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A PENALIZATION METHOD FOR CALCULATING THE FLOW
BENEATH TRAVELING WATER WAVES OF LARGE AMPLITUDE∗

A. CONSTANTIN† , K. KALIMERIS‡ , AND O. SCHERZER§

Abstract. We suggest an algorithm for the calculation of large-amplitude traveling water waves
in irrotational flows and in flows with constant and nonconstant vorticity, respectively. The algo-
rithm is based on a quite general partial differential equation constrained optimization formulation,
maximizing the wave amplitude subject to the PDE constraint that the Euler equations hold. Nu-
merical examples illustrate the performance of the algorithm for irrotational flows and in flows with
constant vorticity, where the results are compared with the literature. As a proof of principle we
also consider a test case with a nonconstant vorticity.
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1. Introduction. Water flows with a uniform underlying current (possibly ab-
sent) are termed irrotational flows, while rotational waves describe the interaction of
surface water waves with nonuniform currents. The study of the flow beneath an irro-
tational two-dimensional traveling surface wave in water with a flat bed is quite well
understood: see [5, 11] for theoretical studies, [4, 22] for numerical simulations, and
[3, 28] for experimental data. For rotational two-dimensional traveling water waves
an existence theory for waves of large amplitude is available [10] and some numerical
simulations were performed for flows without stagnation points [20, 21] and in the
presence of stagnation points for flows of constant vorticity [27].

While water flows that originate in the state of irrotational flow are irrotational
everywhere at all times thereafter (see [6]), a frequent occurrence of rotational flows
is when nonuniform pure currents (with a flat free surface) exist before the waves are
generated and are disturbed by the waves. While the investigation of the resulting
wave-current interaction is quite intricate, within the framework of two-dimensional
flows the vorticity of a particle is preserved as the particle moves about (see [6]), and
this structural property permits us to classify in such a setting rotational flows in
terms of their vorticity distribution. A pure current in a two-dimensional flow over a
flat bed is represented by a vanishing vertical fluid velocity component and a depth-
dependent horizontal fluid velocity component, the gradient of which is the vorticity.
Consequently, uniform currents correspond to zero vorticity (irrotational flow), while
the simplest example of nonuniform currents are flows with constant nonzero vorticity.
The most regular and predictable currents are the tidal currents, and they are the most
significant currents on areas of the continental shelf and in many coastal inlets [18].
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Tidal currents are the alternating horizontal movements of water associated with the
rise and fall of the tide: the current associated with a rising tide, called the flood, and
the current associated with a falling tide, called the ebb. Positive constant vorticity
ω > 0 is appropriate for the modeling of the ebb current and negative constant
vorticity ω < 0 for the flood current; cf. the discussion in [6, 14]. On the other
hand, the prime source of some ocean currents like the Agulhas current and the Gulf
Stream are long-duration winds, and a depth-dependent vorticity rather than constant
vorticity is adequate to describe such currents. Also, the outflowing current at the
mouth of an estuary generally exhibits a nonuniform vorticity distribution; cf. [18].

While in some engineering applications attempts were made to approximate rota-
tional wave-current interactions by waves interacting with a suitably chosen uniform
underlying current, there are major pitfalls associated with such an approach [26].
Experimental results (see [24, 25]) demonstrate the importance of the global vortic-
ity distribution in the study of wave-current interactions. The governing equations
for two-dimensional traveling waves take on the form of a planar nonlinear elliptic
free-boundary problem in a frame moving at the wave speed (see section 2 below).
In the irrotational case this problem can be reformulated as a boundary integral
equation and numerical simulations of the solutions can be obtained by means of dis-
cretizations. The applicability of the boundary integral methods is not restricted to
small perturbations of a flat free surface but hinges on the knowledge of analytical
expressions for the kernel of the integral operators, a feature that reduces its scope.
Other than irrotational flows, boundary integral methods can be used for flows with
constant vorticity since in this setting the problem can be reduced to a nonlinear
free-boundary problem for Laplace’s equation by subtraction of the particular solu-
tion 1

2 ωy
2; see [14, 29]. Let us also point out that for flows of constant vorticity

somewhat different, but nevertheless related, analytical reformulations of the govern-
ing equations rely on the Dirichlet–Neumann operator methodology [1, 2, 13, 12].
However, all these approaches are ineffective in dealing with a continuous noncon-
stant vorticity distribution. The present paper is devoted to two important issues of
the numerical simulation of rotational water waves. The first regards the possibility
of implementing a numerical approach that is not restricted to flows with a uniform
distribution of vorticity, and the second concerns the possibility of an efficient way to
select from the plethora of solutions those representing waves of large amplitude. In
particular, it is desirable to concentrate on genuine waves by avoiding pure currents
(with a flat free surface). We will provide an approach that addresses both issues for
wave-current interactions without flow reversals. For most laboratory experiments
the wave speed c is typically an order of magnitude greater than the maximum of the
horizontal component u of the velocity field (u, v); cf. [26]. However, strong adverse
currents can produce flows with critical layers and stagnation points—curves (in the
moving frame in which the traveling wave is steady) along which u = c and points
where u = c and v = 0, respectively. The absence of critical layers and stagnation
points ensures that no flow reversal occurs and in this case a hodograph transform
permits the reformulation of the governing equations, in a frame of reference moving
at the wave speed, as a nonlinear oblique boundary-value problem for a quasi-linear
elliptic partial differential equation in a fixed rectangular domain; cf. [10]. Among
the solutions of this equivalent form we have laminar flows (pure currents with a flat
free surface and with v ≡ 0 throughout the fluid) as well as genuine waves. Field data
and laboratory measurements show that, unless we deal with a small perturbation of
a flow with a flat free surface, the physical flow parameters wavelength, wave speed,
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relative mass flux, and wave energy do not determine uniquely the specific wave mo-
tion. Pure currents correspond to solutions that are independent of the horizontal
coordinate, irrespective of whether they are considered in the moving frame or after
performing the hodograph transform. To select waves of large amplitude we impose
the constraint of maximizing the L2-norm of the slope of the wave profile, over one
wavelength. We propose a penalization method to solve numerically this constrained
optimization problem in the fixed rectangular domain. This permits us to provide
accurate simulations of the surface water wave but also of the main flow character-
istics (fluid velocity components, pressure) beneath it. While our approach can be
adapted to investigate wave-current interactions in flows with nonconstant vorticity,
we nevertheless choose to illustrate it mainly on flows with a uniform vorticity distri-
bution. On one hand, the assumption of constant vorticity is attractive for analytical
tractability. More importantly, this setting permits us to show that our approach
is sufficiently accurate to capture features of the free surface profile that mark the
contrast with irrotational flows and were highlighted in experimental studies. These
features of the wave profile are also attainable by relying on the boundary integral
method rather than discretizing the bulk, but in gathering information about the flow
beneath the waves the computational advantage of the boundary integral methods,
due to the reduction of the dimension of the problem by one, becomes less relevant as
the issue of the dynamics in the interior of the fluid domain also has to be addressed.
Since our approach is not restricted to flows with constant vorticity and can be easily
adapted to flows with a nonuniform vorticity distribution, we also present the out-
come of the numerical computations for a linear nonconstant vorticity function that
describes negative vorticity confined to the deeper layers of the fluid.

