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CRITICAL YIELD NUMBERS OF RIGID PARTICLES SETTLING IN
BINGHAM FLUIDS AND CHEEGER SETS∗
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CHRISTIANE PÖSCHL§ , AND OTMAR SCHERZER¶

Abstract. We consider the fluid mechanical problem of identifying the critical yield number
Yc of a dense solid inclusion (particle) settling under gravity within a bounded domain of Bingham
fluid, i.e., the critical ratio of yield stress to buoyancy stress that is sufficient to prevent motion. We
restrict ourselves to a two-dimensional planar configuration with a single antiplane component of
velocity. Thus, both particle and fluid domains are infinite cylinders of fixed cross-section. We then
show that such yield numbers arise from an eigenvalue problem for a constrained total variation.
We construct particular solutions to this problem by consecutively solving two Cheeger-type set
optimization problems. Finally, we present a number of example geometries in which these geometric
solutions can be found explicitly and discuss general features of the solutions.
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1. Introduction. One hundred years ago Eugene Bingham [9] presented results
of flow experiments through a capillary tube, measuring the flow rate and pressure
drop for various materials of interest. Unlike with simple viscous fluids, he recorded
a “friction constant” (a stress) that must be exceeded by the pressure drop in order
for flow to occur, and thereafter postulated a linear relationship between applied
pressure drop and flow rate. This empirical flow law evolved into the Bingham fluid:
the archetypical yield stress fluid. However, it was not until the 1920s that ideas
of visco-plasticity became more established [10] and other flow laws were proposed;
e.g., [27]. These early works were empirical and focused largely on viscometric flows.
Proper tensorial descriptions, general constitutive laws, and variational principles
waited until Oldroyd [42] and Prager [44]. These constitutive models are now widely
used in a range of applications, in both industry and nature; see [5] for an up-to-date
review.

An essential feature of Bingham fluids flows is the occurrence of plugs; that is,
regions within the flow containing fluid that moves as a rigid body. This occurs when
the deviatoric stress falls locally below the yield stress, which is a physical property
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of the fluid. Plug regions may occur either within the interior of a flow or may be
attached to the wall. In general, as the applied forcing decreases, the plug regions
increase in size and the velocity decreases in magnitude. It is natural that at some
critical ratio of the driving stresses to the resistive yield stress of the fluid, the flow
stops altogether. This critical yield ratio or yield number is the topic of this paper.

Critical yield numbers are found for even the simplest one-dimensional (1D) flows,
such as Poiseuille flows in pipes and plane channels or uniform film flows, e.g., paint
on a vertical wall. These limits have been estimated and calculated exactly for flows
around isolated particles, such as the sphere [8] (axisymmetric flow) and the circular
disc [46, 48] (two-dimensional (2D) flow). Such flows have practical application in
industrial non-Newtonian suspensions, e.g., mined tailings transport, cuttings removal
in drilling of wells, etc.

The first systematic study of critical yield numbers was carried out by Mosolov
and Miasnikov [40, 41], who considered antiplane shear flows, i.e., flows with veloc-
ity u = (0, 0, w(x1, x2)) in the x3-direction along ducts (infinite cylinders) of arbi-
trary cross-section Ω. These flows driven by a constant pressure gradient only admit
the static solution (w(x1, x2) = 0) if the yield stress is sufficiently large. Amongst
the many interesting results in [40, 41] the key contributions relate to exposing the
strongly geometric nature of calculating the critical yield number Yc. First, they
show that Yc can be related to the maximal ratio of area to perimeter of subsets of
Ω. Second, they develop an algorithmic methodology for calculating Yc for specific
symmetric Ω, e.g., rectangular ducts. This methodology is extended further by [29].

Critical yield numbers have been studied for many other flows, using analytical
estimates, computational approximations, and experimentation. Critical yield num-
bers to prevent bubble motion are considered in [18, 50]. Settling of shaped particles is
considered in [31, 45]. Natural convection is studied in [32, 33]. The onset of landslides
is studied in [28, 30, 26] (where the terminologies “load limit analysis” and “blocking
solutions” have also been used). In [22, 23] we have studied two-fluid antiplane shear
flows that arise in oil field cementing.

In this paper we study critical yield numbers for two-phase antiplane shear flows,
in which a particulate solid region Ωs settles under gravity in a surrounding Bingham
fluid of smaller density. As the particle settles downwards the surrounding fluid
moves upwards, with zero net flow: a so-called exchange flow. Our objective is to
derive new results that set out an analytical framework and algorithmic methodology
for calculating Yc for this class of flows.

Our analysis naturally leads to the so-called Cheeger sets, that is, minimizers of
the ratio of perimeter to volume inside a given domain. Recently, starting with [34],
many of their properties have been studied, particularly regularity and uniqueness
in the case of convex domains [35, 12]. These sets constitute examples of explicit
solutions to the total variation flow, which has motivated their investigation [3, 6, 7].

A related line of research is the use of total variation regularization in image
processing. In particular, set problems like those treated here appear in image seg-
mentation [15] and as the problem solved by the level sets of minimizers [14, 1, 13] of
the Rudin–Osher–Fatemi functional [47]. The analogy between antiplane shear flows
of yield stress fluids and image processing techniques has been exploited previously
by the authors in the context of nonlinear diffusion filtering using total variation flows
or bounded variation type regularization. In our previous work [21, 24] we exploited
physical insights from the fluid flow problem in order to derive optimal stopping times
for diffusion filtering.
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1.1. Summary and outline. First, in section 2 we write the simplified Navier–
Stokes equations and corresponding variational formulation for the inclusion of a
Newtonian fluid in a Bingham fluid, in geometries consisting of infinite cylinders, and
antiplane velocities.

Section 3 is dedicated to the background theory for the exchange flow problem.
After proving existence of solutions, we make the viscosity of the inclusion tend to
infinity, that is, we study the flow of a solid inclusion into a Bingham fluid.

We then recall the usual notion of critical yield number, seen as the supremum
of an eigenvalue quotient (3.8) in the standard Sobolev space H1, which writes after
simplification as a minimization of total variation with constraints. Since it is well
known that such a problem does not necessarily have a solution in H1, we relax it,
enlarging the admissible space to functions with bounded variation, which ensures the
existence of a minimizer.

In section 4 we study the relaxed problem and show that we can construct mini-
mizers that attain only three values, and whose level-sets are solutions of simple geo-
metrical problems closely related to the Cheeger problem (see Definition 2). We show
how the geometrical properties of Cheeger sets are reflected in the structure of our
three level-set minimizer, and give several explicit examples exhibiting the influence
of the geometry of the domain and the particles in that of the solution. In particular,
we emphasize the role of nonuniqueness of Cheeger sets in the nonuniqueness of our
minimizers.

Finally, section 5 is dedicated to the explicit construction of three-valued solutions
and computing the corresponding yield numbers in simple situations.

It has to be noticed that the restriction to antiplane flows and equal particle
velocities is fundamental in all this work. The in-plane case remains an exciting
challenge.

2. Modelling. As discussed in section 1 we study antiplane shear flows of parti-
cles within a Bingham fluid. Antiplane shear flows have velocity in a single direction
and the velocity depends on the two other coordinate directions. We assume the solid
is denser than the fluid (ρ̂f < ρ̂s) and align the flow direction x̂3 with gravity. In
the antiplane shear flow context, particles (solid regions) are infinite cylinders repre-
sented as Ω̂s ×R ⊆ R3 and moving uniformly in the x̂3-direction. The flows are thus
described in a 2D region (x̂1, x̂2) ∈ Ω̂. The fluid is contained in (Ω̂f := Ω̂\Ω̂s) × R,
and is considered to be a Bingham fluid. The flow variables are the deviatoric stress
τ̂ , pressure p̂, and velocity ŵ, all of which are independent of x̂3. Only steady flows
are considered.

