characterized equivalently by the constant coefficients ε0 and µ0. The smooth boundary ∂Ω of the
cylinder consists of two disjoint surfaces ∂Ω1 and ∂Ω0 such that ∂Ω = ∂Ω1∪∂Ω0, and ∂Ω1∩∂Ω0 = /0.
We assume that ∂Ω1 is contained in the interior of ∂Ω0.

We define the exterior electric and magnetic fields Eext ,Hext : Ωext →C3, respectively and the inte-
rior fields Eint ,Hint : Ωint →C3, which satisfy the system of Maxwell’s equations

∇×Eext − iωµ0Hext = 0, ∇×Hext + iωε0Eext = 0, in Ωext ,

∇×Eint − iωµ1Hint = 0, ∇×Hint + iωε1Eint = 0, in Ωint ,
(2.1)

where ω > 0 is the frequency. We impose transmission conditions on the outer boundary

n×Eint = n×Eext , n×Hint = n×Hext , on ∂Ω0, (2.2)

and the Leontovich impedance boundary condition on the inner boundary

(n×Eint)×n = λ n×Hint , on ∂Ω1. (2.3)

Here n is the normal vector and λ ∈ C1(∂Ω1) is the impedance function, assumed to be positive and
bounded away from zero. These conditions model a penetrable cylinder which does not allow the fields
to penetrate deep into the “hole”, the simply-connected domainR3 \ (Ω int ∪Ω ext).
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FIG. 1. The geometry of the electromagnetic scattering problem in R3 for a doubly-connected cylinder oriented parallel to the
z−axis (left). The horizontal cross section at the plane z = 0 and the notation used in the two-dimensional problem (right).

The scatterer is illuminated by a time-harmonic transverse magnetic polarized electromagnetic plane
wave, the so-called oblique incident wave. The cylindrical symmetry and the homogeneity of the
medium reduces the three-dimensional scattering problem (2.1) – (2.3) to a two-dimensional problem
only for the z−components of the fields, (see, e.g., Gintides & Mindrinos, 2016; Nakamura & Wang,
2013; Wang & Nakamura, 2012).

We define by θ ∈ (0,π) the incident angle with respect to the negative z−axis and by φ ∈ [0,2π]
the polar angle of the incident direction d̂dd, see the left picture in Figure 1. Let k0 = ω

√
µ0ε0 be the

wave number in Ωext . We define β = k0 cosθ , κ2
0 = k2

0 − β 2, and κ2
1 = µ1ε1ω2− β 2, assuming that

µ1ε1 > µ0ε0 cos2 θ such that κ2
1 > 0. We denote by Ω1 the horizontal cross section of the cylinder.

Then, Ω1 is a doubly-connected bounded domain in R2 with a C2 smooth boundary Γ , consisting of
two disjoint closed curves Γ1 and Γ0 such that Γ =Γ1∪Γ0, and Γ1∩Γ0 = /0, see the right picture in Figure
1.

Let x = (x,y) ∈ R2. Then, the exterior fields (the z−components of Eext , Hext ) defined by eext(x),
hext(x), for x ∈Ω0 and the interior fields e1(x), h1(x), x ∈Ω1 (the z−components of Eint , Hint ), satisfy
the system of Helmholtz equations

∆eext +κ
2
0 eext = 0, ∆hext +κ

2
0 hext = 0, in Ω0,

∆e1 +κ
2
1 e1 = 0, ∆h1 +κ

2
1 h1 = 0, in Ω1.

(2.4)

The boundary conditions (2.2) and (2.3) can also be rewritten only for the z−components of the
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fields. Let n = (n1,n2) and τττ = (−n2,n1) be the normal and tangent vector on Γ , respectively. The
vector n on Γj points into Ω j, j = 0,1. We define ∂

∂n = n ·∇, ∂

∂τ
= τττ ·∇, where ∇ is the two-dimensional

gradient and we set

µ̃ j =
µ j

κ2
j
, ε̃ j =

ε j

κ2
j
, β j =

β

κ2
j
, for j = 0,1.

Then, the transmission conditions (2.2) take the form (see Gintides & Mindrinos (2016))

e1 = eext , on Γ0,

µ̃1ω
∂h1

∂n
+β1

∂e1

∂τ
= µ̃0ω

∂hext

∂n
+β0

∂eext

∂τ
, on Γ0,

h1 = hext , on Γ0,

ε̃1ω
∂e1

∂n
−β1

∂h1

∂τ
= ε̃0ω

∂eext

∂n
−β0

∂hext

∂τ
, on Γ0,

(2.5)

and the impedance boundary condition results to (see Nakamura & Wang (2013))

µ̃1ω
∂h1

∂n
+β1

∂e1

∂τ
+λ ih1 = 0, on Γ1, (2.6a)

λ ε̃1ω
∂e1

∂n
−λβ1

∂h1

∂τ
+ ie1 = 0, on Γ1. (2.6b)

The exterior fields are decomposed as eext = e0 + einc and hext = h0 + hinc, where e0 and h0 is the
scattered electric and magnetic field, respectively. The incident wave (Einc, Hinc) reduces similarly to
the fields (z−components), (see, e.g., Gintides & Mindrinos, 2016; Nakamura & Wang, 2012)

einc(x) =
1
√

ε0
sinθ eiκ0(xcosφ+ysinφ), hinc(x) = 0. (2.7)

