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Abstract

This work extends the existing convergence analysis for discrete
approximations of minimizers of convex regularization functionals. In
particular, some solution concepts are generalized, namely the stan-
dard minimum norm solutions for squared norm regularizers and the
R-minimizing solutions for general convex regularizers, respectively. A
central part of the work addresses finite dimensional approximations
of solutions of ill-posed operator equations with basis functions defined
on hexagonal grids, which require the novel solution concept.

1 Introduction

This work is concerned with a follow-up to the paper [27], where we derived
a convergence analysis for discrete approximations of minimizers of convex
regularization functionals.

The general formulation is as follows: We are given an operator F : U →
V, where U and V denote infinite dimensional Banach spaces. Moreover, we
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are given noisy data vδ (that are realizations of the ideal data v) and we
wish to determine an approximation of a solution u† of the equation

F (u) = v , (1)

using the available data vδ only. Based on the available prior information on
the solution, we restrict our attention to R-approximate minimizing solu-
tions of the equation, that are solutions of (1) which approximately minimize
a suitable convex and proper functional R. To achieve this goal, our method
of choice is convex variational regularization with not-necessarily quadratic
fit-to-data term which, for given α > 0, approximates an R-minimizing
solution of (1) by a minimizer uδα of the functional

u→
∥∥∥F (u)− vδ

∥∥∥p + αR(u) , p > 1.

For the numerical realization, we consider a sequence of finite dimen-
sional subspaces (of increasing dimensionality)

{Un ⊆ U}n∈N

and a sequence of operators
{Fm}m∈N

approximating F in an appropriate sense.
Thus, one obtains a sequence of elements uα,δm,n ∈ D(Fm) ∩ D(R), which

minimizes the functionals

u→
∥∥∥Fm(u)− vδ

∥∥∥p + αR(u) , p > 1 (2)

over Un, respectively. The results in [27], which generalize the results of [25]
from a Hilbert space setting to a Banach space setting (see also Sections
4.1.1-4.1.2 in [31] regarding the corresponding infinite dimensional frame-
work), show that

1. uα,δm,n → u† in a weak sense and

2. R(uα,δm,n)→ R(u†) for m,n→∞ and δ, α(δ,m, n)→ 0 in an appropri-
ate manner.

Earlier, in [25] we considered the particular case R(u) = ‖u− u0‖2 (for
some given u0 ∈ U) and operators Fm between Hilbert spaces, in which case
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the two results on weak convergence and convergence of the regularization
functional guarantee that

uα,δm,n → u† strongly.

The regularization method with finite dimensional approximations consid-
ered in this paper cannot be analysed with previous settings ([25, 27]), and
requires a weaker form of convergence for n,m→∞, which will be specified
in Section 2.

Important applications are finite dimensional realizations of total varia-
tion minimization, which was introduced in [29]. Note that such realizations
correspond to the most commonly used finite difference methods, for which
our analysis now provides a general convergence framework. In contrast,
implementation of regularization techniques with continuous finite element
approximations can be analysed with the general results of [27]. The par-
ticular case of total variation minimization discretized by continuous finite
elements has been studied before in [8]. The present paper deals also with
piecewise constant approximations of bounded variation functions in the
context of anisotropic total variation minimization. The drawback of the
approach is that it is directionally sensitive. There are attempts in the liter-
ature to employ the isotropic version of the total variation seminorm; these
use triangles instead of squares - see, e.g., [7]. Another idea for preserving
rotational features in imaging is using hexagonal pixels, because hexagons
better approximate circles than squares.

A central part of the current work concerns finite dimensional approxi-
mations of solutions of (1) with basis functions defined on hexagonal grids.
For piecewise constant functions on regular hexagonal grids we find another
application where the convergence analysis of [25, 27] is not reliable any-
more, and the new approach of this paper becomes necessary.

Aside from theoretical consideration, this work has also practical rel-
evance because hexagonal arrays are already implemented in photo-films,
electronic paper [21], large-scale media displays and also large optical re-
flecting telescopes. In all these applications it is favourable to incorporate
the hexagonal grid structure into the mathematical algorithm - see also [20]
for references on hexagonal coordinate systems related topics. The idea of
approximating bounded variation functions on hexagonal pixels has already
been considered in a number of image or signal processing papers with re-
markable implementation results - see, for instance [16] (more references to
select from a long list from vision), and references in [24]. The aim here is
to support this idea from a theoretical viewpoint.
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This paper is organized as follows: In Section 2 we present a conver-
gence analysis for generalized variational regularization methods. Section
3 is concerned with applications to generalized total variation minimiza-
tion and in particular with applications to total variation minimization on
hexagonal grids (Subsection 3.1). Section 4 presents practical realization for
generalized total variation denoising and numerical results.

2 General Convergence Results

Before we state the main result on finite dimensional regularized approxi-
mations, we clarify the notation.

Let D(F ) and D(R) stand for the domains of the operator F and of
the proper convex functional R, respectively. By u† we denote an R-
minimizing solution of the inverse problem F (u) = v, that is u† solves
minR(u) subject to F (u) = y. Here we are concerned with approaching
R-approximate minimizing solutions.

Definition 1. An R-approximate minimizing solution ũ ∈ D := D(F ) ∩
D(R) is an element which satisfies

R(ũ) ≤ cRR(u) for all u ∈ S and for some cR ≥ 1, (3)

where S denotes the feasibility set, which is defined by

S := {u ∈ D, F (u) = v} .