Concerning the practical relevance of our main considerations devoted to traveling
waves in water flows with constant nonzero vorticity, let us note that while flow
reversal occurs in tidal currents and there are periods of “slack water” when there
is little or no horizontal motion, over extended time the flow is unidirectional. For
example, the tidal currents through Cook Strait between the two main islands of
New Zealand is daily in one direction for about 6 h and in the reverse direction for
another 6 h. While the Cook Strait, 30–40 km long and 23 km wide at its narrowest
point, has a particularly irregular bottom topography near the shores, making it one
of the most dangerous and unpredictable waters in the world, there is an extensive
submarine plateau at 140 m depth. The tidal currents here reach speeds up to 3.6 m/s
and surface waves exceeding 10 m in wave height can be observed, with wavelengths
around 150 m, wave height being defined as the overall vertical change in height
between the highest elevation of the wave and the lowest depression. Measurements
of the profile of the current velocity profile indicate the range of within 0.3 m/s for
the vertical variations in magnitude over the water column [30]. Let us also point
out that that tidal currents can reach speeds up to a startling 5.5 m/s between the
Scottish mainland and the Orkney Islands in the Pentland Firth. In the Inner Sound
at this location, away from the coast, the sea bed is almost flat over an area several
km long and more than 1 km wide, at a depth of about 35 m. Wave heights of 4 m
are common and typical values of the vorticity of the tidal currents are γ ≈ ±0.03
s−1, so that the current speed difference between surface and bed is about 1 m/s.
Measurements also show that the mean current speeds are in the range of ±3 m/s
during the 5-h-long flood tide and the 5-h-long ebb tide, when the water moves from
west to east and from east to west, respectively, with no flow reversal; cf. [17].



1516 A. CONSTANTIN, K. KALIMERIS, AND O. SCHERZER

2. Preliminaries. In this section we present the governing equations for periodic
two-dimensional traveling water waves in a flow of constant and variable vorticity over
a flat bed. We also briefly discuss their reformulation, used in [10] to show, by means
of bifurcation theory, the existence of waves of small and large amplitude.

2.1. Steady two-dimensional water waves. Let us first discuss the governing
equations for two-dimensional waves traveling at constant speed and without change
of shape at the surface of a layer of water above a flat bed, in a flow of general vorticity.
Two-dimensionality means that the waves propagate in a fixed horizontal direction,
say X , and the flow presents no variation in the horizontal direction orthogonal to the
direction of wave propagation. For this reason, it suffices to analyze a vertical cross
section of the flow, parallel to the direction of wave propagation. To model sea waves
of large amplitude the assumptions of inviscid flow in a fluid of constant density are
appropriate and the effects of surface tension are negligible—see the discussion in [6].
The assumption of a flat bed Y = −d is also reasonable for a considerable proportion
of the Earth’s sea floor, due to the fact that abyssal plains (sediment-covered regions
that are the flattest areas on Earth, with slopes that do not exceed 10−4) cover almost
half of the Earth’s total sea floor. Consequently, the cross section of the fluid domain
is of the form

D(t) = {(X,Y ) : X ∈ R and − d < y < ξ(X − ct)} ,

where c > 0 is the wave speed, d > 0 is the average depth, and ξ is the profile of the
free surface that oscillates around the flat free surface Y = 0, that is,

(2.1)

∫ L

0

ξ(X − ct) dX = 0 ,

at any fixed time t, L > 0 being the wavelength. Setting the density of the water ρ ≡ 1,
the incompressible Euler equations for the velocity field (U(X − ct, Y ), V (X− ct, Y ))
and the pressure P (X − ct, Y ) are

(2.2)

⎧⎨
⎩

UX + VY = 0 ,
(U − c)UX + V UY = −PX ,
(U − c)VX + V VY = −PY − g ,

in D(t) ,

where g is the gravitational constant of acceleration. The boundary conditions that
select the water waves from the solutions to (2.2) are

(2.3)

⎧⎨
⎩

P = Patm on Y = ξ(X − ct),
V = (U − c)ξx on Y = ξ(X − ct),
V = 0 on Y = −d ,

where Patm is the constant atmospheric pressure. The first condition in (2.3) reflects
the fact that surface tension effects are negligible and permits the decoupling of the
water motion from the air flow above it, the density of the air being 10−3 times that
of the water. The second and third conditions in (2.3) express the fact that the free
surface and the flat bed are interfaces, with no flow possible across them—see the
discussion in [6].