The scattered fields satisfy also the radiation conditions

lim
r→∞

√
r
(

∂e0

∂ r
− iκ0e0

)
= 0, lim

r→∞

√
r
(

∂h0

∂ r
− iκ0h0

)
= 0, (2.8)

where r = |x|, uniformly over all directions.
The solutions e0 and h0 of (2.4) – (2.8) admit the asymptotic behavior

e0(x) =
eiκ0r
√

r
e∞(x̂)+O(r−3/2), h0(x) =

eiκ0r
√

r
h∞(x̂)+O(r−3/2), (2.9)

where x̂ = x/r. The pair (e∞,h∞) is called the far-field pattern of the scattered fields related to the
scattering problem (2.4) – (2.8). We can formulate now the direct problem which we consider in this
work.

Direct Problem: Given the coefficients λ , ε0, µ0,ε1 and µ1, the boundary curve Γ = Γ0 ∪Γ1, and the
incident field (2.7), find the interior fields e1 and h1 and the scattered fields e0 and h0 which
satisfy the system of Helmholtz equations (2.4), the boundary conditions (2.5) and (2.6) and the
radiation conditions (2.8).

REMARK 2.1 Similar analysis holds also for the case of transverse electric polarized incident wave.
The case of normal incidence θ = π/2, resulting to β1 = β0 = 0, simplifies even more the scattering
problem since it can be written as two decoupled problems for the electric and the magnetic field.
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3. Uniqueness results

In this section we study the well-posedness of the direct problem. We use the integral equation method
and we apply the Riesz-Fredholm theory. For the representation of the electric and magnetic (interior
and exterior) fields we consider a hybrid method, meaning we combine the direct (Green’s formulas)
and the indirect (single layer ansatz) methods by Kleinman & Martin (1988). We define the “hole” as
Ωh :=R2 \ (Ω 1∪Ω 0).

THEOREM 3.1 If κ2
1 is not a Dirichlet eigenvalue in Ω1 and the impedance parameter λ is positive, then

the direct scattering problem (2.4) – (2.8) admits at most one solution.

Proof. It is enough to show that the corresponding homogeneous problem has only the trivial solution,
meaning, e1 = h1 = 0, in Ω1 and e0 = h0 = 0, in Ω0. We consider a disk Sr with center at the origin,
radius r > 0, and boundary Γr, which contains Ω1. We set Ωr = Sr \ (Ω 1∪Ω h).

The transmission conditions on Γ0 now read

e1 = e0, on Γ0, (3.1a)

µ̃1ω
∂h1

∂n
+β1

∂e1

∂τ
= µ̃0ω

∂h0

∂n
+β0

∂e0

∂τ
, on Γ0, (3.1b)

h1 = h0, on Γ0, (3.1c)

ε̃1ω
∂e1

∂n
−β1

∂h1

∂τ
= ε̃0ω

∂e0

∂n
−β0

∂h0

∂τ
, on Γ0. (3.1d)

We consider Green’s first identity in Ω1 for the electric fields e1 and e1, together with the Helmholtz
equation (2.4) and the boundary condition (2.6b), resulting in

ε̃1

∫
Γ0

e1 ∂e1

∂n
ds = ε̃1

∫
Ω1

(
|∇e1|2−κ

2
1 |e1|2

)
dx+

∫
Γ1

e1

(
β1

ω

∂h1

∂τ
+

i
λω

e1

)
ds. (3.2)

Similarly, Green’s first identity in Ω1 for the magnetic fields h1 and h1, considering the Helmholtz
equation (2.4) and the boundary condition (2.6a), gives

µ̃1

∫
Γ0

h1 ∂h1

∂n
ds = µ̃1

∫
Ω1

(
|∇h1|2−κ

2
1 |h1|2

)
dx+

∫
Γ1

h1

(
−β1

ω

∂e1

∂τ
+

iλ
ω

h1

)
ds. (3.3)

Applying Green’s first identity in Ωr for the exterior fields and considering the transmission conditions
(3.1d) and (3.1b), we obtain

ε̃0

∫
Γr

e0 ∂e0

∂n
ds = ε̃0

∫
Ωr

(
|∇e0|2−κ

2
0 |e0|2

)
dx+

∫
Γ0

e0

(
ε̃1

∂e1

∂n
− β1

ω

∂h1

∂τ
+

β0

ω

∂h0

∂τ

)
ds, (3.4)

and

µ̃0

∫
Γr

h0 ∂h0

∂n
ds = µ̃0

∫
Ωr

(
|∇h0|2−κ

2
0 |h0|2

)
dx+

∫
Γ0

h0

(
µ̃1

∂h1

∂n
+

β1

ω

∂e1

∂τ
− β0

ω

∂e0

∂τ

)
ds. (3.5)