In the case cR = 1, this is just the concept of an R-minimizing solution.
We will later give an example where cR depends on the structure of the

finite dimensional subsets that one uses for the approximation of the space
U .

Remark 1. Observe that an R-approximate minimizing solution ũ is actu-
ally an ε-minimizer of the functional R over S for a certain ε ≥ 0 (see, e.g.
[3, Section 3.1.3]:

R(ũ) ≤ cR inf
u∈S
R(u) = inf

u∈S
R(u) + ε,

with ε = (cR − 1) infu∈SR(u).

We assume that the available data vδ of v satisfy∥∥∥vδ − v∥∥∥ ≤ δ . (4)

4



The method of choice is Tikhonov regularization with a norm power as
a fit-to-data term, that is, it consists in minimizing the functional

u→ F(u) :=
∥∥∥F (u)− vδ

∥∥∥p + αR(u)

over D, with p > 1. Actually, we discretize this problem by working in finite
dimensional subspaces Un, namely by considering the minimization of the
functional Fm defined by

u→ Fm(u) :=
∥∥∥Fm(u)− vδ

∥∥∥p + αR(u) (5)

over Dm,n, where Fm and Dm,n are approximations of F and D, respectively.
We base our analysis on the following assumptions and conventions,

which are summarized from [28, 23, 30, 27, 26].

Assumption 1. 1. The Banach space U is considered with two topolo-
gies: the strong topology induced by the norm and a weaker topology
τ .

2. V is a reflexive Banach space. The according weak and strong conver-
gence are denoted by ⇀, →, respectively.

3. The power p satisfies p > 1.

4. The operator F : D ⊆ U → V is sequentially τ -weakly closed. That is,
if

{uk} ⊂ D , uk →τ u and F (uk) ⇀ v

then
u ∈ D and v = F (u) .

Moreover, F is continuous with respect to the norm topologies on U ,V,
respectively.

5. The functional R is proper, convex, non-negative and sequentially τ -
lower semi-continuous on U .

6. {Un} is a family of subspaces of U .

7. The operators Fm : D(Fm) ⊆ U → V satisfy the following properties:

• For every pair of indices m,n,

∅ 6= Dm,n := D(Fm) ∩ Un ∩ D(R) ⊆ D

and Dm,n is τ -closed.
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• For every m ∈ N, Fm is weakly continuous, i.e.,

ul →τ u⇒ Fm(ul) ⇀ Fm(u) .

• Moreover, we assume that

‖F (u)− Fm(u)‖ ≤ ρm,n, ∀u ∈ Dm,n and lim
m,n→∞

ρm,n = 0 . (6)

8. For every M > 0, α > 0, v ∈ V, m ∈ N, the sets {u ∈ Dm,n : Fm(u) ≤M}
are τ -sequentially relatively compact.

In this context, one can state well-posedness and stability of the proposed
variational regularization (see, e.g., [27, Proposition 2.3]):

Proposition 1. Let m,n ∈ N and α, δ > 0 be fixed. Then, for every vδ ∈ V
there exists at least one minimizer uα,δm,n ∈ Dm,n of the functional Fm.

Moreover, the minimizers of (5) are stable with respect to the data vδ in
the following sense: if {vk}k∈N converges strongly to vδ, then every sequence
{uk}k∈N of minimizers of (5) where vδ is replaced by vk has a subsequence
{ul}l∈N which converges with respect to the topology τ to a minimizer ũ of
(5) and such that {R(ul)}l∈N converges to R(ũ), as l→∞.

For instance, [27] discusses the setting U = BV (Ω) (the space of bounded
variation functions) with τ being the weak-star topology in BV (Ω).

As regards convergence, we assumed in [27] that U =
⋃
n Un

d
for some

metric d that was connected to the regularization functional. We showed
that the minimizers of the finite dimensional Tikhonov minimization prob-
lem converged to an R minimizing solution of the original problem. Now
we are in the situation that we cannot find such a metric, hence we have to
weaken our solution concept.

Theorem 1 below is technically standard aside that we weaken the as-
sumptions on the finite dimensional subspaces Un. Thus, a proof of this
theorem is added to highlight the new scenario.

Theorem 1. Let Assumption 1 be satisfied.
Moreover, assume that:

1. There exist an R-minimizing solution u†, a sequence φm,n ∈ Dm,n :=
Un ∩ D(Fm) ∩ D(R) and a constant cR ≥ 1, such that

φm,n →τ u
† and lim sup

m,n→∞
R(φm,n) ≤ cRR(u†) . (7)
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2. α := α(m,n, δ) is chosen such that

α→ 0 ,
δp

α
→ 0 ,

ρpm,n
α
→ 0 , (8)

and
‖F (φm,n)− v‖p

α
→ 0 for δ → 0 , m, n→∞ . (9)

Let δk → 0, nk,mk →∞, and denote by αk := α(mk, nk, δk), Dk := Dmk,nk

and

uk := uαk,δk
mk,nk

∈ argminu∈Dk

{∥∥∥Fmk
(u)− vδk

∥∥∥p + αkR(u)
}
.

Then {uk} has a subsequence {ul} such that ul →τ ũ, where ũ is an R-
approximate minimizing solution.