Since the flow is periodic in the X-variable, for computational convenience we
will assume that the normalized period is 2π. To translate our results into physically
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relevant quantities, note that for a wave of wavelength L, the change of variables
(scaling)

(2.4)
X̃ = κX , Ỹ = κY , Ũ = U , Ṽ = V , t̃ = κt ,

ξ̃ = κξ , c̃ = c , P̃ = P , g̃ = κ−1g , d̃ = κd ,

expressed in terms of the (nondimensional) parameter κ = 2π
L , has the effect that the

new variables (dependent and independent) satisfy a periodic system in the tilded
variables of a form almost identical to (2.2)–(2.3), the only difference being that g
should be replaced by g̃ in (2.2). For practical purposes it is useful to keep track of the
way two important physical flow parameters behave under this scaling: the relative
mass flux (relative to the uniform flow at speed c)

M =

∫ ξ(X−ct)

−d
[U(X − ct, Y )− c] dY ,

an expression that can be seen to be independent of (X− ct) due to the first equation
in (2.2) and to the last two relations in (2.3), and the vorticity

ω = UY − VX

that is the hallmark of underlying currents. We have

(2.5) M̃ = κM , ω = κ ω̃ .

The practical significance of the scaling (2.4) is that a normalized wave motion with
wavelength 2π m, relative mass flux 2 m2/s, and vorticity 1 s−1 corresponds, due to
(2.5), to a relative mass flux of the order of 67 m2/s and vorticity ω ≈ 0.03 s−1 for
physically realistic wavelengths of the order L ≈ 210 m.

In a frame moving at the (constant) wave speed, obtained by means of the change
of variables

x = X − ct, Y = y ,

we can restrict our attention to the two-dimensional bounded domain

D = {(x, y) : −π < x < π and − d < y < η(x)} ,
bounded above by the free surface profile

S = {(x, y) : −π < x < π and y = η(x)}
and below by the flat bed

B = {(x, y) : −π < x < π and y = −d} ,
where η(x) = ξ(X − ct). Setting

u(x, y) = U(X − ct, y), v(x, y) = V (X − ct, Y ), p(x, y) = P (X − ct, Y ),

(2.2) can be written as

(2.6)

⎧⎨
⎩

ux + vy = 0,
(u− c)ux + vuy = −px,
(u− c)vx + vvy = −py − g̃ ,

in D ,
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while (2.3) read as follows:

(2.7)

⎧⎨
⎩

p = Patm on S,
v = (u− c)ηx on S,
v = 0 on B .

We denote by

(2.8) γ = uy − vx

the normalized vorticity.
Throughout this paper we restrict our attention to flows for which

(2.9) u < c throughout the fluid ,

a condition that prevents the appearance of stagnation points in the flow and the
occurrence of flow reversals.

2.2. Stream function formulation. Structural properties of the governing
equations (2.6)–(2.7) enable us to reduce the number of unknowns. Note first that
the relative mass flux is constant because of (2.7) we have

p′0(x) =
d

dx

∫ η(x)

−d

(
u(x, y)− c

)
dy

=
(
u(x, η(x)) − c

)
ηx(x) +

∫ η(x)

−d
ux(x, y) dy

=︸︷︷︸
(2.7b)&(2.6a)

v(x, η(x)) −
∫ η(x)

−d
vy(x, y) dy

= v(x,−d) =︸︷︷︸
(2.7c)

0 .

Thus p0 is constant and according to (2.9)

(2.10) p0 =

∫ η(x)

−d

(
u(x, y)− c

)
dy < 0 .

The first equation in (2.6) permits us to introduce the stream function ψ(x, y) as the
unique solution of the differential equations

(2.11) ψx = −v and ψy = u− c in D
subject to

(2.12) ψ(x,−d) = −p0 .
Note that ψ(x, y) is periodic in the x-variable and that the condition (2.7c) implies
that ψ(·,−d) is constant. Moreover, (2.11) and the definition of vorticity yield

(2.13) Δψ = γ(ψ) in D
since one can show (see [10]) that the vorticity is constant along the streamlines
(the level sets of the stream function ψ): in the absence of stagnation points, the
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functional dependence γ = γ(ψ) holds throughout the fluid. The first equation in
(2.7) is equivalent to ψ being constant on S, while (2.10) together with (2.12) ensure
that this constant must vanish, that is,

(2.14) ψ = 0 on S .

On the other hand, by integrating the Euler equation in (2.6) we obtain the fact that
the quantity

(u− c)2 + v2

2
+ g̃y + p+ Γ(−ψ)

equals a constant E throughout D, where Γ(p) is defined by

Γ(p) :=

∫ p

0

γ(−s)ds

and g̃ is given in (2.4). We note that the above is a form of conversation of energy
(see [6]).

Consequently, the governing equations (2.6)–(2.7) can be reformulated in terms
of the stream function as the free-boundary problem

(2.15)

⎧⎪⎪⎨
⎪⎪⎩

Δψ = γ(ψ) in D ,
ψ = 0 on S ,
ψ = −p0 on B ,
|∇ψ|2

2 + g̃y = Q on S ,

where Q = E − Patm, p0 < 0 are constants, and γ is a known function of ψ. Given
p0, we seek values of d and Q for which (2.15) admits a smooth solution ψ(x, y), even
and of period 2π in the x-variable. Evenness reflects the requirement that u and η
are symmetric while v is antisymmetric about the crest line x = 0; here, we shift the
moving frame to ensure that the wave crest is located at x = 0. Symmetric waves
present these features and it is known that a solution with a free surface S that is
monotone between successive crests and troughs has to be symmetric; cf. [8].