We take the imaginary part of (3.4), and using (3.1a) and (3.2), we have that

ℑ

(
ε̃0

∫
Γr

e0 ∂e0

∂n
ds

)
= ℑ

(
β1

ω

∫
Γ1

e1 ∂h1

∂τ
ds− β1

ω

∫
Γ0

e1 ∂h1

∂τ
ds+

β0

ω

∫
Γ0

e0 ∂h0

∂τ
ds

)
+
∫

Γ1

1
λω
|e1|2ds.
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Analogously, the imaginary part of (3.5), considering (3.1c) and (3.3), takes the form

ℑ

(
µ̃0

∫
Γr

h0 ∂h0

∂n
ds

)
= ℑ

(
−β1

ω

∫
Γ1

h1 ∂e1

∂τ
ds+

β1

ω

∫
Γ0

h1 ∂e1

∂τ
ds− β0

ω

∫
Γ0

h0 ∂e0

∂τ
ds

)
+
∫

Γ1

λ

ω
|h1|2ds.

If λ > 0, the addition of the above two equations, noting that

−
∫

Γj

ek ∂hk

∂τ
ds =

∫
Γj

hk ∂ek

∂τ
ds, for k, j = 0,1,

results to

ℑ

(
ε̃0

∫
Γr

e0 ∂e0

∂n
ds+ µ̃0

∫
Γr

h0 ∂h0

∂n
ds

)
=
∫

Γ1

(
1

λω
|e1|2 + λ

ω
|h1|2

)
ds> 0

The last equation, the radiation conditions (2.8) as r→ ∞ and Rellich’s Lemma yield e0 = h0 = 0
in Ω0, (see Gintides & Mindrinos (2016); Wang & Nakamura (2012)). Hence, e0 = h0 = 0 on Γ0.
Using the homogeneous transmission conditions (3.1a) and (3.1c) and the assumption on κ2

1 we get also
e1 = h1 = 0 in Ω1. This completes the proof. �

To prove existence of solutions we transform the direct problem to a system of boundary integral
equations. We present the fundamental solution of the Helmholtz equation inR2, given by

Φ j(x,y) =
i
4

H(1)
0 (κ j|x−y|), x,y ∈Ω j, x 6= y, (3.6)

where H(1)
0 is the Hankel function of the first kind and zero order. We introduce the single- and double-

layer potentials for a continuous density f , given by

(Skl j f )(x) =
∫

Γj

Φk(x,y) f (y)ds(y), x ∈Ωl ,

(Dkl j f )(x) =
∫

Γj

∂Φk

∂n(y)
(x,y) f (y)ds(y), x ∈Ωl ,

for k, l, j = 0,1. The single-layer potential S is continuous in R2 and the their normal and tangential
derivatives as x→ Γj satisfy the standard jump relations, see for instance Gintides & Mindrinos (2016).
We define the integral operators

(Skl j f )(x) =
∫

Γj

Φk(x,y) f (y)ds(y), x ∈ Γl ,

(Dkl j f )(x) =
∫

Γj

∂Φk

∂n(y)
(x,y) f (y)ds(y), x ∈ Γl ,

(NSkl j f )(x) =
∫

Γj

∂Φk

∂n(x)
(x,y) f (y)ds(y), x ∈ Γl ,

(NDkl j f )(x) =
∫

Γj

∂ 2Φk

∂n(x)∂n(y)
(x,y) f (y)ds(y), x ∈ Γl ,

(T Skl j f )(x) =
∫

Γj

∂Φk

∂τ(x)
(x,y) f (y)ds(y), x ∈ Γl ,

(T Dkl j f )(x) =
∫

Γj

∂ 2Φk

∂τ(x)∂n(y)
(x,y) f (y)ds(y), x ∈ Γl .

(3.7)
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If we consider the direct method, meaning Green’s second identity, for representing the interior and
exterior electric and magnetic fields we get

u1(x) = (S110 ∂nu1)(x)− (D110 u1)(x)+(S111 ∂nu1)(x)+(D111 u1)(x), x ∈Ω1,

u0(x) = (D000 u0)(x)− (S000 ∂nu0)(x), x ∈Ω0,

for u= e,h. We observe that we have 8 unknown densities (4 for the electric and 4 for the magnetic field)
for the interior fields and 4 unknown densities for the exterior fields and only 6 equations (the boundary
conditions (2.5) and (2.6)). In order to reduce the number of the unknowns, motivated by Kleinman &
Martin (1988), we consider a hybrid method, meaning a combination of the indirect and direct methods.
We keep the direct method for the exterior fields and we consider a single-layer ansatz (indirect method)
for the interior fields.

THEOREM 3.2 Let the assumptions of Theorem 3.1 still hold. If κ2
1 is not a Dirichlet eigenvalue in Ωh,

and κ2
0 is not a Dirichlet eigenvalue inR2 \Ω 0, then the problem (2.4) – (2.8) has a unique solution.