The fluid is characterized physically by its density, yield stress, and plastic viscos-
ity: ρ̂f , τ̂Y , and µ̂f , respectively. We adopt a fictitious domain approach to modeling
the solid phase, treating it initially as a fluid and then formally taking the solid viscos-
ity to infinity. The solid phase density and viscosity are ρ̂s and µ̂s. These parameters
are assumed constant.

The incompressible Navier–Stokes equations simplify to only the x̂3-momentum
balance. This and the constitutive laws are

(2.1) d̂iv τ̂ =

{
p̂x3 − ρ̂f ĝ in Ω̂f ,

p̂x3 − ρ̂sĝ in Ω̂s ,
τ̂ =


(
µ̂f + τ̂Y

|∇̂ŵ|

)
∇̂ŵ in Ω̂f ,

µ̂s∇̂ŵ in Ω̂s ,

where ĝ is the gravitational acceleration. Strictly speaking, the fluid constitutive law
applies only to where |τ̂ | > τ̂Y .
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The above model and variables are dimensional, for which we have adopted the
convention of using the “hat” accent, e.g., ĝ. We now make the model dimensionless
by scaling. In (2.1) the driving force for the motion is the density difference, which
results in a buoyancy force that scales proportional to the size of the particle. Thus,
we scale lengths with L̂:

L̂ =

√
area(Ω̂s) , x = (x1, x2) :=

1

L̂
(x̂1, x̂2) , ∇ = L̂∇̂ , div = L̂ d̂iv.

An appropriate measure of the buoyancy stress is (ρ̂s − ρ̂f )ĝL̂, which we use to scale

τ̂ = (ρ̂s − ρ̂f )ĝL̂τ . For the pressure gradient in (2.1) we subtract the hydrostatic
pressure gradient from the fluid phase and scale the modified pressure gradient with
(ρ̂s − ρ̂f )ĝ, defining

f =
p̂x3
− ρ̂f ĝ

(ρ̂s − ρ̂f )ĝ
.

The scaled momentum equations are

(2.2) div τ =

{
f in Ωf ,

f − 1 in Ωs .

For the constitutive laws, we define a velocity scale ŵ0 by balancing the buoyancy
stress with a representative viscous stress in the fluid:

(ρ̂s − ρ̂f )ĝL̂ =
µ̂f ŵ0

L̂
.

Scaled constitutive laws are

(2.3) τ =
1

ε
∇w in Ωs;

τ =

(
1 +

Y

|∇w|

)
∇w, |τ | > Y,

|∇w| = 0, |τ | ≤ Y,
in Ωf .

We note that there are two dimensionless parameters, ε and Y , defined as

ε :=
µ̂f
µ̂s

, Y :=
τ̂Y

(ρ̂s − ρ̂f )ĝL̂
.

Evidently, ε is a viscosity ratio. Soon we shall consider the solid limit ε → 0, and
thereafter, ε plays no role in our study.

The parameter Y is called the yield number and is central to our study. We see
that physically Y balances the yield stress and the buoyancy stress. As buoyancy is
the only driving force for motion, it is intuitive that there will be no flow if Y is large
enough. The smallest Y for which the motion is stopped is called the critical yield
number, Yc, although this will be defined rigorously later.1

In terms of w the momentum equation is

(2.4)
div
((

1 + Y
|∇w|

)
∇w
)

= f in Ωf ,

div
(

1
ε∇w

)
= f − 1 in Ωs .

1The yield number is sometimes referred to as the yield gravity number or yield buoyancy number.
As the viscous stresses are also driven by buoyancy, an alternate interpretation would be as a ratio
of yield stress to viscous stress, which is referred to as the Bingham number.
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It is assumed that Ω has finite extent and at the stationary boundary we assume the
no-slip condition:

(2.5) w ≡ 0 on ∂Ω .

At the interface between the two phases the shear stresses are assumed continuous,
leading to the transmission condition:

(2.6)
1

ε
∇w · ns +

(
1 +

Y

|∇w|

)
∇w · nf = 0 on ∂Ωs.

Here ns, nf denote the outer unit-normals on ∂Ωs, ∂Ωf , and the equality has to hold
in a weak sense.

We note that for given f and ε > 0 fixed, the solution wf of (2.4), (2.6), (2.5) is
equivalently characterized as the minimizer of the functional

(2.7)

Fε,f (w) := Gε(w) +

∫
Ω

fw with

Gε(w) :=
1

2

∫
Ωf

|∇w|2 +
1

2ε

∫
Ωs

|∇w|2 + Y

∫
Ωf

|∇w| −
∫

Ωs

w

over the space H1
0 (Ω).

3. Exchange flow problem. Physically, as a solid particle settles in a large
expanse of incompressible fluid, its downward motion causes an equal upward motion
such that the net volumetric flux is zero. Here we wish to mimic this same scenario
in the antiplane shear flow context.

Therefore, we are interested in the exchange flow problem, which consists of finding
the pair (w, f) that satisfies the following:

• equation (2.4) and condition (2.6) in a suitable variational sense,
• the homogeneous boundary conditions (2.5),
• and the exchange flow condition

(3.1)

∫
Ω

w(x) dx = 0 .

Note that (3.1) states that the antiplane flow is divergence free. Therefore, we identify
f with a scalar. Two equivalent formulations of this problem are possible:

1. Finding a saddle point of the functional

(3.2) Fε(w, f) := Fε,f (w)

on H1
0 (Ω)×R, with Fε,f from (2.7). In other words, f is a Lagrange multiplier

in the saddle point problem for satisfying the constraint (3.1).
2. Incorporating the constraint (3.1) as part of the domain of definition. Thus

we consider minimization of the functional

(3.3) G�ε (w) :=

{
Gε(w) if w ∈ H1

� (Ω) :=
{
w ∈ H1

0 (Ω) :
∫

Ω
w = 0

}
,

+∞ for w ∈ H1
0 (Ω)\H1

� (Ω) .

We show in Lemma 3.1 that a minimizer of G�ε exists.
In the rest of this paper we focus on the second formulation.
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Lemma 3.1. The functionals Fε,f (·) and G�ε (·) attain their minimum. If the min-
imizer w∗ of Fε,f (·) satisfies

∫
Ω
w∗ = 0, then it is also a minimizer of G�ε (·).

Proof. In order to prove the existence of a minimizer of w 7→ Fε,f (w) for f fixed,
we show that the functional is coercive and lower semicontinuous:

(i) The functional Fε,f (w) is coercive with respect to w. For all δ > 0, and denot-
ing by |Ω| the Lebesgue measure of Ω, it follows from Poincaré’s and Jensen’s
inequalities that

(3.4)

f

∫
Ω

w > − 1

2δ2
f2 − δ2

2

(∫
Ω

|w|
)2

> − 1

2δ2
f2 − δ2

2
|Ω|
∫

Ω

|w|2

> − 1

2δ2
f2 − C δ

2

2
|Ω|
∫

Ω

|∇w|2 .

Similarly, we have

(3.5)

−
∫

Ωs

w > − 1

2δ2
− δ2

2
|Ωs|

∫
Ωs

|w|2 > − 1

2δ2
− δ2

2
|Ω|
∫

Ω

|w|2

> − 1

2δ2
− C δ

2

2
|Ω|
∫

Ω

|∇w|2 .

Summing (3.4) and (3.5) yields

f

∫
Ω

w −
∫

Ωs

w > − 1

2δ2
(f2 + 1)− Cδ2|Ω|

∫
Ω

|∇w|2 .