2.3. Hodograph transform. Under the assumption (2.9), a partial hodograph
transform leads to a reformulation of the free-boundary problem (2.15) as a nonlinear
oblique boundary-value problem for a quasi-linear elliptic partial differential equation
in a known strip. In this process, the normalized gravitational constant g̃, the relative
mass flux p0, and the vorticity γ are considered to be known, while the average depth
d and the hydraulic head Q are allowed to vary to accommodate the existence of a
flow.

The assumption (2.9) and the definition of the stream function (2.11) yield that
ψ(x, y) is a strictly decreasing function of y throughout the fluid domain D, being
periodic in the x-variable. Moreover, due to (2.12) and (2.14), ψ is constant both on
the bottom B and on the free surface S. The Dubreil–Jacotin transformation [15]

q = x, p = −ψ,

transforms the unknown domain D to the rectangle

(2.16) R = {(q, p) : −π < q < π , p0 < p < 0}
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x πy=−d−π

y

y=    (x)η

p

q πp=p
0

−π

p=0

q=x

p= − ψ

Fig. 1. Dubreil–Jacotin transformation.

(see Figure 1). Let

(2.17) h(q, p) = y + d

be the height above the flat bottom B. Since ψ is a strictly decreasing function of y,
for every fixed x the height h above the flat bottom is a single valued function of ψ
(or, equivalently, p) with

(2.18)

⎧⎪⎪⎨
⎪⎪⎩

hq =
v

u− c
, hp =

1

c− u
,

v = −hq
hp
, u = c− 1

hp
,

and, more generally,

(2.19)

⎧⎪⎨
⎪⎩

∂x = ∂q − hq
hp

∂p , ∂y =
1

hp
∂p ,

∂p =
1

c− u
∂y , ∂q = ∂x − v

c− u
∂y .

Using the change of variables relations (2.19), we get that

γ = ∂yu− ∂xv =
1

hp
∂p

(
c− 1

hp

)
−
(
∂q − hq

hp
∂p

)(
−hq
hp

)

=
hpp
h3p

− −hphqq + hqhpq
h2p

+
−hphqhpq + h2qhpp

h3p
,

while

|∇ψ|2 = v2 + (u − c)2 =
1 + h2q
h2p

.
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These considerations show that the constitutive equations for the height function
h(q, p), which is even and 2π-periodic in q, are

(2.20)

⎧⎨
⎩

H[h] := (1 + h2q)hpp − 2hphqhpq + h2phqq − γ(−p)h3p = 0 on R ,
B0[h] := 1 + h2q(q, 0) + (2g̃ h−Q)h2p(q, 0) = 0 ,
B1[h] := h(q, p0) = 0 .

In the new formulation (2.20), the wave profile η(x) is given by h(q, 0), the wave
height being the difference

(2.21) max
q∈[−π,π]

h(q, 0)− min
q∈[−π,π]

h(q, 0),

while half of (2.21) represents the wave amplitude.

3. Laminar flow and linearized equations. The simplest solutions are the
laminar flows with a flat free surface, representing pure currents. Near such flows a
linearization procedure permits us to obtain the first-order approximations of genuine
water waves, provided that such waves exist—a fact that depends on the specific values
of the physical flow parameters that are involved (see below). These approximations
of the waves capture well the characteristics of waves of small amplitude.

3.1. Laminar flows. Let us discuss the solutions describing parallel shear flows,
with η ≡ 0. In this case the solution h in (2.20) is independent of q: h(q, p) = H(p)
with

(3.1)

⎧⎨
⎩

HL[H ] := Hpp − γ(−p)H3
p = 0 in R ,

BL,0[H ] := 1 + (2g̃H(0)−Q)H2
p (0) = 0 ,

BL,1[H ] := H(p0) = 0 .

Recalling the definition Γ(p) =
∫ p
0
γ(−s)ds, from the previous section, and denoting

Γmax := maxp∈[p0,0] Γ(p) ≥ 0, the explicit solution of (3.1) is given by

(3.2) H(p;λ) =

∫ p

p0

ds√
λ− 2Γ(s)

, p0 ≤ p ≤ 0 ,

provided that λ > 2Γmax satisfies the equation

(3.3) Q = λ+ 2g̃

∫ 0

p0

dp√
λ− 2Γ(p)

with Γ(p) =
∫ p
0
γ(−s)ds and g̃ given in (2.4).

• For constant vorticity γ, (3.2) takes the form

(3.4) H(p;λ) =
2(p− p0)√

λ− 2γp+
√
λ− 2γp0

, p0 ≤ p ≤ 0 ,

provided that the parameter λ > max{0, 2γp0} satisfies the equation

(3.5) Q = λ+
4g̃|p0|√

λ+
√
λ− 2γp0

.
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• For a linear vorticity function of the type γ(ψ) = −γ0ψ with γ0 a positive
constant, (3.2) takes the form

(3.6) H(p;λ) =
1√
γ0

[
arcsin

(√
γ0
λ
p

)
− arcsin

(√
γ0
λ
p0

)]
, p0 ≤ p ≤ 0 ,

provided that the parameter λ > γ0p
2
0 satisfies the equation

(3.7) Q = λ− 2g̃√
γ0

arcsin

(√
γ0
λ
p0

)
.

3.2. Solutions of the linearized equation. We now present the outcome of
the linearization of the system (2.20) near the laminar flow H(p).

We consider a parametrized family of functions of the form

(3.8) ĥ(q, p) = H(p) + bm(q, p) ,

where b ∈ R and the function m is even and 2π-periodic in q, such that

(3.9) H[ĥ](p, q) = O(b2) , B0[ĥ](q) = O(b2) and B1[ĥ](q) = 0 .