Proof. Let us denote φk := φmk,nk
, then from the definition of uk, (4) and

(6), it follows that

‖Fmk
(uk)− vδk‖p + αkR(uk)

≤‖Fmk
(φk)− vδk‖p + αkR(φk)

≤(‖Fmk
(φk)− F (φk)‖+ ‖F (φk)− F (u†)‖+ ‖F (u†)− vδk‖)p + αkR(φk)

≤(ρmk,nk
+ ‖F (φk)− v‖+ δk)

p + αkR(φk).
(10)

Therefore,

R(uk) ≤
(ρmk,nk

+ ‖F (φk)− v‖+ δk)
p

αk
+R(φk) .

Using Assumptions (9) and (7) it follows that

lim sup
k→∞

R(uk) ≤ cRR(u†). (11)

Since F is sequentially τ -weakly closed, it follows from (7)

lim
k→∞

‖F (φk)− F (u†)‖ = lim
k→∞

‖F (φk)− v‖ = 0 .

Taking into account that the right hand side of (10) tends to 0 and vδk → v
for αk → 0, it follows that

Fmk
(uk)→ v . (12)
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Now (6), (12), (11) and the compactness hypothesis in Assumption 1 yield
existence of a subsequence {uj}j∈N which is τ -convergent to some solution
ũ of (1). Due to the lower semi-continuity of R and (11), we get

R(ũ) ≤ lim inf
j→∞

R(uj) ≤ lim sup
j→∞

R(uj) ≤ cRR(u†).

The fact that u† is an R-minimizing solution implies R(u†) ≤ R(ũ) and
yields the conclusion.

The essential difference to our previous work [25, 27] is that we consider
here R-approximate minimizing solutions, which requires condition (7) in
the analysis. We briefly sketch the different assumptions and results in the
current work, as compared to [25, 27].

U Hilbert space uk → u† in norm [25]

U Banach space, finite dimensional sub-
spaces Un are dense with respect to a met-
ric connected to R

uk →τ u
†,

R(uk)→ R(u†)
[27]

U Banach space, there is no metric such
that the finite dimensional subspaces Un
are dense with respect to this metric, (7)
holds

uk →τ ũ,
R(ũ) ≤ cRR(u†)

Here

3 Generalized Total Variation Minimization

In the literature, the anisotropy of numerical finite difference implementa-
tions of isotropic total variation regularization has been widely discussed
[12, 32, 2].

In the following we investigate total variation (TV) regularization with
generalized TV-seminorms, consisting in minimization of the functional

F(u) =
∥∥∥F (u)− vδ

∥∥∥2
+ αTVg(u) .

Here TVg denotes a generalized TV -seminorm, defined below, which is adapted
to particular grid structure of the finite dimensional approximations.

Definition 2. Generalized total variation seminorm: Let g : Rn →
[0,+∞) be a norm on Rn. Define

TVg(u) = sup

{∫
Ω
u(x)∇ · ψ(x) dx : ψ ∈ C∞0 (Ω;Rn), g∗(ψ(·)) ≤ 1

}
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for u ∈ BV (Ω), where g∗ : Rn → [0,+∞] is the dual of the norm g, that is

g∗(v) := sup {〈v, w〉 : w ∈ Rn, g(w) ≤ 1} .

Remark 2. i) We emphasize that for smooth functions u ∈ C1
0 (Ω) one

has

TVg(u) =

∫
Ω
g(∇u(x)) dx .

ii) Let p ∈ [1,+∞) and let p∗ be its conjugate number. Then for g(·) = |·|lp
one has the standard TV -seminorm:

TVlp(u) = sup

{∫
Ω
u(x)∇ · ψ(x) dx : ψ ∈ C∞0 (Ω;Rn), |ψ(·)|lp∗ ≤ 1

}
.

Finite dimensional approximations of TV-minimization for a fixed pa-
rameter α have been analyzed in detail in a functional analytical setting -
see, e.g. [17], [8]. We refer for instance to [8], where TVg = TVlp , with
p = 1, 2 have been investigated in the case of linear operators F . The gen-
eral setting of our work applies in principal to non-linear problems, however
the core of this work are approximations of (1) by general TV-seminorms
minimization.

We emphasize that the regularization results of this paper rely essentially
on the penalty-approximation type assumption (7), which in this particular
case means the approximation of functions of bounded variation on different
grids.

We summarize below BV-function approximation results according to
[8] and [7], where un denotes the finite dimensional approximation of a BV-
function u:

grid subdivision Ansatz-function

rectangles regular linear TVl2(un)→ TVl2(u) [8]
rectangles regular pcw. const. TVl1(un)→ TVl1(u) [8]
rectangles flexible triangles pcw. const. TVl2(un)→ TVl2(u) [7]

Under quite general conditions, similar convergence results hold for finite
dimensional approximations of TV-minimization to a solution of the TV-
minimization problem in the infinite dimensional setting involving a linear
operator F , cf. [8].
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3.1 Total Variation Minimization with Piecewise Constant
Functions on Hexagonal Grids

What is missing in the table above is the convergence of piecewise con-
stant approximations of BV-functions witrh respect to the isotropic TVl2-
seminorm on regular grids.

In the beginning we specify the terminology and specifications which will
be used throughout this section.

• We restrict attention to the 2-dimensional domain Ω = (0, 1)×
(

0,
√

3
2

)
.