Proof. We search the solutions in the forms:

e1(x) = (S110 ψ
e
1)(x)+(S111 ψ

e
2)(x), x ∈Ω1,

h1(x) = (S110 ψ
h
1 )(x)+(S111 ψ

h
2 )(x), x ∈Ω1,

e0(x) = (D000 φ
e
0 )(x)− (S000 ψ

e
0)(x), x ∈Ω0,

h0(x) = (D000 φ
h
0 )(x)− (S000 ψ

h
0 )(x), x ∈Ω0,

(3.8)

with ψu
0 := ∂nu0|Γ0 and φ u

0 := u0|Γ0 , for u = e,h. We let x approach the boundaries Γj, and considering
the jump relations of the potentials, (see, e.g., Colton & Kress, 2013b; Courant & Hilbert, 1962), we
see that the boundary conditions (2.5) and (2.6) are satisfied if the densities ψu

k , φ u
0 , k = 0,1,2, u = e,h

solve the system of integral equations

S100ψ
e
1 +S101ψ

e
2−
(
D000 +

1
2

)
φ

e
0 +S000ψ

e
0 = einc,

µ̃1ω
(
NS100 +

1
2

)
ψ

h
1 + µ̃1ωNS101ψ

h
2 +β1T S100ψ

e
1 +β1T S101ψ

e
2− µ̃0ωND000φ

h
0

+µ̃0ω
(
NS000− 1

2

)
ψ

h
0 −β0(T D000 +

∂τ

2 )φ
e
0 +β0T S000ψ

e
0 = β0∂τ einc,

S100ψ
h
1 +S101ψ

h
2 −
(
D000 +

1
2

)
φ

h
0 +S000ψ

h
0 = 0

ε̃1ω
(
NS100 +

1
2

)
ψ

e
1 + ε̃1ωNS101ψ

e
2−β1T S100ψ

h
1 −β1T S101ψ

h
2 − ε̃0ωND000φ

e
0

+ε̃0ω
(
NS000− 1

2

)
ψ

e
0 +β0(T D000 +

∂τ

2 )φ
h
0 −β0T S000ψ

h
0 = ε̃0ω∂neinc,

µ̃1ωNS110ψ
h
1 + µ̃1ω

(
NS111− 1

2

)
ψ

h
2 +β1T S110ψ

e
1 +β1T S111ψ

e
2

+iλS110ψ
h
1 + iλS111ψ

h
2 = 0,

λ ε̃1ωNS110ψ
e
1 +λ ε̃1ω

(
NS111− 1

2

)
ψ

e
2−λβ1T S110ψ

h
1 −λβ1T S111ψ

h
2

+iS110ψ
e
1 + iS111ψ

e
2 = 0.

(3.9)

To simplify the above system, we set

ε̃1ψ
e
1 =−ε̃0ψ

e
0 , and µ̃1ψ

h
1 =−µ̃0ψ

h
0 , (3.10)

and the system (3.9) admits the matrix form

(B+C)φφφ = f, (3.11)
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where φφφ = (φ e
0 , ψh

1 , φ h
0 , ψe

1 , ψh
2 , ψe

2)
> ∈C6, f =

(
einc, β0∂τ einc, 0, ε̃0ω∂neinc, 0, 0

)> ∈C6, and

B =



−1
2

0 0 0 0 0

−β0

2
∂τ µ̃1ω 0 0 0 0

0 0 −1
2

0 0 0

0 0
β0

2
∂τ ε̃1ω 0 0

0 0 0 0 − µ̃1ω

2
0

0 0 0 0 0 −λ ε̃1ω

2



.

The operator C = (Ck j)16k, j66 has entries:

C11 =−D000, C14 = S100−
ε̃1

ε̃0
S000, C16 = S101,

C21 =−β0T D000, C22 = µ̃1ω(NS100−NS000), C23 =−µ̃0ωND000,

C24 = β1T S100−β0
ε̃1

ε̃0
T S000, C25 = µ̃1ωNS101, C26 = β1T S101,

C32 = S100−
µ̃1

µ̃0
S000, C33 =C11, C35 =C16,

C41 =−ε̃0ωND000, C42 =−β1T S100 +β0
µ̃1

µ̃0
T S000, C43 =−C21,

C44 = ε̃1ω(NS100−NS000), C45 =−C26, C46 = ε̃1ωNS101,

C52 = µ̃1ωNS110 + iλS110, C54 = β1T S110, C55 = µ̃1ωNS111 + iλS111,

C56 = β1T S111, C62 =−λC54, C64 = λ ε̃1ωNS110 + iS110,

C65 =−λC56, C66 = λ ε̃1ωNS111 + iS111,

and the rest are zero. The special form of B and the boundedness of the tangential operator ∂τ :
H1/2(Γ0)→ H−1/2(Γ0) allow us to construct its bounded inverse, given by

B−1 =



−2 0 0 0 0 0

− β0

µ̃1ω
∂τ

1
µ̃1ω

0 0 0 0

0 0 −2 0 0 0

0 0
β0

ε̃1ω
∂τ

1
ε̃1ω

0 0

0 0 0 0 − 2
µ̃1ω

0

0 0 0 0 0 − 2
λ ε̃1ω


.
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Then, we rewrite (3.11) as
(I+K)φφφ = g, (3.12)

where I is the identity operator, g = B−1f =
(
−2einc, 0, 0,

ε̃0

ε̃1
∂neinc, 0, 0

)>
, and the matrix K = B−1C

has now entries:

K1 j =−2C1 j, K3 j =−2C3 j, K5 j =−
2

µ̃1ω
C5 j, K6 j =−

2
λ ε̃1ω

C6 j, for j = 1, ...,6,

and

K21 = 0, K22 = NS100−NS000, K23 =−
µ̃0

µ̃1
ND000, K24 =

β1−β0

µ̃1ω
T S100,

K25 = NS101, K26 =
β1−β0

µ̃1ω
T S101, K41 =−

ε̃0

ε̃1
ND000, K42 =

β0−β1

ε̃1ω
T S100,

K43 = 0, K44 = K22, K45 =
β0−β1

ε̃1ω
T S101, K46 = K25.