Taking the definition of H,B0,B1 from (2.20) into account, we find that H[ĥ](p, q) is
given by

(1 +H2
q (p) + 2bHq(p)mq(q, p) + b2mq(q, p))(Hpp(p) + bmpp(p, q))

− 2(Hp(p) + bmp(q, p))(Hq(p) + bmq(q, p))(Hpq(p) + bmpq(q, p))

+ (H2
p (p) + 2bHp(p)mp(p, q) + b2m2

p(p, q))(Hqq(p) + bmqq(p, q))

− γ(H3
p (p) + 3bmp(p, q)Hp(p) +O(b2)) .

Using the fact that Hq = 0, the expression for H[ĥ](p, q) simplifies to

(1 + b2mq(q, p))(Hpp(p) + bmpp(p, q))

− 2b2(Hp(p) + bmp(q, p)mq(q, p)mpq(q, p)

+ b(H2
p (p) + 2bHp(p)mp(p, q) + b2m2

p(p, q))mqq(p, q)

− γ(H3
p (p) + 3bmp(p, q)H

2
p (p) +O(b2))

= Hpp(p)− γH3
p (p)

+ b(mpp(p, q) +H2
p (p)mqq(p, q)− 3γmp(p, q)H

2
p (p)) +O(b2) .

Similarly,

B0[ĥ](q) = 1 + (2g̃H(0)−Q)H2
p (0)

+ b2Hp(0) ((2gH(0)−Q)mp(q, 0) + g̃Hp(0)m(q, 0)) +O(b2) .

Using the fact that (3.2) and (3.3) yield Hp(0) =
1√
λ
and 2g̃H(0)−Q = −λ, we infer

that

B0[ĥ](q) = 1 + (2g̃H(0)−Q)H2
p (0)

+ b
2

λ

(
−λ3/2mp(q, 0) + g̃m(q, 0)

)
+O(b2) .
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H being a solution to (3.1) shows that ĥ solves (3.9) if and only if m satisfies the
linearized system

(3.10)

⎧⎨
⎩

mpp +H2
pmqq = 3γH2

pmp in R ,

g̃m(q, 0) = λ3/2mp(q, 0) for − π < q < π ,
m(q, p0) = 0 for − π < q < π .

For a general value of λ > 0, the problem (3.10) will admit only the trivial solution
m ≡ 0. However, specific values of λ produce nontrivial solutions:

• In the irrotational case γ ≡ 0 we have that the solution to (3.1) is

(3.11) H(p;λ) =
p− p0√

λ
,

and the nontrivial solution of the linearized equations (3.10) is given by
m(q, p) =M(p) cos(q) with

(3.12) M(p) = sinh

(
p− p0√
λ∗

)
,

where λ∗ > 0 satisfies the dispersion relation

(3.13) λ+ g̃ tanh

(
p0√
λ

)
= 0 ,

the corresponding value of Q being Q∗ = λ∗ − 2g̃p0√
λ∗ . We obtain the linear

solution

(3.14) h∗(q, p; b) =
p− p0√
λ∗

+ b cos q sinh

(
p− p0√
λ∗

)

with b constant. This is the first-order approximation to the solution of the
problem (2.20), up to order O(b2), for small enough b. In terms of the mean
depth d, note that H(0) = d, so that (3.11) yields d

√
λ∗ = −p0 and (3.13)

reads

(3.15)
√
λ∗ =

√
g̃ tanh(d) .

Recall that
√
λ∗ is the speed of the bifurcating laminar flow at its (flat) free

surface, since Hp(0) =
1√
λ
.

• Similarly, in the case of constant nonzero vorticity γ, for

Q∗ = λ∗ − 4g̃p0√
λ∗ +

√
λ∗ − 2p0γ

we get the linear solution

(3.16) h∗(q, p; b) = H∗(p) + b cos q M(p)

with

(3.17) H∗(p) =
2(p− p0)√

λ∗ − 2γp+
√
λ∗ − 2γp0
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and

(3.18) M(p) =
1√

λ∗ − 2pγ
sinh

(
2(p− p0)√

λ∗ − 2γp+
√
λ∗ − 2γp0

)
,

where λ∗ > max{0, 2γp0} is the solution of the dispersion relation

(3.19)
λ

g̃ − γ
√
λ
+ tanh

(
2p0√

λ+
√
λ− 2p0γ

)
= 0.

Since H(0) = d, we can write the left side of (3.19) in the form λ

g̃−γ√λ +

tanh(d), so that

(3.20)
√
λ∗ = −γ tanh(d)

2
±
√
γ2 tanh2(d)

4
+ g̃ tanh(d) ,

where
√
λ∗ is the speed of the bifurcating laminar flow at its (flat) free sur-

face. Setting γ = 0 in (3.20) we recover (3.15). The dispersion relation
(3.20) also hints at a difference between the cases of positive and negative

constant vorticity. Indeed, (3.19) has a unique solution λ ∈ (0, g̃
2

γ2 ) since the
right side is strictly increasing as a function of λ and its values lie between
tanh( 2p0√−2p0γ

) < 0 and ∞ if γ > 0, while for γ < 0 the monotonicity persists

but we have to impose the condition λ > 2p0γ and on this interval the values
range from 2p0γ

g̃−γ√2p0γ
+tanh( 2p0√

2p0γ
) to ∞. Consequently, for the existence of

a solution it is necessary, given γ < 0 and p0 < 0, for g̃ to be sufficiently large.
Due to (2.4), this means that the absence of stagnation points is granted only
for sufficiently large wavelengths.