• Let {Ωm}m∈In be a minimal, non-overlapping covering of Ω, consisting
of hexagons whose centers are aligned on lines parallel to the x-axes,
one center being (0, 0). For every n ∈ N, let hn = 1

2n be the distance
between centers of neighboring hexagons. The following situation is
considered: If one divides Ωm into two halves, then the left half is an
open set and the right one a closed set, as shown in Figure 2 left. In
this way one obtains a non-overlapping covering of Ω.

Two hexagons with centers ξm, ξp ∈ Ω are neighbors if their closures
have a common line segment.

Other choices of hn are possible but more complicated to handle: The
choice hn = 1

n , for instance, leads to complicated situations of bound-
ary hexagons, which we attempt to avoid. See Figure 1 top right.

• Let I◦n be the index set of hexagons Ωm that do not touch the boundary
of Ω and denote Ω4n = {Ωm,m ∈ I◦n}.

• Let ξm be a center of a hexagon Ωm ∈ Ω4n . We denote the right, top
and bottom neighboring hexagon centers (see Figure 2) by ξm1 , ξm2 , ξm3

and define

M+
m:= Triangle(ξm, ξm1 , ξm2), M−m:= Triangle(ξm, ξm1 , ξm3) .

If either two of the ξm1 , ξm2 , ξm3 are not defined, we set M+
m= ∅ and

M−m= ∅, respectively.

• Moreover, we define the space of piecewise constant functions on the
hexagonal grid as

Un :=

un : un =
∑
m∈I◦n

umχΩm , u
m ∈ R

 . (13)
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n = 2, hn = 1
2

1

√
3
2

h = 1
3

n = 3, hn = 1
4 n = 4, hn = 1

8

Figure 1: Refinement of Ω.

Note that we only sum over interior hexagons. In this way, when calcu-
lating the derivative, we do not have to take care about the boundary
hexagons and thus, the sums in the proofs get less complicated. Since
there are approximately 4 1

hn
boundary hexagons, and the total area

of those is given by O(hn), we can neglect them in our asymptotic
expansions, as the following calculations show.

• Denote by ex1 and ex2 the unitary vectors in x1 and x2 direction, and
set

e1 = ex1 =

(
1
0

)
e2 = cos(60◦)ex1 + sin(60◦)ex2 =

(
1
2√
3

2

)
,

e3 = cos(−60◦)ex1 + sin(−60◦)ex2 =

(
1
2

−
√

3
2

)
.

(14)
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Ωm

ξm ξm1

ξm2

ξm3

M+
m

M−
m e1

e2

e3 E1

E2E3

Figure 2: Notation: ξm, ξmi . Hexagonal coordinate-system.

• Moreover, set

E1 =

(
0
−1

)
, E2 =

(√
3

2
1
2

)
, E3 =

(
−
√

3
2

1
2

)
. (15)

The vectors are depicted in Figure 2.

In the following we introduce hexagonal norms on R2:

Definition 3. Let v = (v1, v2) ∈ R2. Define the following hexagonal norms:

|v|7 :==
1√
3

3∑
k=1

|〈Ek, v〉| (16)

and

|v|7T :==
1

2

3∑
k=1

|〈ek, v〉| . (17)

Remark 3. • |·|7 and |·|7T are norms on R2. Their levelsets are hexagons
- see Figure 3.

• One has |ek|7 = 1 and |Ek|7 = 2√
3

for all k = 1, 2, 3. Moreover one

has
3

4
|v|7 ≤ |v|7T ≤ |v|7 , ∀v ∈ R2 .

Recall the strict convergence metric notion (see [1, Definition 3.14], [7])

d(u, v) = ‖u−v‖L1 + |TVlp(u)−TVlp(v)| , ∀u, v ∈ BV (Ω) , p ∈ [1,+∞).

According to [8], for p = 1, functions of bounded variation can be approx-
imated by piecewise constant functions on a uniform rectangular grid with
respect to the strict convergence metric.
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| · |7T -levelset

| · |7-levelset

Figure 3: Levelsets of the hexagonal norms.

Now, we are interested in answering the question whether there exists
a norm g, such that every function u ∈ BV (Ω) can be approximated by
piecewise constant functions on hexagonal grids with respect to the metric

d(u, v) = ‖u− v‖L1 + |TVg(u)− TVg(v)| , ∀u, v ∈ BV (Ω) . (18)

The answer to this question is no, as shown in the following lemma.

Lemma 1. There exists no norm g on R2 which satisfies the following two
conditions:

(i) g(e1) = g(e2) = g(e3);

(ii) The length of vertical and horizontal lines are preserved, after approx-
imating these lines on a hexagonal grid.

Proof. Assume that there exists a norm g fulfilling (i)-(ii). Let Lh, Lv be a
horizontal and a vertical line in the domain Ω, respectively, positioned as in

Figure 5. The length of line Lh is equal to 2
√

3
2 g(e1) (see Figure 2).