Now, choosing δ > 0 such that

0 < Cδ2|Ω| < 1

2
min

{
1,

1

ε

}
,

the coercivity with respect to w follows.
(ii) For ε < 1, we now have 2C|Ω| < 1/δ2 and thus we see that Fε,f is bounded from

below by −C (f2 + 1)|Ω|.
(iii) The functional Fε,f is weakly lower semicontinuous: Fε,f can be rewritten as

Fε,f (w) =

∫
Ω

g(x,w(x),∇w(x))dx ,

where p → g(s, z, p) is convex. Since Fε,f is also bounded below, we have (see,
for instance, [4, Thm. 13.1.2]) that Fε,f (w) is weakly lower semicontinuous.

With this (coercivity, boundedness, and weak lower semicontinuity) existence of a
minimizer of w → Fε,f (w) follows immediately (see [4, Thm. 3.2.1]).

The proof of existence of minimizer of F�ε also requires showing that H1
� (Ω) is

weakly closed. Therefore, note first that the set H1
� (Ω) is convex (linearity of the

constraint) and closed with respect to the norm topology on H1
� (Ω). From this we

can conclude that H1
� (Ω) is weakly closed, so that (see [4, Thm. 3.3.2]) the functional

attains a minimum on this subset.

3.1. Solid limit. Now we want to study the behavior of the problem when
µ̂s → ∞ (so that Ω̂s becomes rigid), that is, ε → 0. We will see that it leads to
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minimization of the functional

(3.6)

G� : H1
0 (Ω)→ R ∪ {+∞} ,

w →
{

1
2

∫
Ωf
|∇w|2 + Y

∫
Ωf
|∇w| −

∫
Ωs
w if w ∈ H1

�,c(Ω),

+∞ else,

where we define

H1
�,c(Ω) :=

{
w ∈ H1

0 (Ω) :

∫
Ω

w = 0, ∇w = 0 in Ωs

}
.

Lemma 3.2. The functionals G�ε defined in (3.3) Γ-converge to G� in H1
0 (Ω), that

is, for all w ∈ H1
0 (Ω) and all sequences {εj}j∈N converging to 0 we have the following:

(i) (lim inf inequality) For every sequence {wj}j∈N converging to w in H1 we
have

G�(w) 6 lim inf
j→∞

G�εj (wj).

(ii) (lim sup inequality) There exists a sequence {wj}j∈N converging to w in H1

with

(3.7) G�(w) > lim sup
j→∞

G�εj (wj) .

Proof. Let w ∈ H1
0 (Ω), and let εj → 0+ be a decreasing sequence with limit 0.

(i) For every sequence wj converging to w in H1
0 (Ω), we have

lim
j→∞

∫
Ω

|wj | =
∫

Ω

|w| , lim
j→∞

∫
Ω

|∇wj |2 =

∫
Ω

|∇w|2 ,

lim
j→∞

∫
Ω

wj =

∫
Ω

w, lim
j→∞

∫
Ωs

wj =

∫
Ωs

w,

such that for all w ∈ H1
�,c(Ω)

G�(w) =
1

2

∫
Ωf

|∇w|2 + Y

∫
Ωf

|∇w| −
∫

Ωs

w

6 lim inf
j→∞

(
1

εj

∫
Ωs

|∇wj |2 +
1

2

∫
Ωf

|∇wj |2 + Y

∫
Ωf

|∇wj | −
∫

Ωs

wj

)
6 lim inf

j→∞
G�εj (wj) .

If w is not constant in Ωs, G�(w) = +∞ and also lim infj→∞ G�εj (wj)→∞ since

limj

∫
Ωs
|∇wj |2 6= 0 so that 1

εj

∫
Ωs
|∇wj |2 →∞.

(ii) In the case where w 6∈ H1
�,c(Ω), we have

lim supG�εj (w) =∞ = G�(w).

For w ∈ H1
�,c(Ω) we have that

∫
Ωs
|∇w|2 = 0. This shows that the constant

sequence wj ≡ w satisfies (3.7).
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Since G�ε (·) > G�2 (·), they are equicoercive and we get the following corollary (see
[11, Thm. 1.21]).

Corollary 3.3. The sequence of minimizers of G�ε (·) converges strongly in H1
0

to the minimizer of G�(·) as ε→ 0.

3.2. Critical yield numbers and total variation minimization. We now
want to identify the limiting yield number Y such that the solution of the exchange
flow problem satisfies w ≡ 0 in Ω, i.e., both solid and fluid motions are stagnating.

Definition 1. The critical yield number is defined to be

(3.8) Yc := sup
H1
�,c(Ω)

∫
Ωs
v∫

Ω
|∇v| .

Assume that wc minimizes G�, defined in (3.6). Since u 7→ 1
2

∫
|Du|2 is Gâteaux

differentiable in H1
0 and convex, we have that for any v ∈ H1

�,c(Ω),∫
Ω

∇wc · (∇v −∇wc) + Y

∫
Ω

|∇v| − Y
∫

Ω

|∇wc| −
∫

Ωs

f(v − wc) > 0.

Using v = 2wc and v = 0 (as in [19, sections I.3.5.4 and VI.8.2]), we obtain∫
Ω

|∇wc|2 =

∫
Ωf

|∇wc|2 =

∫
Ωs

wc − Y
∫

Ωf

|∇wc|

6
∫

Ωf

|∇wc|
[

sup
H1
�,c(Ω)

∫
Ωs
v∫

Ωf
|∇v| − Y

]
= (Yc − Y )

∫
Ωf

|∇wc| .

Thus wc ≡ 0 if Y > Yc.

Assumption 3.4. Even if functions in H1
�,c(Ω) could take different values in dif-

ferent connected components of Ωs, in what follows we restrict ourselves to functions
which are constant in Ωs. This assumption covers the cases in which Ωs is connected
(Examples 5.2, 5.3, 5.5), when there are two connected components arranged symet-
rically (Example 5.6), or when a physical assumption can be made that the particles
are linked and have the same possible velocities (Example 5.7).

Under Assumption 3.4 we set v = 1 in Ωs, and therefore, we need to minimize
the total variation over the set

(3.9) H1
�,1(Ω) :=

{
v ∈ H1

0 (Ω) :

∫
Ω

v = 0 , v ≡ 1 in Ωs

}
.

It is easy to see that this functional does not necessarily attain a minimum. Hence
we use standard relaxation techniques.

Relaxation. A function u ∈ L1(R2) is said to be of bounded variation if its distri-
butional gradient Du is a vector valued Radon measure with finite mass, that is,

TV (u) := |Du| (R2) = sup

{∫
Ω

u div z dx : z ∈ C∞0 (R2;R2), ‖z‖L∞ 6 1

}
< +∞.

The class of such functions is denoted by BV (R2). The relaxation of minimizing TV
in H1

�,1(Ω) with respect to strong convergence in L1 (note that the constraints are
preserved) turns out to be [4, Prop. 11.3.2] minimizing total variation over the set

(3.10) BV�,1 :=

{
v ∈ BV (R2) :

∫
Ω

v = 0 , v ≡ 1 in Ωs, v ≡ 0 in R2 \ Ω

}
.
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Since BV�,1 ⊆ BV(Ω̃) and BV(Ω̃) ⊆ L1(Ω̃) with compact embedding (see [2, Cor.

3.49]) for every bounded Ω̃ ⊇ Ω with dist(∂Ω, ∂Ω̃) > 0, the condition
∫

Ω
v = 0 and

compactness in the weak-* topology of BV(Ω̃) (see [2, Thm. 3.23]) imply that there
exists at least one minimizer of TV in BV�,1.