• In the case of the nonconstant (linear) vorticity we proceed similarly as in
the case if γ(ψ) = const. (see also [19]). Here the function γ(ψ) = −γ0ψ with
γ0 > 0 constant, for

Q∗ = λ∗ − 2g̃√
γ0

arcsin

(√
γ0
λ∗
p0

)

we get the linear solution

(3.21) h∗(q, p; b) = H∗(p) + b cos q M(p),

with

(3.22) H∗(p) =
1√
γ0

[
arcsin

(√
γ0
λ
p

)
− arcsin

(√
γ0
λ
p0

)]
, p0 ≤ p ≤ 0 ,

and

(3.23) M(p) =
1√

λ∗ − γ0p2
sinh (H∗(p)) ,

where λ∗ > γ0p
2
0 is the solution of the dispersion relation

(3.24) λ+ g̃ tanh

[
1√
γ0

arcsin

(√
γ0
λ
p0

)]
= 0.
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Given γ0 > 0 and p0 < 0, note that the expression on the left side of (3.24) is
a strictly increasing function of λ which becomes positively unbounded in the
limit λ→ ∞. Consequently, the existence of a (unique) solution is guaranteed
if and only if g̃ is sufficiently large, that is, for sufficiently large wavelengths.

More precisely, since g̃ = g L
2π , the wavelength should exceed

2πγ0p
2
0

tanh(π/(2
√
γ0))

.

Note that this lower bound vanishes in the irrotational limit γ0 ↓ 0, in which
case (3.24) becomes the classical dispersion relation (3.13).

Since it is known that the wave profile of a periodic traveling-wave in a flow of
constant vorticity (γ(ψ) = const.) or with a linear vorticity (γ = −γ0ψ, γ0 = const.)
and without stagnation points is real-analytic (see [9]), in principle one could pursue
the above first-order considerations by expanding in powers series and identifying
the coefficients at each order. Other than being a tedious exercise, such expansions
are granted only locally and the determination of the radius of convergence seems
out of reach, especially since in the shallow-water regime (that is, for d/L � 1) the
contribution of higher-order terms will tend to dominate so that results obtained by
truncation at a certain order are accurate only for waves of small amplitude [6]. For
these reasons we do not pursue a power series approach.

3.3. Bifurcation. The interpretation of the previous results in the space of
solutions is provided by means of bifurcation theory: near the laminar flows (3.4), as
the parameter λ varies, there are generally no genuine waves, except at critical values
λ = λ∗ determined by the dispersion relation (3.19) for the constant vorticity and
(3.24) for the linear vorticity, respectively. Note that by (3.4) and (2.19), we have
that

√
λ = 1

Hp(0;λ)
= c− u(0, 0), so that this result means that only critical values of

the horizontal fluid velocity of the laminar flows at their flat free surface may trigger
the appearance of waves. Near this bifurcating laminar flow H∗, we have two solution
curves: one laminar solution curve λ 
→ H(p;λ)—where λ and Q are related by (3.5)
for the constant vorticity and (3.7) for the linear vorticity, respectively—and one
nonlaminar solution curve Q 
→ h(q, p;Q) such that hq �≡ 0 unless h = H∗. In [10] it
was shown by means of a degree-theoretical approach (global bifurcation theory) that
the local nonlaminar solution curve can be extended to a global continuum C that
contains solutions of (2.20) with inf(q,p)∈R 1

hp(q,p)
→ 0. This condition is characteristic

of flows such that their horizontal velocity u is arbitrarily close to the wave speed c,
at some point in the fluid, the limiting configuration being a flow with stagnation
points. The global continuum C comprises flows that are not small perturbations of
a laminar flow and therefore represent waves of large amplitude.

4. Optimization. In the following, we consider the numerical solution of the
free-boundary-value problem for water waves with constant vorticity.

We propose a penalization method (PM) for solving the constraint optimization
problem, to minimize

(4.1) E [h] := −
∫ π

−π
h2q(q, 0) dq ,

subject to the PDE constraint that h satisfies (2.20). The energy functional E is
chosen in such a way that it vanishes for laminar flows (for which hq(·, 0) ≡ 0), thus
selecting genuine waves with a nonflat free surface. Due to (2.18) and the second
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boundary condition in (2.7), we can relate the functional E to the slope of the wave
profile:

E [h] = −
∫ π

−π
η2x(x) dx .

This is indicative of the fact that the proposed optimization problem selects waves of
large amplitude. Note that the wave amplitude

a =
η(0)− η(π)

2
=

1

2

∫ π

0

ηx(x) dx

satisfies

a2 ≤ −π
8
E [h].

Also, since (2.1) can be restated in the form
∫ π
−π η(x) dx = 0, Wirtinger’s inequality

[16] ensures ∫ π

−π
η2(x) dx ≤ −E [h] .

We propose the following implementation the PM:
1. Initialize k = 0: Choose a constant ν0 > 0 (typically small). Find an initial

guess h(0) of the solution of (2.20). For initializing h(0) we select h(0)(q, p) =
h∗(q, p; b) which has the following analytical expressions:

[I] (3.14) for γ(ψ) ≡ 0,
[II] (3.16) for γ(ψ) ≡ γ, with γ nonzero constant, and
[III] (3.21) for γ(ψ) = −γ0ψ, with γ0 positive constant,

respectively. These forms guarantee that (3.9) holds.
In order to calculate waves of large amplitude (one branch of the bifurcation
is the laminar flow, and the other branch is the one with high amplitude),
the particular choice of b is important for initialization. On the one hand the
closer b is to 0, the smaller the residual is (cf. (3.9)). On the other hand for
b = 0, h∗(q, p; 0) is a laminar flow, and the PM algorithm is attracted to the
laminar flow solution.

2. k → k + 1: Given h(k) we solve the following linear equation for h, obtained
by freezing the coefficients of lower order from the previous iteration step:

(4.2)

0 =Hl[h
(k)](h)

=(1 + (h(k)q )2)hpp − 2h(k)p h(k)q hpq + (h(k)p )2hqq + γ (h(k)p )3

in R,

0 =Bl,1[h(k)](h)
=1 + (h(k)q )2 + (2gh−Q)(h(k)p )2 for p = 0,

0 =Bl,2[h(k)](h) = h for p = p0 .