When approximating the line Lh by boundaries of the hexagon, it is
replaced by the two line segments a1,b1. These two lines have the same
length as the vectors E2, E3, respectively. Because the length of the line
segments a1, b1 equals the lengths of E2, E3, respectively, it follows that

g(
√

3e1) = g(E2) + g(E3) . (19)

Lv is approximated by the three line segments a2,b2,c2 and d2. These four
lines have the same length as the vectors E2, E1, E3, E1, respectively. The
second condition to hold then requires:

g(3 · E1) = g(2 · E1) + g(E2) + g(E3) ,

13



Lh

a1 b1

e1

Lv

a2

c2

b2

d2

e1

e2

e3
E1

E2E3

Lh
Lv

Figure 4: Illustration of the proof of Lemma 1.

which implies that
g(E1) = g(E2) + g(E3) . (20)

From (19), (20) it then follows that

g(E1) =
√

3g(e1) . (21)

This, together with the fact that E1 = 1√
3
(e2−e3) and the condition g(e1) =

g(e2) = g(e3) shows that

√
3g(e1) = g(E1) =

1√
3
g(e2 − e3) ≤ 1√

3
(g(e2) + g(e3)) =

2√
3
g(e1) ,

which is a contradiction. Next we can consider a grid-refinement as in Figure
5 (right). In this case, one obtains again (19) and (20) for Lh and Lv,
respectively. These lead to a contradiction to the assumption that g is a
norm.

Theorem 2. Let g be a norm on R2 satisfying

g(ei) = 1, ∀i = 1, 2, 3. (22)

Then Un given by (13) is a subset of BV (Ω) , ∀n ∈ N, and for each un ∈ Un

TVg (un) =
∑
m∈In

∑
k=1,2,3

|um − umk |H1 (∂Ωm ∩ ∂Ωmk
) . (23)
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Here the index mk denotes the index of the hexagon neighbor to the one
of index m in direction +ek, and ∂Ωm ∩ ∂Ωmk

= ∅, umk
= 0 if Ωm has no

neighbor in direction ek. Moreover, the following convention is used: um = 0
for m 6∈ I◦n, so that

un =
∑
m∈In

umχΩm =
∑
m∈I◦n

umχΩm ∈ Un .

Proof. In this proof, d(∂Ωm) denotes the 1-dimensional measure on the
boundary of Ωm and nΩm stands for the normal vector field on the bound-
ary of Ωm. We consider on BV (Ω) the norm defined by means of the TVg
seminorm. In order to show that Un ⊂ BV (Ω), it suffices to prove (23).

Note that sup
{〈
ek,

v
g∗(v)

〉
: v ∈ R2

}
is taken for v = ek (Cauchy-Schwarz

in the case for linear dependent vectors in a finite dimensional space). Hence,
since g(ek) = 1 we have

g∗(ek) = sup {〈ek, v〉 , g(v) = 1} = 〈ek, ek〉 = 1 .

With the same argument we obtain

arg sup
v
{〈ek, v〉 : g∗(v) = 1} = ek , sup

v
{〈ek, v〉 : g∗(v) = 1} = 1 . (24)

For m, k we can find a function φm,k ∈ C∞0 (Ω,R2) with φm,k = ek on
(∂Ωm∩∂Ωmk

)◦ (boundaries without the endpoints of the common segment)
and φm,k = 0 on all the other boundaries (∂Ωm̃ ∩ ∂Ωm̃k

)◦, m̃ 6= m, with
m̃ ∈ I◦n. Then using (24), we see that

sup

{
a

∫
∂Ωm∩∂Ωmk

〈ek, ψ〉 d(∂Ωm) : ψ ∈ C∞0 (Ω,R2) : ‖g∗(ψ)‖L∞ = 1

}
=

= |a|
∫
∂Ωm∩∂Ωmk

〈ek, φm,k〉 d(∂Ωm) = |a|
∫
∂Ωm∩∂Ωmk

〈ek, ek〉 d(∂Ωm)

= |a|H1 (∂Ωm ∩ ∂Ωmk
) ,

(25)
where a ∈ R. Setting B∞0,g∗ :=

{
ψ ∈ C∞0 (Ω,R2) : ‖g∗(ψ)‖L∞ ≤ 1

}
and plug-
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ging in the definition of un we have

TVg(un) = sup

{∫
Ω
un(x)∇ · ψ(x) dx : ψ ∈ B∞0,g∗

}
= sup

{∑
m∈In

∫
Ωm

um∇ · ψ dΩm : ψ ∈ B∞0,g∗
}

= sup

{∑
m∈In

∫
∂Ωm

um 〈nΩm , ψ〉 d(∂Ωm) : ψ ∈ B∞0,g∗
}
.

Note that the vectors of the normal-field nΩm belong to the set {±ek, k = 1, 2, 3}.
We can rearrange the sum in the supremum in the definition of the TVg-
functional and collect the integrals over ∂Ωm∩∂Ωmk

, setting ∂Ωm∩∂Ωmk
= ∅

if Ωm has no neighbor in direction ek. For any ψ ∈ C∞(Ω,R2), one has

TVg(un) = sup

∑
m∈In

∑
k=1,2,3

∫
∂Ωm∩∂Ωmk

(um − umk) 〈ek, ψ〉 d(∂Ωm) : ψ ∈ B∞0,g∗

 .

Recalling (25), we see that the supremum above is taken for the function∑
m∈In

∑
k=1,2,3(um − umk)φm,k, hence we obtain:

TVg(un) =
∑
m∈In

∑
k=1,2,3

∫
∂Ωm∩∂Ωmk

(um − umk) 〈ek, φm,k〉 d(∂Ωm)

=
∑
m∈In

∑
k=1,2,3

∫
∂Ωm∩∂Ωmk

|um − umk | 〈ek, ek〉 d(∂Ωm)

=
∑
m∈In

∑
k=1,2,3

|um − umk |H1 (∂Ωm ∩ ∂Ωmk
) .