Remark 3.5. Note that the total variation appearing in the relaxed problem is in
R2, meaning that jumps at the boundary of Ω are counted. Likewise, in the rest of
the paper, every time we speak of total variation with Dirichlet boundary conditions
on the boundary of a set A, we mean the total variation in R2 of functions with their
values fixed on R2 \A.

In what follows, we will repeatedly use the relation between total variation and
perimeter of sets. A measurable set E ⊆ R2 is said to be of finite perimeter in R2

if 1E ∈ BV (R2), where 1E is the indicatrix (or characteristic function) of the set E.
The perimeter of E is defined as PerE := TV (1E).

When E is a set of finite perimeter with Lipschitz boundary, its perimeter PerE
coincides with H1(∂E), where H1 is the 1D Hausdorff measure. Moreover, we denote
the Lebesgue measure of E by |E|, so that |E| :=

∫
R2 1E .

We recall the so-called coarea formula for u ∈ BV (R2) compactly supported

(3.11) TV (u) =

∫ ∞
−∞

Per(u > t) dt =

∫ ∞
−∞

Per(u < t) dt,

as well as the layer cake formula, valid for any nonnegative u ∈ L1(R2)

(3.12)

∫
R2

u =

∫ ∞
0

|{u > t}| dt.

For more details on BV -functions and finite perimeter sets, we refer the reader to [2].
Particularly important for our analysis are Cheeger sets.

Definition 2 (see [43]). Let Ω0 be a set of finite perimeter. A set E0 minimizing
the ratio

E 7→ PerE

|E|
over subsets of Ω0 is called a Cheeger set of Ω0. The quantity

λ =
PerE0

|E0|

is called the Cheeger constant of Ω0. If Ω̂ is open and bounded, at least one Cheeger
set exists [36, Prop. 3.5, iii)]. Since being a Cheeger set is stable by union [36, Prop.
3.5, vi)], there exists a unique maximal (with respect to ⊂) Cheeger set.

4. Piecewise constant minimizers. We search now for simple minimizers of
TV over BV�,1. We prove that one can find a minimizer that attains only three values,
one of them being zero. After investigation of the particularly simple case where Ωs
is convex, we tackle the general case in four steps.

• Starting from a generic minimizer, in Proposition 4.2 we construct a mini-
mizer whose negative part is constant.

• Based on the minimizer with a constant negative part, we then construct a
minimizer with constant positive part (Theorem 4.3). Thus there exists a
minimizer with three different values, a negative one, a positive one (which
is constrained to be 1), and 0.
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• We formulate the total variation minimization for three-level functions as a
geometrical problem for optimizing the characteristic sets of the positive and
negative value and study the curvature of the corresponding interfaces.

• Finally, we show that we can obtain these optimized characteristic sets by
solving two consecutive Cheeger-type problems (Theorem 4.10).

4.1. Particular case: Ωs is convex.

Proposition 4.1. If Ωs is convex, then the function

u0 := 1Ωs − α1Ω− ,

where Ω− is a Cheeger set of Ω \ Ωs and α = |Ωs|
|Ω−| , is a minimizer of TV in BV�,1.

Proof. Let u be a minimizer. We write

u = u+ − u−, with u+, u− > 0.

Then, we have (by the coarea formula, for example)

(4.1) TV (u) = TV (u+) + TV (u−).

First, note that u 6 1: indeed, if |{u > 1}| > 0, then the function

û := u · 1{0<u<1} + 1{u>1} −
∫
u · 1{0<u<1} + 1{u>1}∫

u+
u−.

satisfies
∫
û = 0 because

∫
u− =

∫
u+, and moreover,

TV (û) = TV (u · 1{0<u<1} + 1{u>1}) +

∫
u · 1{0<u<1} + 1{u>1}∫

u+
TV (u−)

< TV (u+) + TV (u−),

which contradicts that u is a minimizer.
Then, let us prove that we can choose u+ = 1Ωs . Thanks to the coarea formula,

TV (u+) =

∫ 1

t=0

Per(u > t) dt.

Since u = 1 on Ωs, for every 0 < t < 1, we have {u > t} ⊃ Ωs which implies that
Per(u > t) > Per Ωs by the convexity of Ωs (since the projection onto a convex set
is a contraction). As a result, we reduce the total variation of u+ by replacing it

with 1Ωs . Replacing then u− by ηu− where η = |Ωs|∫
u+ < 1, we produce a competitor

ũ = 1Ωs − ηu−, which has, since u is a minimizer, the same total variation as u.
Now, notice that ũ− minimizes total variation with constraints

u = 0 on (R2 \ Ω) ∪ Ωs,

∫
ũ− = |Ωs|.

We can link this to the Cheeger problem in Ω \ Ωs. We denote

λ = min
E⊂(Ω\Ωs)

PerE

|E|
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and E0 a minimizer of this ratio. Then, one can write, observing that for t 6 0,
{ũ < t} ⊂ (Ω \ Ωs),

TV (ũ−) =

∫ 0

−∞
Per(ũ < t) dt > λ

∫ 0

−∞
|ũ < t|dt = λ

∫
ũ−

= λ|Ωs| =
PerE0

|E0|
|Ωs| = TV

( |Ωs|
|E0|

1E0

)
.

Finally, (4.1) implies that the function

u0 := 1Ωs −
|Ωs|
|E0|

1E0

is a minimizer of TV which has the expected form.

4.2. General case (Ωs not convex). For any minimizer u on TV in BV�,1,
there exists a (possibly different) minimizer in which u− is replaced by a constant
function on the characteristic set of the negative part of u−.

Proposition 4.2. Let Θ+ := Suppu+. Then,

(4.2) u0 := u+ −
∫
u+

|Ω−|
1Ω− ,

where Ω− is a Cheeger set of Ω\Θ+ and is a minimizer of TV on BV�,1. In addition,
for every t 6 0, the level-sets {u < t} are also Cheeger sets of Ω \Θ+.

Proof. First, we notice that u− minimizes TV with constraints
∫
u− =

∫
u+ and

u− = 0 on Θ+ ∪ (R2 \Ω). Let us show that u− minimizes TV (v)∫
v

among all functions

supported in Ω \Θ+. Indeed, if we have for such a v

TV (u−)∫
u−

>
TV (v)∫

v
,

then v− :=
∫
u+∫
v
v satisfies TV (v−) =

∫
u+∫
v
TV (v) < TV (u−), which is a contradiction.

Then, it is well known (see, once again, [43]) that the minimizer v can be chosen as
an indicatrix of a Cheeger set Ω− of Ω \Θ+. That shows that u0 is a minimizer.

Now, just introduce λ = Per Ω−
|Ω−| and use the previous computations to write

λ

∫
u+ = TV (u−) =

∫ 0

−∞
Per(u < t) dt =

∫ 0

−∞

Per(u < t)

|u < t| |u < t|dt

>
∫ 0

−∞
λ|u < t|dt = λ

∫
u−.

Since
∫
u+ =

∫
u−, all of these inequalities are equalities and for almost every (a.e.)

t, we have Per(u<t)
|u<t| = λ, and {u < t} is therefore a Cheeger set of Ω \Θ+.

In the following, starting from u0, we show that there exists another minimizer
of TV if we replace u+

0 by the indicatrix of a set Ω1.

Theorem 4.3. There exists a minimizer of TV in BV�,1 which has the form

(4.3) uc := 1Ω1
− |Ω1|
|Ω−|

1Ω− ,
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where Ω1 is a minimizer of the functional

(4.4) T (E) := Per(E) +
Per(Ω−)

|Ω−|
|E|

over Borel sets E with Ωs ⊂ E ⊂ Ω \ Ω−. In fact, for every 0 6 t < 1, the level-sets
Et := {u > t} of every minimizer u minimize T .