We define the product spaces:

H1 :=
(

H1/2(Γ0)×H−1/2(Γ0)
)2
×
(

H−1/2(Γ1)
)2

,

H2 :=
(

H−1/2(Γ0)×H−3/2(Γ0)
)2
×
(

H−3/2(Γ1)
)2

,

and using the mapping properties of the integral operators (see, e.g., Colton & Kress, 2013b; Kress,
2014b), we see that the operator K : H1 → H2 is compact. The last step is to prove uniqueness of
solutions. Then, solvability of the system (3.12) follows from the Fredholm alternative theorem. It is
sufficient to show that the operator I+K is injective.

Let φφφ solve (I+K)φφφ = 0. Then, the fields (3.8) solve the problem (2.4) – (2.8) with einc = ∂neinc =
∂τ einc = 0, on Γ0. Hence, by Theorem 3.1 we have e1 = h1 = 0, in Ω1 and e0 = h0 = 0, in Ω0. Continuity
of the single-layer potential implies that e1 and h1 solve also

∆e1 +κ
2
1 e1 = 0, ∆h1 +κ

2
1 h1 = 0, in Ωh,

and vanish on Γ1. Thus, e1 = h1 = 0, in Ωh, if κ2
1 is not a Dirichlet eigenvalue in Ωh. The jump relation

of the normal derivative of the single layer across the boundary Γ1, gives ψe
2 = ψh

2 = 0, on Γ1.
We define

ẽ(x) = (S100 ψ
e
1)(x), h̃(x) = (S100 ψ

h
1 )(x), x ∈Ω0.

Again using the continuity of the single-layer potential we get ẽ = S100ψe
1 = e1 = 0, and h̃ = S100ψh

1 =
h1 = 0, on Γ0. Since ẽ and h̃ are also radiating solutions of the Helmholtz equation in Ω0, we get
ẽ = h̃ = 0, in Ω0 (see Colton & Kress (2013b)). Again the jump relation of the normal derivative of the
single layer potential across the boundary Γ0, results to ψe

1 = ψh
1 = 0, on Γ0. From (3.10) we have also

ψe
0 = ψh

0 = 0, on Γ0.
Given now the representations (3.8), the homogeneous transmission conditions (3.1a) and (3.1c) and

the jump relations of the double-layer potential we obtain the equations(
D000−

1
2

)
φ

e
0 = 0,

(
D000−

1
2

)
φ

h
0 = 0, on Γ0.

This integral operator is injective if κ2
0 is not a Dirichlet eigenvalue in R2 \Ω 0. Thus, φ e

0 = φ h
0 = 0, on

Γ0, and therefore φφφ = 0, which completes the proof. �
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4. Numerical examples

We derive the numerical solution of (3.12) by a collocation method using trigonometric polynomial
approximations (see Kress (2014b)). We use quadrature rules to handle the singularities (weak and
strong) of the integral operators and the trapezoidal rule for approximating the smooth kernels (see Kress
(2014a)). For the convergence and error analysis, see the work of Kress (1995). We do not present here
the parametrized forms of the integral operators (3.7) since they can be found in many works, we refer
the reader to the books of Colton & Kress (2013b); Kress (2014b) and to paper of Gintides & Mindrinos
(2016, Section 4) for a complete list of all forms and special decompositions.

We present two different kind of problems. In the first case, we formulate a problem, as in the works
of Gintides & Mindrinos (2016); Wang & Nakamura (2012), whose solutions (the scattered electric and
magnetic fields) can be analytically calculated. In this way, we can see that the expected exponential
convergence for analytical data is achieved (see Kress (1990, 2014b)). Secondly, we present results for
the scattering problem of obliquely incident waves.

We assume that the smooth boundaries admit the following parametrization

Γj = {x j(t) = (x j
1(t),x

j
2(t)) : t ∈ [0,2π]}, j = 0,1,

where x j :R→R2 are C2-smooth, 2π-periodic and injective in [0,2π). For the numerical implementa-
tion we consider equidistant grid points

tk =
kπ

n
, k = 0, ...,2n−1.