Theorem 3. Let g be a norm on R2 satisfying (22) and ‖v‖7T ≤ g(v), ∀v ∈
R2. Then for every u ∈ BV (Ω), there exists a sequence {un} of piecewise
constant functions on hexagons in Un satisfying

lim
n→∞

‖un − u‖L1 = 0 and (26)

TVg(u) ≤ lim inf
n→∞

TVg(un) ≤ lim sup
n→∞

TVg(un) ≤ 4

3
TVg(u).
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Proof. Note first that every ũ ∈ BV (Ω) can be approximated by uk ∈ C∞(Ω̄)
such that ‖uk − u‖L1 → 0 and TVg(uk) → TVg(ũ) (see [18, Theorem 1.17],
which remains valid by replacing

∫
|Du| by TVg(u)).

Therefore, it is sufficient to prove that smooth functions can be approx-
imated in the sense of (26) by piecewise constant functions. To this end,
assume that u ∈ C∞(Ω̄) and define

un(x) :=
∑
m∈I◦n

u(ξm)χΩm(x) ∀x ∈ Ω .

For the sake of simplicity, we only took the sum over interior points, taking
into account an O(hn)-term in the estimates below. We obtain the left
inequality of (26) from the lower semicontinuity of the functional: For k =
1, 2, 3 we have for every ψ ∈ B∞0,g∗∫

Ω
un(x)∇ · ψ(x)dx =

−
∑
m∈I◦n

∫
∂Ωm∩∂Ωmk

(u(ξm)− u(ξmk
)) 〈ek, ψ〉 d(∂Ωm ∩ Ω) +O(hn)

where the index mk denotes the index of the hexagon with a neighbor of
index m in direction ek. The O(hn) term concerns those elements that are
not taken into account in the sum over I◦n. Using (23), we obtain

TVg(un) =
3∑

k=1

∑
m∈I◦n

|u(ξm)− u(ξmk
)|H1 (∂Ωm ∩ ∂Ωmk

)

+O(hn) ‖∇u‖∞

≤
3∑

k=1

∑
m∈I◦n

(|u(ξm)− u(ηmmk
)|+ |u(ηmmk

)− u(ξmk
)|)H1 (∂Ωm ∩ ∂Ωmk

)

+O(hn) ‖∇u‖∞ ,

where ηmmk
=

ξm+ξmk
2 . From the mean value theorem, it follows that there

exist some points akm and bkmk
which belong to the segments [ξm, ηmmk

] and

17



[ηmmk
, ξmk

], respectively, such that the estimate above becomes

TVg(un) ≤
3∑

k=1

∑
m∈I◦n

(∣∣∣〈∇u(akm), ek〉
∣∣∣ hn

2
+
∣∣∣〈∇u(bkmk

), ek〉
∣∣∣ hn

2

)
H1 (∂Ωm ∩ ∂Ωmk

)︸ ︷︷ ︸
=hn√

3

+O(hn) ‖∇u‖∞

≤
3∑

k=1

∑
m∈I◦n

1

2

(∣∣∣〈∇u(akm), ek〉
∣∣∣+
∣∣∣〈∇u(bkmk

), ek〉
∣∣∣)h2

n/
√

3︸ ︷︷ ︸
= 2

3
|Ωk|

+O(hn) ‖∇u‖∞ .

The next step is to take the limit n→∞. Recall that in this case hn →
0 and that the sum over all intermediary points akm, b

k
mk

of the hexagons
{Ωm}m∈I◦n approximates the integral over the domain Ω. Hence, in the
limit, the estimate above becomes

lim
n→

TVg(un) ≤
3∑

k=1

2

3

∫
Ω
|〈∇u, ek〉| dx =

(17)

4

3

∫
Ω
|∇u|7T dx

≤
(22)

4

3

∫
Ω
g (∇u) =

4

3
TVg(u) .

Recall that u is a continuous function and therefore, the last equality holds.

Remark 4. We are interested in how much rectangular or hexagonal grids
influence the change of length when approximating a line segment. Let L(α)
be a line from (0, 0) to (cos(α), sin(α)).

Moreover we denote by L7,n(α), L�,n(α) the approximations of a line
L(α) by hexagonal or squared grid boundaries (see Figure 5).

Set

l7(α) := lim
n→0
H1(L7,n(α)) l�(α) := lim

n→0
H1(L�,n(α)) .

where H1 is the 1-dimensional Hausdorff measure.
Figure 6 illustrates the error of the approximations with respect to the

angle α.
We observe the following:

• There is no angle α such that hexagonal grids preserve the length of
a line, where as rectangular grids preserve the length of lines in the
directions α = k π2 , k ∈ N.
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L(45◦)

L�,n(45◦)
L7,n(60◦)

L(60◦)

Figure 5: We approximate the lines L(α) on a hexagonal and a squared grid.

• For rectangular grids, the worst approximation is for α = π
4 +k π2 . For

hexagonal grids the worst approximation is for α = π
6 + k π3 , but the

error in the length cause by the approximation is smaller than in the
worst case with a rectangular grid.