The solution is denoted by h(k+1).
For the practical realization we used a 9-point difference scheme for the second
derivative approximations of hpp, hpq, and hqq. In particular, we use the
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central differences for hpp and hqq, we approximate the mixed derivative hpq
by

1

6ΔpΔq
[4hi−1,j + 4hi+1,j + 4hi,j−1 + 4hi,j+1

+ hi−1,j−1 + hi−1,j+1 + hi+1,j−1 + hi+1,j+1 − 20hi,j] ,

and we use central difference quotients for hp and hq. We have chosen the
number of discretization points in (q, p) directions as 60×60, 40×40, respec-
tively (see Figures 9 and 10).

3. Compute h
(k+1)
p . Because we work with a semi-implicit scheme we have to

use a relatively small step-size, which is determined here.

• If h
(k+1)
p > 0, then put νk+1 = νk and update h(k+2)(q, p) = h(k+1)(q, p)+

νk+1h
(k+1)
qq (q, p). We emphasize that h

(k+1)
qq is the steepest descent en-

ergy of the quadratic functional E . From this perspective we might call
this algorithm a steepest descent algorithm.

• Else put νk+1 = 0 and update

h(k+2)(q, p) = F (p)− h(k)(q, p).

The function F is given by F (p) � 2 d
d∗H

∗(p) with d∗ and d being the

depths of H∗(p) and h(k)(q, p), respectively. Using (2.17) we see that
the depth d of a flow h(q, p) can be computed by

d =

∫ π

−π
h(q, 0)dq.

4. Stopping criteria: The algorithm is terminated when the system of equations
(2.20) is satisfied up to small error, i.e.,

• ||Hl[h
(k)](h(k))|| < ε1 and ||Bl,1[h(k)](h(k))|| < ε2

and
• ||h(k) − h(k−1)|| < ε3, or

• 0 < 1/h
(k)
p < ε4, which means that we are close to a stagnation point,

i.e., c− u = 1/hp is positive and close to zero.
If the algorithm is not terminated, then move to the second step.

Remark 1. The parameter ν0 has to be sufficiently small. Actually νk = ν0 as

long as h
(k+1)
p > 0. If this condition is violated the function h(k) is mirrored along

2d/d∗H∗(p) for different p. This transformation “inverts” the profile of the function
h(k). Then the algorithm is continued with νk = 0. This means that then a pure fixed
point iteration (4.2) for (2.20) is realized. The first iteration steps with νk �= 0 move
the approximation away from the laminar solution to the nonlaminar solution.

We are emphasizing that we are actually solving a PDE constraint optimization
problem. They are typically saddle point problems, and therefore have a degenerate
derivative, which a-priori prohibits for instance Newton’s method. The standard
numerical way to implement such problems are augmented Lagrangianmethods, which
perform descents in alternating directions. We have approximated the saddle point
problem with a penalization method, which calculates a global minimizer, avoiding
solving a saddle point problem. The steepest descent method is less efficient than
Newton’s method, of course; however, it is less sensitive to the choice of the initial
guess. As one can see from Figure 2 the initial guess is a significant problem, which
is even more pronounced with Newton’s method.
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(a) The error of the PDE.
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(b) The error of the boundary condition.

Fig. 2. Numerical results for γ = 0. We have used 60×60 discretization points. The L2 norms
of the errors for the iterations (x-axis) for the boundary residual Bl,1 and the equation residual Hl,
are depicted.

In general, our algorithm consists of two parts. The first iterations should attract
the approximations to the nonlaminar solution. After the mirroring step, we are close
to the nonlaminar solution. The semi-implicit method (4.2) converges to the nonlam-
inar solution of the PDE (2.20), which is the standard numerical approach for solving
nonlinear PDEs in a stable way. Thus the first iterations are an auxiliary tool for find-
ing initial guesses for the fixed point iteration to converge to the nonlaminar solution.

The different branches of the third step guarantee that the residuals of the bound-
ary conditions and the differential equations are both decreasing. We have illustrated
this for one example in Figure 2, where the necessity of changing the iteration be-
comes evident. More precisely, for the above algorithm, there is an iteration m that

the condition h
(m+1)
p > 0 fails and we make the update

h(m+2)(q, p) = F (p)− h(m)(q, p) .

After performing one of these mirroring transformation steps the simulations show
that for all k = 1, . . . ,m

||Hl[h
(k)](h(k))|| < ||Hl[h

(k−1)](h(k−1))||
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(a) The quotient of the logarithm for the PDE. (b) The quotient of the logarithm for the
boundary condition.

Fig. 3. Numerical results for γ = 0. The x-axis is counting the number of iterations. The
quotient of the logarithm of the residuals for two successive iterations is depicted here. The fact that
the quotients approach the value 1 from above indicates a linear convergence rate.

and

||Bl,1[h(k)](h(k))|| > ||Bl,1[h(k−1)](h(k−1))||,
as this is also depicted in Figure 2. For k ≥ m+ 2 we find that

||Hl[h
(k+1)](h(k+1))|| < ||Hl[h

(k)](h(k))||
and

||Bl,1[h(k+1)](h(k+1))|| < ||Bl,1[h(k)](h(k))||,
as depicted in Figure 2. We illustrate the rate of convergence, after performing the
mirroring in Figure 3.

5. Results. Throughout this section we use the value g = 9.8 of the gravitational
constant and we fix the relative mass flux p0 = −2.

5.1. Constant vorticity. We present the results of the numerical simulations
for three different cases:

• the irrotational case, γ = 0,
• the case of negative vorticity γ = −2.95,
• the case of positive vorticity γ = 1.