4.1 Examples with analytic solution

We construct a problem whose solutions are expressed analytically. Let z1, z2 ∈Ω1 and z3, z4 ∈Ω0 be
four arbitrary points. We define the boundary functions

f1(x) = H(1)
0 (κ1|r3(x)|)−H(1)

0 (κ0|r1(x)|), x ∈ Γ0,

f2(x) =−µ̃1ωκ1H(1)
1 (κ1|r4(x)|)

n(x) · r4(x)
|r4(x)|

−β1κ1H(1)
1 (κ1|r3(x)|)

τττ(x) · r3(x)
|r3(x)|

+ µ̃0ωκ0H(1)
1 (κ0|r2(x)|)

n(x) · r2(x)
|r2(x)|

+β0κ0H(1)
1 (κ0|r1(x)|)

τττ(x) · r1(x)
|r1(x)|

, x ∈ Γ0,

f3(x) = H(1)
0 (κ1|r4(x)|)−H(1)

0 (κ0|r2(x)|), , x ∈ Γ0,

f4(x) =−ε̃1ωκ1H(1)
1 (κ1|r3(x)|)

n(x) · r3(x)
|r3(x)|

+β1κ1H(1)
1 (κ1|r4(x)|)

τττ(x) · r4(x)
|r4(x)|

+ ε̃0ωκ0H(1)
1 (κ0|r1(x)|)

n(x) · r1(x)
|r1(x)|

−β0κ0H(1)
1 (κ0|r2(x)|)

τττ(x) · r2(x)
|r2(x)|

, x ∈ Γ0,

f5(x) =−µ̃1ωκ1H(1)
1 (κ1|r4(x)|)

n(x) · r4(x)
|r4(x)|

−β1κ1H(1)
1 (κ1|r3(x)|)

τττ(x) · r3(x)
|r3(x)|

+ iλH(1)
0 (κ1|r4(x)|), x ∈ Γ1,

f6(x) =−λ ε̃1ωκ1H(1)
1 (κ1|r3(x)|)

n(x) · r3(x)
|r3(x)|

+λβ1κ1H(1)
1 (κ1|r4(x)|)

τττ(x) · r4(x)
|r4(x)|

+ iH(1)
0 (κ1|r3(x)|), x ∈ Γ1,
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FIG. 2. The parametrization of the boundary Γ = Γ1∪Γ0 and the source points in the first (left) and in the second example (right).

where rk(x) = x− zk,k = 1,2,3,4. Then, the fields

e0(x) = H(1)
0 (κ0|x− z1|), h0(x) = H(1)

0 (κ0|x− z2|), x ∈Ω0,

e1(x) = H(1)
0 (κ1|x− z3|), h1(x) = H(1)

0 (κ1|x− z4|), x ∈Ω1,
(4.1)

solve the equations
∆e0 +κ

2
0 e0 = 0, ∆h0 +κ

2
0 h0 = 0, in Ω0,

∆e1 +κ
2
1 e1 = 0, ∆h1 +κ

2
1 h1 = 0, in Ω1,

with boundary conditions

e1− e0 = f1, on Γ0,

µ̃1ω
∂h1

∂n
+β1

∂e1

∂τ
− µ̃0ω

∂h0

∂n
−β0

∂e0

∂τ
= f2, on Γ0,

h1−h0 = f3, on Γ0,

ε̃1ω
∂e1

∂n
−β1

∂h1

∂τ
− ε̃0ω

∂e0

∂n
+β0

∂h0

∂τ
= f4, on Γ0,

µ̃1ω
∂h1

∂n
+β1

∂e1

∂τ
+λ ih1 = f5, on Γ1,

λ ε̃1ω
∂e1

∂n
−λβ1

∂h1

∂τ
+ ie1 = f6, on Γ1.

and e0, h0 satisfy in addition the radiation conditions (2.8).
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As in the proof of Theorem 3.2 we derive a system of the form (3.12), where now the right-hand
side is given by

g f =

(
−2 f1,−

β0

µ̃1ω
∂τ f1 +

1
µ̃1ω

f2,−2 f3,
β0

ε̃1ω
∂τ f3 +

1
ε̃1ω

f4,−
2

µ̃1ω
f5,−

2
λ ε̃1ω

f6

)>
.

Initially we compare the exact near-fields, the scattered and the interior fields given by (4.1), with
the computed near-fields e1

n, h1
n, e0

n and h0
n, given by (3.8) where now the densities solve (3.12) with

g replaced by g f . Then, using the asymptotic behavior of the Hankel functions (see Colton & Kress
(2013b)), we can construct the exact and the computed far-field pattern of the scattered fields, which
will be needed for the corresponding inverse problem. We see from (4.1) that the exact values of the
far-field patterns of e0 and h0 are given by

e∞(x̂) =
−4ieiπ/4
√

8πκ0
e−iκ0x̂·z1 , h∞(x̂) =

−4ieiπ/4
√

8πκ0
e−iκ0x̂·z2 , x̂ ∈ S, (4.2)

where S is the unit circle. The representations (3.8), where again the densities solve (3.12) with g f ,
result in

e∞
n (x̂(t)) =

eiπ/4
√

8πκ0

∫ 2π

0
e−iκ0x̂·x0(t) [−iκ0(x̂ ·n(x0(t)))φ e

0 (t)−ψ
e
0(t)
]
|x0′(t)|dt,

h∞
n (x̂(t)) =

eiπ/4
√

8πκ0

∫ 2π

0
e−iκ0x̂·x0(t)

[
−iκ0(x̂ ·n(x0(t)))φ h

0 (t)−ψ
h
0 (t)

]
|x0′(t)|dt.