Proof. Let u0 be the minimizer of TV in BV�,1 from (4.2). Then

TV (u0) = TV (u+
0 ) + TV (u−0 ) = TV (u+

0 ) +
Per(Ω−)

|Ω−|

∫
u+

0 .

Then from (3.11), (3.12), and (4.4) it follows that

TV (u0) =

∫ 1

0

Per(u0 > t) +
Per(Ω−)

|Ω−|
|u0 > t|dt =

∫ 1

0

T (u0 > t) dt ≥ T (Ω1).

That means that if we replace u+ by 1Ω1 , TV is decreased and thus

TV (uc) 6 TV (u0) 6 TV (u).

Because uc satisfies
∫
uc = 0 we see from the last inequality that uc is a minimizer of

TV in BV�,1. As before, since u is a minimizer, the inequalities are equalities and we
infer the last statement.

4.3. Geometrical properties of three-valued minimizers. We introduce
the class

M :=

{
(E1, E−) ⊂ Ω

∣∣∣∣ ◦E1 ∩
◦
E− = ∅, Ωs ⊂ E1

}
,

and the functional

S(E1, E−) = Per(E1) +
|E1|
|E−|

Per(E−).

In addition, for (E1, E−) ∈M we define the function

uc(E1, E−) = 1E1
− |E1|
|E−|

1E− .

Proposition 4.4. S has a minimizer in M . In addition, the second part of every
minimizer has positive Lebesgue measure.

Proof. Let (En1 , E
n
−) be a minimizing sequence for S in M . The conditions Ωs ⊂

E1 and E− ⊂ Ω ensure that Per(En1 ) + Per(En−) 6 C, so that standard compactness
and lower semicontinuity results for sets of finite perimeter [2] imply existence of a
minimizer. Note that nonempty interiors have positive measure, so the class M is
preserved by L1 convergence. Moreover, using the isoperimetric inequality we get

Per(E) >
√

4π|E| 12 , so that
Per(E)

|E| >
√

4π|E|− 1
2 .

Therefore |En−| is bounded away from zero and the corresponding part of the minimizer
has positive measure.

Using Theorem 4.3, we see that the connection between minimizing TV in BV�,1
and minimizing S is as follows.
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Fig. 1. Interfaces present in minimizers of S.

Proposition 4.5. If the function uc := uc(Ω1,Ω−) minimizes TV in BV�,1,
then (Ω1,Ω−) minimizes S in M . Conversely, if (Ω1,Ω−) minimizes S in M , then
uc(Ω1,Ω−) minimizes TV in BV�,1.

Remark 4.6. The above proposition explains why, in the following, we consider
the shape optimization problem of minimizing S in M .

We remark that this produces minimizers of TV in BV�,1 of a certain (geometric)
form, which are not necessarily all of them.

In what follows, we consider small perturbations of a minimizer (Ω1,Ω−) of S in
which only one of the sets is changed. This will be enough to determine the curvature
of their boundaries, which we split as follows (see Figure 1):

A1− = {x ∈ Ω : x ∈ ∂Ω1, x ∈ ∂Ω−} , A10 = {x ∈ Ω : x ∈ ∂Ω1, x /∈ ∂Ω−} ,
A0− = {x ∈ Ω : x /∈ ∂Ω1, x ∈ ∂Ω−} , As− = {x ∈ Ω : x ∈ ∂Ωs, x ∈ ∂Ω−} ,

As0 = {x ∈ Ω : x ∈ ∂Ωs, x /∈ ∂Ω−} .

We denote by κ1, κ− the curvature functions of Ω1,Ω−, defined in ∂Ω1, ∂Ω− through
their outer normals n1, n− (i.e., a circle has positive curvature).

For a generic set of finite perimeter in R2 only a distributional curvature is avail-
able [38, Rem. 17.7]. However, since Ω1 and Ω− minimize the functionals S(·,Ω−)
and S(Ω1, ·), respectively, regularity theorems for Λ-minimizers of the perimeter [38,
Thm. 26.3] are applicable to them. In consequence, A1−, A0− and A10 \ As0 are
locally graphs of C1,γ functions. Combined with standard regularity theory for uni-
formly elliptic equations [25], one obtains higher regularity, so that, in particular,
the curvatures κ1, κ− are defined classically on those interfaces (on ∂Ωs ∩ ∂Ω1, no
information is provided).

Proposition 4.7. Let (Ω1,Ω−) be a minimizer of S. Then, the curvatures κ−,
κ1 of the interfaces A0− and A10 \ As0 are given by

κ− =
Per Ω−
|Ω−|

on A0− and κ1 = −Per Ω−
|Ω−|

on A10 \ As0.

In consequence, A0− and A10 \As0 are composed of pieces of circles of radius |Ω−|
Per Ω−

.

Proof. For every x ∈ A10\As0 we consider a perturbed domain Ωw1 (see Figure 1),
such that Ωw1 = (I +−→w )(Ω1), where −→w is supported in a neighborhood of x. Calling
w := −→w · n1 and thanks to the first variation formula [38, Thm. 17.5 and Rem. 17.6],
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we can develop the first variation of S(·,Ω−) at a minimizer Ω1 in direction w and
obtain ∫

A10\As0
κ1w + w

Per(Ω−)

|Ω−|
dH1 = 0.

Since w was arbitrary, we get the optimality condition for Ω1:

κ1 +
Per(Ω−)

|Ω−|
= 0 in A10 \ As0.

Proceeding similarly for Ω− we obtain

1

|Ω1|

(
κ−
|Ω−|

− Per(Ω−)

|Ω−|2
)

= 0 in A0−.

This shows that the curvatures of A1− \As− and A1− \As− are constant with values

κ1 = −κ− = Per(Ω−)
|Ω−| . This, in particular, shows that these interfaces are composed

of circles of radii |Ω−|
Per(Ω−) .

Proposition 4.8. Let (Ω1,Ω−) be a minimizer of S. Then

κ− =
Per Ω−
|Ω−|

= −κ1 on A1− \ As−.

Thus, A1− \As− consists of pieces of circle with the same radius of Proposition 4.7.

Proof. First, we note that since A1− \ As− ⊂ ∂Ω1 ∩ ∂Ω−, we must have

κ1 = −κ− on A1− \ As−.

Now, we perturb Ω1 while keeping Ω− fixed. In this context, Ω1 is a minimizer
of E 7→ S(E,Ω−) with constraints E ⊂ Ω and Ω1 ∩ E = ∅. Since Ω− is fixed the
second constraint allows only inward perturbations. We, therefore, perturb Ω1 in
its exterior normal direction with a function w 6 0 supported in A1− \ As−. The
variation formula for Ω1 in direction w provides∫

A1−\As−
κ1w +

∫
w

Per(Ω−)

|Ω−|
dH1 > 0,

which yields

κ1 6 −Per(Ω−)

|Ω−|
on A1− \ As−.

Now, we fix Ω1 and perturb Ω− similarly with w 6 0, again supported inA1−\As−
(so the perturbation goes inside Ω−). Since Ω− now minimizes S(Ω1, ·), we get∫

A1−\As−
wκ−

|Ω1|
|Ω−|

− w |Ω1|
|Ω−|2

Per(Ω−) dH1 > 0,

which gives

κ− 6
Per(Ω−)

|Ω−|
on A1− \ As−.