• The difference of the length-error between best and worst case is much
smaller for hexagonal grids compared to rectangular ones. Hence length-
approximation on hexagonal grids is less anisotropic than on rectan-
gular grids.

To come back to our original problem, we want to find an estimate as in
Theorem 1 (equation (7)) for the approximations on the hexagonal and the
squared grid for the isotropic TVl2 seminorm.

From the lower semi-continuity we obtain:

TVl2(u) ≤ lim inf
n→∞

TVl2(un,�) TVl2(u) ≤ lim inf
n→∞

TVl2(un,7) .

When approximating lines of length 1 on a hexagonal or a squared grid,
the maximal error in length caused by the approximation on the regular grid
is given by 4

3 and
√

2 respectively, such that

lim inf
n→∞

TVl2(un,�) ≤
√

2TVl2(u) lim inf
n→∞

TVl2(un,7) ≤ 4

3
TVl2(u) .
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Figure 6: We see that the relative error of the TVl2-seminorm of an approx-
imated line is smaller in the case where we use hexagonal grids. We never
obtain an error-free approximation.

Hence we obtain

TVl2(u) ≤ TVl2(u�) ≤
√

2TVl2(u)

TVl2(u) ≤ TVl2(u7) ≤ 4

3
TVl2(u) .

This result states that the asymptotic error of the isotropic total varia-
tion caused by numerical approximation is much smaller for hexagonal grids.

4 Application to Image Denoising

This section is devoted to numerical experiments. We consider TV regular-
ization for the problem of image denoising. In this case the operator F is
the identity, and a given noisy image vδ is denoised by finding a minimizer
of

F(u) =
∥∥∥u− vδ∥∥∥p + αTVl2(u),

where p ∈ {1, 2} is chosen according to the type of noise in vδ.
We are mainly interested in comparing the performance of the model

above for standard and hexagonally sampled images, respectively. There-
fore, images are modelled as piecewise constant functions on a partition
{Ωm}m∈In of Ω into either squares or regular hexagons. In either case,
F(u) can be written as
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F(u) =
∑
i

∣∣∣ui − vδ,i∣∣∣p L2(Ωi) + α
∑
i<j

∣∣ui − uj∣∣H1(Ωi ∩ Ωj),

where ui = u|Ωi , v
δ,i = vδ|Ωi and L2 denotes the two-dimensional Lebesgue

measure. In addition we only consider images quantized to the discrete set
{0, 1, . . . , 255}. To make the comparison fair, the two grids should have
(approximately) the same amount of pixels, which means that the hexagons
should have the same area as the squares. For a regular hexagon to have

area h2 it must have side length h
√

2
3
√

3
≈ 0.62h.

Discrete energies like the one above can be minimized efficiently with so-
called graph cut algorithms. Their main idea is to relate the minimization
problem to a series of minimum cut problems on graphs, which in turn can
be solved in low-order polynomial time. Good introductions to graph cuts
can be found in [5, 6]. For their application to TV -based image restoration
we refer to [22, 9, 15, 10, 19, 11]. Below we use the sequential algorithm
from [15] adapted to hexagonal images together with the max-flow algorithm
from [4].

Apart from visually comparing our results, we use two quantitative per-
formance measures: first, the L1 distance between clean image ū and re-
stored image uα,δn divided by |In| (to make up for the fact that the square
and hexagonal images do not have exactly the same amount of pixels)

1

|In|
∥∥∥ū− uα,δn ∥∥∥

L1
. (27)

We also choose L2(Ωi) = 1 in the following experiments so that (27) can
be interpreted as the mean absolute error per sampling point. As a second
measure we use the ratio of correctly restored pixels

1

|In|
∣∣∣{i ∈ In : ūi = uα,δ,in }

∣∣∣ . (28)

Experiment no. 1 We chose the contrast enhanced Shepp-Logan phan-
tom as a test image (Fig. 7a), and sampled it to a rectangular grid of size
256 × 256 and to a hexagonal one of approximately the same resolution.
After adding 60% salt & pepper noise, the images were denoised with an L1

fit-to-data term, which is known to be better suited than an L2 fit-to-data
term to remove this kind of noise. For different values of α, this procedure
was repeated 50 times, in order to compensate for different realizations of
noise. Denoised images are shown in Fig. 7, error plots are given in Fig. 8.

21



(a) Clean phantom. (b) Noisy phantom.

(c) Hexagonal grid, α = 1.1. (d) Rectangular grid, α = 1.

Figure 7: Results of Experiment no. 1. Clean and noisy image opposed to
denoised images for different grids. The values of α have been chosen to
match with optimal performance in terms of l1 distance to ground truth (cf.
Fig. 8a).

Experiment no. 2 Experiment no. 1 was repeated with a different image:
a synthetic cosine with a resolution of 270×270 pixels, see Fig. 9a. The noise
and L1 data term are the same as before. Denoising results are presented
in Figs. 9 and 10.
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(a) Averaged l1 distances plotted against α.
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(b) Averaged ratios of correctly restored pix-
els plotted against α.

Figure 8: Results of Experiment no. 1. Performance measures (27) and (28)
for different regularization parameters.

In contrast to the Shepp-Logan phantom the cosine test image consists
entirely of smoothly varying intensity changes. TV-based denoising, how-
ever, is known to produce cartoon-like images, i.e. minimizers tend to be
composed of subregions of more or less constant intensity separated by clear
edges. This behaviour causes the so-called staircasing effect, which is clearly
visible in Fig. 9c, where the restoration quality is additionally deteriorated
by discretization errors, but also to some extent in 9d.