For all the cases we present figures illustrating
• the profile of the water wave, that is, the free boundary S of the fluid (see
Figure 4);

• the streamline pattern beneath the wave, that is, the height h(q, p) along the
streamlines p = −ψ;

• the distribution of the vertical velocity v in the whole fluid (see Figures 5, 6,
and 7);

• the horizontal velocity c−u on the vertical line below the crest in the moving
frame, that is, on the straight line segment {(q, p) : q = 0, p ∈ [p0, 0]} (see
Figure 8);

• the distribution of the pressure beneath the wave (see Figures 9 and 10).
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(a) γ = 0.
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(b) γ = −2.95.
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(c) γ = 1.

Fig. 4. The periodic wave profile S. The q-axis is discretized into segments of length 2π/60
for γ = 0 and γ = 1 and 2π/40 for γ = −2.95. The numerical simulations indicate that for wave-
current interactions in flows with negative vorticity the wave profiles present narrower crests and
broader troughs than those in flows with nonnegative vorticity, while in the latter cases the profile
has reduced overall steepness. These features are confirmed experimentally (see [24]).

(a) h(q, p).
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(b) v(q, p).

Fig. 5. The height h(q, p) of the streamlines and the vertical fluid velocity v(q, p) along stream-
lines, depicted for the irrotational case γ = 0. The q-axis is discretized as described in Figure 4.

Remark 2. The numerical solution of the system (2.20) reveals increasing insta-
bilities with decreasing values of γ. The problems might be due to instabilities in
evaluation of the difference quotients. The increasing instability can be handled by
decreasing the number of discretization points. This is why we could consider γ = 0
with a discretization of 60× 60 and had to use just 40× 40 for γ = −2.95. This also
explains a spatial underresolved visualization.

5.2. Nonconstant vorticity. Here, we illustrate, as a proof of principle, that
our algorithm is able to compute the height of streamlines, also, for nonuniform
vorticities.

In the example we consider the linear vorticity function γ(ψ) = −γ0ψ with γ0 =
0.5 and p0 = −2. In this case the vorticity vanishes on the surface of the wave and
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(a) h(q, p).
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(b) v(q, p).

Fig. 6. The height h(q, p) of the streamlines and the vertical fluid velocity v(q, p) along stream-
lines, depicted for the case γ = −2.95. The increased crest-trough asymmetry of the wave profile,
due to a negative uniform vorticity distribution, is a feature that is replicated by all the streamlines
above the flat bed (in the moving frame). The q-axis is discretized as described in Figure 4.
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(b) v(q, p).

Fig. 7. The height h(q, p) of the streamlines and the vertical fluid velocity v(q, p) along stream-
lines, depicted for the case γ = 1. The interaction with a current of positive vorticity produces
a reduction of the overall wave steepness, compared with the case of an irrotational wave with no
underlying current. This result is consistent with experimental investigations [24]. The q-axis is
discretized as described in Figure 4.

becomes negative beneath it, taking its minimum value at the bottom. The outcome of
the computation of the streamline pattern beneath the wave, that is, the height h(q, p)
along the streamlines p = −ψ, is presented in Figure 11. This numerical simulation
shows that the concentration of the vorticity in the lower fluid layers does not prevent
it from having an effect in the near-surface region, resulting in narrower crests and an
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(a) γ = 0. (b) γ = −2.95. (c) γ = 1.

Fig. 8. The horizontal fluid velocity c − u beneath the wave crest, on the line segment q = 0.
The presence of vorticity leads to significant changes of the velocity profile. The p-axis is discretized
into segments of length −p0/60 for γ = 0 and γ = 1 and −p0/40 for γ = −2.95.
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Fig. 9. The pressure beneath the wave for γ = 0. The figure depicts the deviation of the
pressure from the (constant) atmospheric pressure, p − Patm: vanishing at the free surface p = 0,
it increases as we descend toward the flat bed p = p0, the maximum being attained on the bed just
below the wave crest (located in the middle of the horizontal segment for the discretization we have
made).

enhanced maximum steepness of the wave profile (compared with irrotational flow;
see Figure 5). These features are observed in experiments and field observations (see
[18, 24]). Note also that while these features are similar to those typical for a constant
negative vorticity (see Figure 6), the contrast to the irrotational case is less striking
due to the fact that in the subsurface region the deviation from irrotational flow is
relatively small.
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(a) γ = −2.95.
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(b) γ = 1.

Fig. 10. The pressure beneath rotational water waves. These results show that the sign of
the vorticity plays a significant role. The pressure fluctuations at or near the seabed are of great
practical relevance since they are frequently used to determine the wave conditions in shallow coastal
waters (see the discussion in [7, 23]).
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Fig. 11. The height h(q, p) of the streamlines, depicted for the rotational case with linear
vorticity. The x-axis (q-axis) is discretized into segments of length 2π/60.

6. Conclusion. In the present paper we proposed a penalization method for
computing two-dimensional traveling water waves. We provided an iterative algorithm
that starts with an approximation of a solution of the system (2.20) and converges
to a solution which corresponds to a water wave of large amplitude. The formula of
the initial approximation is given by (3.16) for the nonzero constant vorticity case;
the irrotational case is given as a special case by simply substituting γ = 0. While
we emphasize the case of constant vorticity, the approach can be implemented fairly
easily for more general vorticity distributions. In particular, the formula for the initial
approximation is given by (3.21) for the linear vorticity function γ(ψ) = −γ0ψ with
γ0 > 0 constant; the irrotational case can be recovered from this by taking the limit
γ0 → 0.
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Moreover, our pursuit for a better approximation of a nonlaminar solution (which
would serve the initial step of our iterative algorithm) has lead to novel analytical re-
sults. In particular, explicit formulas that approximate nonlaminar (large amplitude)
traveling water waves with constant vorticity are obtained. The relevant analysis and
formulas are to be presented in upcoming work.
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