Proposition 4.9. Let E be a connected component of Ω \ (Ω− ∪ Ω1) such that
∂E ∩ ∂Ω = ∅. Then, (Ω1 ∪ E,Ω−) and (Ω1,Ω− ∪ E) belong to M and minimize S.
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Proof. We abbreviate λ = Per Ω−
|Ω−| . Then because E ∩Ω− = E ∩Ω1 = ∅, the pairs

(Ω1 ∪ E,Ω−) and (Ω1,Ω− ∪ E) both belong to M and we have

Per(Ω1 ∪ E) + λ|Ω1 ∪ E| > Per(Ω1) + λ|Ω1|,

which, because E ∩ Ω1 = ∅, implies

(4.5) λ|E| > Per(Ω1)− Per(Ω1 ∪ E).

Because Ω− is a Cheeger set of Ω \ Ω1, we have

Per(Ω− ∪ E)

|Ω− ∪ E|
>

Per(Ω−)

|Ω−|
,

which, because E ∩ Ω− = ∅, implies

Per(Ω− ∪ E)|Ω−| > Per(Ω−)(|Ω−|+ |E|) ,

which yields

(4.6) Per(Ω− ∪ E)− Per(Ω−) > λ|E|.

In summary, we have shown in (4.5) and (4.6) that

Per(Ω− ∪ E)− Per(Ω−) > λ|E| > Per(Ω1)− Per(Ω1 ∪ E).

Since ∂E∩∂Ω = ∅ and E∩Ω− = E∩Ω1 = ∅, we know ∂E ⊂ ∂Ω1∪∂Ω−. Furthermore,
E ∩ Ω− = E ∩ Ω1 = ∅ also implies that the common boundaries between E and Ω−
and between E and Ω1 have opposite-pointing outer normals, and one can write [38,
Thm. 16.3]

Per(Ω− ∪ E)− Per(Ω−) = Per(Ω1)− Per(Ω1 ∪ E),

which implies that all the inequalities above are equalities, and the set E can be joined
to Ω− or Ω1 without changing the value of S.

In the following we show that one may obtain minimizers of S (and, therefore,
minimizers of TV in BV�,1 with three values) in two simpler steps:

1. Solve the Cheeger problem for Ω \ Ωs. Let Ωc be the maximal Cheeger set
and λc := Per Ωc

|Ωc| its Cheeger constant.

2. Obtain the minimal (with respect to ⊂) minimizer Ω1c of

Per(E) + λc|E| over E ⊃ Ωs.

Note that minimizers of the second problem exist by an argument similar to Propo-
sition 4.4.

Theorem 4.10. The pair (Ω1c,Ωc) minimizes S.

Proof. Let λ := Per Ω−
|Ω−| (by definition of the Cheeger set Ωc, we have λ > λc). Let

also E be the smallest (with respect to ⊂) minimizer of

(4.7) Ê 7→ Per(Ê) + λ|Ê| subject to Ωs ⊂ Ê.

We want to show that E ∩Ω− = ∅; that is, E is also a minimizer of Per(·) + λ| · |
with respect to the constraints E ∩ Ω− = ∅ and Ωs ⊂ E.
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Because E \ Ω− is admissible in (4.7),

Per(E \ Ω−) + λ|E \ Ω−| > Per(E) + λ|E|.

On the other hand, Ω−, as a Cheeger set of Ω \ Ω1, is a minimizer of

(4.8) Ê 7→ Per(Ê)− λ|Ê| subject to Ê ∩ Ω1 = ∅.

Then Ω− \ E is a competitor for (4.8),

Per(Ω− \ E)− λ|Ω− \ E| > Per(Ω−)− λ|Ω−|.

Summing these two inequalities and using that (see [38, Ex. 16.5])

Per(E \ Ω−) + Per(Ω− \ E) 6 Per(E) + Per(Ω−),

we obtain
λ (|E \ Ω−| − |Ω− \ E|) > λ (|E| − |Ω−|) .

Since this last inequality is an equality, it is also true for the two previous ones, and
we can conclude that

Per(E \ Ω−) + λ|E \ Ω−| = Per(E) + λ|E|,

which implies, since E is minimal with respect to the inclusion, that E ∩ Ω− = ∅.
Similarly, if Ec is a minimizer of

(4.9) Ê 7→ Per Ê + λc|Ê| with constraint Ωs ⊂ Ê,

one can prove that Ec ∩ Ωc = ∅.
We have proved that Ω1,Ω1c minimize Per(·) +λ |·| , Per(·) +λc |·| with the same

constraint (containing Ωs). Hence, Ω1 ∩ Ω1c is admissible in (4.7) and Ω1 ∪ Ω1c is
admissible for (4.9), which implies

Per(Ω1 ∩ Ω1c) + λ|Ω1 ∩ Ω1c| > Per Ω1 + λ|Ω1|,

Per(Ω1 ∪ Ω1c) + λc|Ω1 ∪ Ω1c| > Per Ω1c + λc|Ω1c|.
Summing these inequalities and recalling that [38, Lem. 12.22]

Per(Ω1 ∩ Ω1c) + Per(Ω1 ∪ Ω1c) 6 Per(Ω1) + Per(Ω1c),

we get
λc|Ω1 \ Ω1c| > λ|Ω1 \ Ω1c|.

Then, if λc < λ, we obtain Ω1c ⊃ Ω1, and if λ = λc, all the inequalities above are
equalities, which implies once again (using the minimality of Ω1) that Ω1c ⊃ Ω1.
Then, Ωc ∩ Ω1 = ∅, hence Ωc is also a Cheeger set of Ω \ Ω1.

Remark 4.11. By the statements in the previous section about level sets of the
generic minimizer u, we infer that the only lack of uniqueness present in the minimiza-
tion of TV in BV�,1 is that of the corresponding geometric problems. More precisely,
if the Cheeger set of Ω \Ωs is unique, (which is shown in [12, Thm. 1] to be a generic
situation), then the minimizer of TV in BV�,1 is unique as well. Indeed, with the same
arguments as in the proof of Proposition 4.9, one sees that the minimizer of (4.4) is
also unique, which implies by Proposition 4.2 and Theorem 4.3 that the level-sets of
u are all uniquely determined.
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4.4. Behavior of Yc as Ω grows large.

Proposition 4.12. Let Ω0 be a convex set and Ωs ⊂ Ω0, both containing the
origin, and assume that |Ωs| = 1. For α > 1, let Ω = αΩ0, i.e., we consider the
domain to be a rescaling of Ω0 (note that Ωs ⊂ αΩ0). Then

lim
α→∞

Yc(α) =
1

min
E⊃Ωs

PerE
.

Proof. We recall that

Yc(α) =
|Ωs|

infMα
S ,

where

Mα :=

{
(E1, E−) ⊂ αΩ0 |

◦
E1 ∩

◦
E− = ∅, Ωs ⊂ E1

}
.

Then, noticing that for every Ω̃ such that Ωs ⊂ Ω̃ ⊂ αΩ0 we have (Ω̃, αΩ0 \ Ω̃) ∈Mα,
one can write

inf
Mα

S 6 S
(

Ω̃, αΩ0 \ Ω̃
)

= Per(Ω̃) +
Per(αΩ0) + Per(Ω̃)

|αΩ0| − |Ω̃|
|Ω̃|

6 Per(Ω̃) +
αPer(Ω0) + Per(Ω̃)

α2|Ω0| − |Ω̃|
|Ω̃| −−−−→

α→∞
Per(Ω̃).

On the other hand, since (Ω̃, αΩ0 \ Ω̃) ∈Mα,

S(Ω̃, αΩ0 \ Ω̃) > Per(Ω̃).

Optimizing in Ω̃ establishes the result.