The error curves in Fig. 8 and even more so in Fig. 10 display a striking
feature: they have significant discontinuities. This peculiarity of L1 − TV
regularization has already been described in [13, 30]. The authors showed
that, in general, the data fidelity of minimizers depends discontinuously on
α, with at most countably many jumps. This behaviour, which is believed to
be determined by the scales of image objects that rapidly merge at certain
critical points, also manifests itself in measures (27) and (28).

Experiment no. 3 The first experiment was repeated with the phantom
being contaminated by additive Gaussian noise of zero mean and a variance
of 25.5, which corresponds to 10% of the range of grey values. Accordingly,
an L2 data term was employed to remove it. Since the L2−TV model does
not preserve the contrast, the number of correctly restored pixel intensities
is close to zero for reasonable values of α. We therefore only plot measure
(27) in Fig. 12. Denoising results are presented in Fig. 11.
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(a) Clean image (b) Noisy image

(c) Rectangular grid, α = 1.3 (d) Hexagonal grid, α = 1.2

Figure 9: Results of Experiment no. 2. Clean and noisy cosine opposed to
magnified portions of denoised image (cf. Fig. 9a) for the two grids. Values
of α have again been chosen to roughly match with optimal performance
according to Fig. 10a.

Experiment no. 4 Experiment no. 1 was repeated once more, but this
time with a natural image, a 256× 256 version of the camera man.

The clean image was resampled to the hexagonal grid by upsampling the
original picture and downsampling it again to a hexagonal grid of approxi-
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(a) Averaged l1 distances plotted against α.
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els plotted against α.

Figure 10: Results of Experiment no. 2. Performance measures (27) and
(28) for different regularization parameters.

mately the same resolution, see Fig. 13. Downsampling was done by taking
medians over hexagonal regions of the upsampled image.

After adding 60% salt & pepper noise, the images were denoised with an
L1 data term. Examples of denoised images are presented in Fig. 14, error
plots can be found in Fig. 15. The latter figure seems to indicate that the
hexagonal structure achieved significantly better results for all reasonable
values of α. This has to be interpreted with care, as it is possible, that the
better performance of the hexagonal grid is caused by the grid conversion
process simplifying the image.

Experiment no. 5 Finally, we would like to compare the two different
grids for one and the same noisy image. Recall that in the previous exper-
iments the clean image was converted to the hexagonal grid first and only
afterwards noise was added. The reason for this is that a generic conver-
sion algorithm destroys the characteristics of the noise, so that an image
corrupted with Gaussian noise, for example, would no longer be so after
conversion.

In a realistic application, however, we are usually given a noisy image
on a rectangular grid. Then we would like to know if conversion to a hexag-
onal grid before denoising (and possible reconversion afterwards) leads to
improved quality of the restored image. Therefore, we now fix a noisy stan-
dard image vδ and convert it with an algorithm that transforms Gaussian
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(a) Noisy image (b) Hexagonal grid

(c) Rectangular grid

Figure 11: Results of Experiment no. 3. Noisy image opposed to denoised
images. The regularization parameter α was set to 250.
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Averaged l1 distances plotted against α.

Figure 12: Results of Experiment no. 3.

noise to Gaussian noise. For this purpose we implemented the conversion
filter h2,2

τ from [14]. Denoising results are depicted in Fig. 16. Apparently
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Figure 13: The two clean images used for Experiment no. 4. Original camera
man image (right) and resampled to the hexagonal grid (left). It should be
noted that the camera man features many edges that are perfectly aligned
to Cartesian coordinates. Naturally those are better captured by a square
pixel grid.

(a) Hexagonal grid (b) Rectangular grid

Figure 14: Results of Experiment no. 4. Denoised images with α = 1.1.

denoising on the hexagonal grid leads to less “blocky” images, that is, it
suffers less from so-called metrication artefacts. On the downside, the re-
conversion to the square grid leads to overshooting artefacts near image
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Figure 15: Results of Experiment no. 4. Performance measures (27) and
(28) for different regularization parameters.

edges.
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[26] C. Pöschl. Tikhonov Regularization with General Residual Term. PhD
thesis, Leopold Franzens Universität Innsbruck, 2008.

[27] C. Pöschl, E. Resmerita, and O. Scherzer. Discretization of variational
regularization in Banach spaces. Inverse Problems, 26(10):105017, 2010.

[28] E. Resmerita and O. Scherzer. Error estimates for non-quadratic
regularization and the relation to enhancement. Inverse Problems,
22(3):801–814, 2006.

[29] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-
4):259–268, 1992.

[30] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen.
Variational Methods in Imaging, volume 167 of Applied Mathematical
Sciences. Springer Verlag, New York, 2009.

[31] T. Schuster, B. Kaltenbacher, B. Hofmann, and K.S. Kazimierski. Reg-
ularization Methods in Banach Spaces. Walter de Gruyter GmbH & Co.
KG, radon series on computational and applied mathematics edition,
2012.

[32] J. Wang and B. J. Lucier. Error Bounds for Finite-Difference Meth-
ods for Rudin-Osher-Fatemi Image Smoothing. SIAM J. Numerical
Analysis, 49(2):845–868, 2011.

32