(4.3)

In the first example, we set the outer boundary curve Γ0 to be a circle with center (0,0) and radius
0.5, and the inner Γ1 is a kite-shaped boundary of the form

Γ1 =
{

x1(t) = (0.2cos t +0.1cos2t−0.2, 0.2sin t +0.1), t ∈ [0,2π]
}
.

We consider the interior points z1 = (−0.1, 0.35), z2 = (0.1, 0.3) ∈ Ω1, and the exterior points z3 =
(−0.3, 0.55), z4 = (0.15, 0.6) ∈ Ω0, see the left picture in Figure 2. We set ω = 1, λ = 2 and θ =
π/3. The parameters are given by (ε0,µ0) = (1,1) and (ε1,µ1) = (3,2), resulting to the wave numbers
(κ0, κ1) = (0.86, 2.39).

The exact and computed interior fields at specific positions for increasing number of quadrature
points n are shown in Table 1. The scattered fields at different positions are presented in Table 2. Table
3 shows the computed far-field of the electric and magnetic scattered fields at direction t = 0 for different
values of n. The exponential convergence is clearly exhibited, as we see also in Figure 3 and Figure 4
where we plot the logarithm of the absolute error and the L2 norm of the difference between the exact
and the computed near- and far-fields, respectively.

In the second example, both boundaries admit the following parametrization

Γj =
{

x j(t) = r j(t)(cos t,sin t)+a j, t ∈ [0,2π]
}
, j = 0,1.

We consider a peanut-shaped outer boundary with radial function

r0(t) =
(
0.5cos2 t +0.1sin2 t

)1/2
, and a0 = (0,0),
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n e1
n(0.2, 0.3) h1

n(0,−0.2)

8 0.604945956508+ i0.284320213602 0.232651970281+ i0.491947424153

16 0.597795060635+ i0.308480211402 0.251943884858+ i0.504656386375

32 0.598782366842+ i0.308159788441 0.251777972181+ i0.504552637621

64 0.598781975739+ i0.308160170939 0.251778317958+ i0.504552845467

e1(0.2, 0.3) h1(0,−0.2)

0.598781975712+ i0.308160170944 0.251778317952+ i0.504552845463

Table 1. The computed and the exact interior electric and magnetic fields of the first example.

n e0
n(1, 0) h0

n(−0.5, 0.6)

8 0.847357910341− i0.071675589965 0.944884523579− i0.572087978672

16 0.837799503290− i0.066361103779 0.958761357922− i0.591361698290

32 0.838237289559− i0.065951591297 0.958713913359− i0.591017903163

64 0.838237055126− i0.065951532474 0.958714351829− i0.591018302227

e0(1, 0) h0(−0.5, 0.6)

0.838237055118− i0.065951532477 0.958714351843− i0.591018302238

Table 2. The computed and the exact scattered electric and magnetic fields of the first example.

and an apple-shaped inner boundary curve with

r1(t) =
0.45+0.3cos t−0.1sin2t

1+0.7cos t
, and a1 = (−0.25, 0.05).

The source points are now: z1 = (0.2, 0.2), z2 = (−0.5,−0.2) ∈ Ω1, and z3 = (0.4, 0.55), z4 =
(−0.3,−0.6) ∈ Ω0, see the right picture in Figure 2. We set ω = 2 and θ = π/4, and we choose the
parameters to be (ε0,µ0) = (2,1) and (ε1,µ1) = (4,2). The wave numbers are now (κ0, κ1) = (2, 5.29).
Here, the impedance function is given by

λ (x1(t)) =
1

1+0.2cos t
.

The computed and the exact interior electric and scattered magnetic fields for increasing number
of quadrature points n, at specific positions, are presented in Table 4. The computed far-field of the
electric and magnetic scattered fields for varying n, and the exact far-fields at direction t = π/4 are
given in Table 5. Their L2 norm difference is presented in Figure 5. Table 6 shows the L2 norm of the
difference between the exact and the computed far-fields with respect to n, for both examples. Again
the exponential convergence is guaranteed independently of the different parameters.

The computed values are accurate also with respect to the wave number. We use the parametrization
of the second example. In Table 7 we see the absolute error between the computed and the exact
scattered electric and magnetic fields at the position (0.6,−0.6), for (ε0,µ0) = (1, 1), (ε1,µ1) = (3, 1),
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n e∞
n (x̂(0)) h∞

n (x̂(0))

8 0.550084263052− i0.665877312380 0.646238687778− i0.549065505420

16 0.550961953612− i0.656336124631 0.656591070845− i0.551308759662

32 0.551551006183− i0.656427458763 0.656427073431− i0.551550848571

64 0.551550951843− i0.656427255249 0.656427255242− i0.551550951840

e∞(x̂(0)) h∞(x̂(0))

0.551550951838− i0.656427255240 0.656427255240− i0.551550951838

Table 3. The computed and the exact far-fields of the electric and magnetic scattered fields of the first example.

FIG. 3. The absolute error (in logarithmic scale) between the computed and the exact values of the interior electric (left) and the
scattered magnetic (right) fields of the first example.

θ = π/3, and different values of k0 = ω, as n increases. Table 8 presents the L2 norm of the difference
between the computed and the exact far-fields of the scattered electric and magnetic fields for varying n
and different sets of wave numbers (κ0, κ1). Here, we keep fixed ω = 2 and θ = π/3.