Remark 4.13. If Ωs is indecomposable (i.e., “connected” in an adequate sense for
this framework), we have by [20, Prop. 5] that

min
E⊃Ωs

PerE = Per(Co(Ωs)),

where Co(X) is the convex envelope of X.

Remark 4.14. As may be seen in Examples 5.2 and 5.3, the above limit is not
attained at a finite α. There is no “critical size” at which the boundary of Ω stops
playing a role. We see that the limiting Yc is approached at least as O(1/α) as α→∞.

5. Application examples. In the previous section, we have seen that the free
boundaries of the optimal sets are composed of pieces of circles of the same radius,
which suggests that one might be able to use morphological operations to construct
these minimizers. We introduce these now.

Definition 3 (opening, closing). For a set X and r > 0, we define the opening
of X with radius r by

Openr (X) :=
⋃

x:Br(x)⊂X
Br(x) ,

where Br(x) is the disk with radius r and center x. Additionally, we define the closing
of X with radius r as

Closer (X) := R2 \
(
Openr

(
R2 \X

))
.
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5.1. Morphological operations and Cheeger sets. The Cheeger problem is
far from being entirely understood. Nonetheless, it is for convex sets. As a result, if
Ω is convex and Ωs = ∅, the Cheeger set Ω− of Ω satisfies

• Ω− is unique,
• Ω− is convex and C1,1,
• Ω− = Openr (Ω) where r is the Cheeger constant of Ω.

In the general case, for a Cheeger set Ω− of Ω \ Ωs, few results are available [36]:
• The boundaries of Ω− are pieces of circles of radius 1

λ (λ is the Cheeger
constant of Ω \ Ωs) which are shorter than half the corresponding circle.

• If x0 is a smooth point of ∂(Ω \ Ωs) and belongs to ∂Ω−, then ∂Ω− is C1,1

around x0 [12, Thm. 2].
• We also have [36, Lem. 2.14], which basically tells that if the maximal Cheeger

set of Ω \Ωs contains a ball of radius 1
λ , then it also contains all the balls of

radius 1
λ obtained by rolling the first ball inside Ω \ Ωs.

Remark 5.1. Let Ω and Ωs be convex, and let λ be the Cheeger constant of Ω.
If d(Ωs, ∂Ω) > 2

λ , then the maximal Cheeger set of Ω \ Ωs can be obtained rolling a
ball of radius 1

λ0
< 1

λ around Ωs (λ0 > λ being the Cheeger constant of Ω \ Ωs). In
particular, it fills a neighborhood of ∂Ωs in Ω \ Ωs.

5.2. Single convex particles. We start with two simple examples in which a
single convex particle is placed centrally within a larger convex domain.

Example 5.2 (circular Ω).
(a) Let Ωs,Ω be two circles with radii 1√

π
, R, ensuring that |Ωs| = 1. Since in

this case Openr (Ω) = Ω for all r 6 R, Ω− = Ω \ Ωs minimizes S(Ωs, ·).
Thus, Ωc = Ω \ Ωs and Ω1c = Ωs. We have

λc =
Per Ωc
|Ωc|

=
2πR+ 2

√
π

πR2 − 1

and

Yc =
|Ω1c|

Per(Ω1c) + λc|Ω1c|
=

1

2
√
π + 2πR+2

√
π

πR2−1

.

We may also construct the minimizer of TV over BV�,1, given (in cylindrical
coordinates) by v0 : [0,∞]× [0, π]→ R :

v0(r, φ) :=


|Ωs| = 1 for 0 6 r 6 1√

π
,

− |Ωs|
|Ω|−|Ωs| = − 1

R2π−1 for 1√
π
< r 6 R ,

0 for R < r <∞
(evidently axisymmetric). The total variation is

|Dv0| (Ω) = Per Ωs + (Per Ωs + Per Ω)
|Ωs|

|Ω| − |Ωs|

= 2
√
π +

2
√
π + 2Rπ

R2π − 1
=

1

Yc
.

For R→∞ the limit is Per Ωs = 2
√
π and Yc approaches 1

2
√
π

.

(b) As a slight variation on the above now let Ωs be the unit square. Again we
find Ωc = Ω \ Ωs and Ω1c = Ωs, and hence

λc =
Per Ωc
|Ωc|

=
2πR+ 4

πR2 − 1
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and

Yc =
1

Per(Ω1c) + λc|Ω1c|
=

1

4 + 2πR+4
πR2−1

→ 0.25 as R→∞.

Example 5.3 (square Ω). We now consider Ω to be a square of side L. In the
absence of Ωs the optimal set Ω− is given by Openr∞ (Ω) for r∞ = L/(2+

√
π) = 1/λc;

see [40].
(a) Now consider a centrally positioned unit square Ωs, within Ω of side L > 1.

The optimal set Ω− is given by Openr (Ω)\Ωs for some r > 0. We have |Openr (Ω)| =
|Ω| + r2 (π − 4), PerOpenr (Ω) = Per Ω + r (2π − 8), and to find r = r(L) we use
Propositions 4.7 and 4.8:

1

r
=

Per(Openr (Ω) \ Ωs)

|Openr (Ω) \ Ωs|
=

4L+ 4 + 2r (π − 4)

L2 − 1 + r2 (π − 4)
.

The resulting quadratic equation gives the optimal r(L):

r(L) =
L

2

1 + 1/L

1− π/4

(
1−

√
1− (1− π/4)

1− 1/L

(1 + 1/L)

)
.

We find that r(L) < r∞ with r(L) → r∞ as L → ∞ and r(L) → 0 as L → 1+, as
expected. Consequently, Ωc = Openr(L) (Ω) \ Ωs and the Cheeger constant λc(L) is

λc(L) =
Per(Openr(L) (Ω) \ Ωs)∣∣Openr(L) (Ω) \ Ωs

∣∣ =
4L+ 4 + 2r(L) (π − 4)

L2 − 1 + r(L)2 (π − 4)
.

Again we have Ω1c = Ωs, and

Yc(L) =
1

Per(Ω1c) + λc(L)|Ω1c|
=

1

4 + λc(L)
.

The minimizer of TV over BV�,1 is constructed from the optimal sets:

ur(L) := 1Ωs −
|Ωs|∣∣Openr(L) (Ω)

∣∣− |Ωs|1Openr(L)(Ω)\Ωs

with total variation:∣∣Dur(L)

∣∣ (Ω) = Per Ωs +
(Per Ωs + Per Ω + r(L) (2π − 8)) |Ωs|

|Ω|+ r(L)2 (π − 4)− |Ωs|

= 4 +
(4 + 4L+ r(L) (2π − 8))

L2 + r(L)2 (π − 4)− 1
.

(b) We replace Ωs by circle of radius 1/
√
π, ensuring |Ωs| = 1, and consider

L > 2/
√
π. The calculations are similar. Again the optimal set Ω− is Openr (Ω) \Ωs

with r = r(L) determined from Propositions 4.7 and 4.8. We now find

r(L) =
L

2

1 +
√

(π)/(2L)

1− π/4

(
1−

√
1− (1− π/4)

1− 1/L2

(1 +
√

(π)/(2L))2

)
.

Thus, Ωc = Openr(L) (Ω) \ Ωs, Ω1c = Ωs, and

λc(L) =
Per(Openr(L) (Ω) \ Ωs)∣∣Openr(L) (Ω) \ Ωs

∣∣ =
4L+ 2

√
π + 2r(L) (π − 4)

L2 − 1 + r(L)2 (π − 4)
,
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Fig. 2. Comparison of results of Example 5.3 at different L: (a) λc(L); (b) Yc(L). Circular
Ωs is marked with the broken line and square Ωs is marked with the solid line.