4.2 Examples with oblique incidence

We consider obliquely incident waves of the form (2.7) and we vary the polar angle φ , which corre-
sponds to the incident direction (cosφ , sinφ) in two dimensions. We restrict the computation domain
to the rectangular domain [−c, c]2, where we consider a uniform-space grid of the form xk j = (−c+
kδ ,−c+ jδ ), with δ = 2c/(2m−1), for k, j = 0, ...,2m−1. We use m = 128.

In the third example we consider the same parametrization as in the first example and we set ω = 6
and θ = π/4, while keeping all the other parameters the same. The values of the norms of the interior
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FIG. 4. The L2 norm (in logarithmic scale) of the difference between the computed and the exact far-field of the electric (left) and
the magnetic (right) scattered fields of the first example.

and exterior fields are given in Figure 6 for c = 0.8 and φ = π/2.
In the last example we consider the setup of the second example, where now a1 = (0.25, −0.05).

We set ω = 1, and θ = φ = π/6. The parameters are given by (ε0,µ0) = (1,1) and (ε1,µ1) = (6,4). In
Figure 7 we see the results for c = 1.

All algorithms were implemented in Matlab 2017b using an Intel Core i7-4820K at 3.70GHz work-
station equipped with 64 GB RAM. The matrix I+K is dense of size 12n× 12n and has a condition
number of order 103 for n = 16, and of order 104 for n = 64, in all examples. However, the computa-
tions are considerably fast because of the exponential convergence. For example, the values for n = 64
presented in Tables 1 and 2 were obtained in approximately 0.7sec .

5. Conclusions

We addressed the direct electromagnetic scattering problem for a infinitely long, penetrable and doubly-
connected cylinder. The cylinder was placed in a homogeneous dielectric medium and was illuminated
by a time-harmonic electromagnetic wave at oblique incidence. We considered transmission conditions
on the outer boundary and impedance boundary condition on the inner boundary. We proved the well-
posedness of the problem using Green’s formulas and the integral representation of the solutions (hybrid
method). We presented numerical results which showed the feasibility of the proposed method.
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n(0.3, 0.1) h0

n(0, 0.7)
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|e0
n− e0|

PPPPPPPPn
k0 0.1 1 10

16 0.004228025039578 0.000559126168652 0.004006547188780

32 0.000002177667052 0.000000549213937 0.000002594744892

64 0.000000000004205 0.000000000000984 0.000000000006334

|h0
n−h0|

16 0.015766587442913 0.000544231265856 0.007559468207215

32 0.000001455838646 0.000000928965969 0.000001553058964

64 0.000000000001864 0.000000000001713 0.000000000004229

Table 7. The absolute error between the computed and the exact, electric and magnetic, scattered fields of the second example,
for different values of n and k0, at the position (0.6,−0.6).

‖e∞
n − e∞‖2

PPPPPPPPn
(κ0, κ1) (1.73, 1.84) (1.73, 19.97) (1.81, 1.70) (3, 0.99)

16 0.003720064110 0.087831672702 0.003892601878 0.011471300141

32 0.000005028601 0.000033279914 0.000005172048 0.000015731178

64 0.000000000013 0.000000000048 0.000000000016 0.000000000769

‖h∞
n −h∞‖2

16 0.002461277234 0.071396442491 0.002387063488 0.014090335292

32 0.000004061484 0.000031104515 0.000003762957 0.000023579662

64 0.000000000012 0.000000000072 0.000000000012 0.000000000965

Table 8. The L2 norm of the difference between the computed and the exact far-fields of the scattered electric and magnetic fields
for different pairs (κ0, κ1) and increasing number of n.

Kress, R. (2014b) Linear Integral Equations. Springer, New York, 3rd edition.
Lucido, M., Panariello, G. & Schettino, F. (2010) Scattering by polygonal cross-section dielectric cylinders at

oblique incidence. IEEE Transactions on Antennas and Propagation, 58(2), 540–551.
Nakamura, G. & Wang, H. (2012) Inverse scattering for obliquely incident polarized electromagnetic waves. Inverse

problems, 28(10), 105004.
Nakamura, G. & Wang, H. (2013) The direct electromagnetic scattering problem from an imperfectly conducting

cylinder at oblique incidence. Journal of Mathematical Analysis and Applications, 397, 142–155.
Rojas, R. (1988) Scattering by an inhomogeneous dielectric/ferrite cylinder of arbitrary cross-section shape-oblique

incidence case. IEEE Transactions on Antennas and Propagation, 36(2), 238–246.
Sarabandi, K. & Senior, T. (1990) Low-frequency scattering from cylindrical structures at oblique incidence. IEEE

Transactions on Geoscience and Remote Sensing, 28(5), 879–885.



THE DIRECT SCATTERING PROBLEM BY A DOUBLY-CONNECTED DOMAIN 19 of 19

FIG. 6. The norms of the electric fields e0 and e1 (left) and those of the magnetic fields h0 and h1 (right) for φ = π/2.

FIG. 7. The norms of the electric fields e0 and e1 (left) and those of the magnetic fields h0 and h1 (right) for φ = π/6.
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