Fig. 3. Comparison of results of Examples 5.2 and 5.3 at different R = L/
√
π: (a) λc(L); (b)

Yc(L). Circular Ωs is marked with the broken line and square Ωs is marked with the solid line.
Circular Ω marked in red and square Ω in black. (Figure in color online.)

Yc(L) =
1

Per(Ω1c) + λc(L)|Ω1c|
=

1

2
√
π + λc(L)

.

Figure 2(a) plots the results of Example 5.3 at different L. Interestingly, although
λc(L) is smaller for the circular Ωs, it is only very marginally so. Figure 2(b) plots
the yield limit Yc(L) for both Ωs. Here we see a significant difference: the circular Ωs
requires a larger yield stress to prevent motion. As we have seen that λc(L) is similar
for both Ωs, this difference in Yc stems almost entirely from Per(Ω1c) = Per(Ωs) (in
these examples). We may deduce from the expressions derived that λc(L) ∼ O(1/L) as
L→∞ and hence that Yc(L)→ 1/Per(Ωs)+O(1/L) as L→∞; see also Proposition
4.12. The same behaviors are observed with the earlier Example 5.2, in a circle of
radius R, i.e., little difference in λc(R), significant difference in Yc(R), stemming
primarily from Per(Ωs), and similar asymptotic trends as R→∞.

We might also seek to compare Examples 5.2 and 5.3 directly. The scaling intro-
duced ensures |Ωs| = 1, matching the buoyancy force felt by each particle. By setting
L2 = πR2 we also match the area of fluid within Ω \Ωs. Figure 3(a) plots λc(R) and
λc(L(R)). Figure 3(b) plots Yc(R) and Yc(L(R)). We observe that λc(R) < λc(L(R)),
for the same Ωs, but again the effect is marginal and λc is very close for all four cases.
Interestingly, in Figure 3(b) we see that by scaling L2 = πR2 the effects of the shape
of Ω are minimized: Yc(R) and Yc(L(R)) are very close for the same Ωs, whether it
be circular or square.

To summarize, these simple examples suggest that for (centrally placed convex)
particles, when we have the same area of solid and the same area of fluid, the main
differences in yield behavior come from the different perimeters of the particle. The
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Fig. 4. Schematic of two different configurations for the rectangle with aspect ratio β: (a)
configuration 1; (b) configuration 2.

optimal sets in Ω \ Ωs are selected such that λc varies primarily with the area of Ω
(and less significantly with its shape). For the same size of Ω (and Ωs) the particle
with smaller perimeter has larger Yc. An illustration of the optimal sets for the square
in square case is shown in Figure 6 (left) for L = 3.33, for which we obtain r = 0.600
and |Dur| (Ω) = 5.67.

Example 5.4 (influence of the aspect ratio and boundary). We revise Example 5.3,
keeping Ω as a square of side L and replacing Ωs by a centrally positioned rectangle
of aspect ratio β2, i.e., the rectangle has height β and width 1/β ≤ L. Provided that
β is sufficiently large, there is a single Cheeger set in Ω \Ωs, given by Openr (Ω) \Ωs
for some r > 0. However, for sufficiently small β,

1

L
≤ β ≤ L

2

(√
1 +

8

L2
− 1

)
,

and there may be a second Cheeger set configuration, as illustrated in Figure 4.
For the first configuration we use Propositions 4.7 and 4.8 to find the radius

r1(β) = 1/λc,1(β):

r1(β) =
L

2

1 + β+1/β
2L

1− π/4

(
1−

√
1− (1− π/4)

1− 1/L2

(β+1/β
2L )2

)
.

The second configuration gives radius r2(β) = 1/λc,2(β):

r2(β) =
3L− β

8(1− π/4)

(
1−

√
1− 8(1− π/4)

L(L− β)

(3L− β)2

)
.

It is found that for a small band of β the second configuration gives λc,2(β) <
λc,1(β). In both cases we have Ω1c = Ωs, and the yield limit is

Yc(β) =
1

Per(Ω1c) + min{λc,k(β)}|Ω1c|
=

1

2(β + 1/β) + min{λc,k(β)} .

The variation of λc and Yc is illustrated in Figure 5 for L = 3. Note that Yc(β)
approaches the square in square results at β = 1. The difference between the two
potential Yc in Figure 5(b) is relatively small because for small β, Per(Ωs) becomes
relatively large.
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Fig. 5. Different mechanisms for the rectangle as β is varied for L = 3: (a) λc(β); (b) Yc(β).
The optimal values are in solid black and suboptimal are in broken red. (Figure in color online.)

Ω− = Openr (Ω) \ Ωs

r = 0.60

d Ωs

L = 3.33, l = 1, d = 1.1, Yc = 0.176

Ωs

d

L = 3.33, l = 1, d = 0.18, Yc = 0.188

Ω− = Openr (Ω \ Ωs)
r = 0.78

Fig. 6. In this case, area and perimeter of Ω,Ωs are constant. We change the distance between
∂Ω and Ωs. The critical yield number is larger if the inner set Ωs is close to ∂Ω.

This example also serves to demonstrate geometric nonuniqueness. In the case
that λc,2(β) < λc,1(β), either of the shaded regions above or below Ωs in Figure 4(b)
is a Cheeger set, as is the union. We may construct a minimizer of TV over BV�,1
using the characteristic functions of either set, or any linear combination that satisfies
the condition of zero flux. As commented earlier this nonuniqueness in BV�,1 stems
from the geometric nonuniqueness.

Interestingly, if one were to return to the original Bingham fluid problem and
approach Y → Y −c , the velocity solution is unique and can be shown to be symmetric,
i.e., the effect of viscosity here is to select a symmetric minimizer for Y < Yc.

Example 5.5 (influence of the position of Ωs with respect to the boundary). We
revise Example 5.3 with Ωs again being a square with length 1. This time we move
the inner square Ωs in the direction of ∂Ω and denote d := d(Ωs, ∂Ω). The possible
minimizers have Ω− = Openr (Ω) \Ωs or Ω− = Openr (Ω \ Ωs) for some r, depending
on d. We illustrate this phenomenon in Figure 6.

5.3. Multiple particles. We now consider multiple particles. In the first ex-
ample, we retain the fixed |Ωs| = 1 and consider the effects of increasing the number
of particles. Intuitively, this increases the ratio of perimeter to area and hence we
expect that Yc will reduce, as is indeed found to be the case.

Example 5.6 (a case with nontrivial Ω1). We consider the two setups of Figure
7, where for simplicity we keep Ω circular. The flat regions correspond to the case
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Fig. 7. Left and center: Two different arrangements of squares at the corresponding transition
points. Here, the trivial and nontrivial solutions coexist and the same critical yield number appears
for both orientations of the square. Right: Critical yield numbers, with respect to the distance
d between the centers of the squares. The corners in the graph represent the transition between
Ω− = Openr (Ω \ Ωs) and Ω− = Ω \ Ωs.

where the optimal set Ω− is equal to Ω \ Ωs.
We see that the orientation has an influence on the behavior of the minimizer

as well as on the critical yield number. As d is decreased below a critical value Ω1c

incorporates a bridge between the two particles. The occurrence of the bridge clearly
depends on orientation of the particles, and would also vary for different shaped
particles. The phenomena of bridging between particles and of particles essentially
acting independently beyond a critical distance have been studied computationally in
the case of two spheres [37, 39] (axisymmetric flows) and two cylinders [49] (planar
2D flows). Aside from computed examples we know of no general theoretical results
related to these phenomena, e.g., what the maximal distances for bridging are.

Example 5.7 (periodic arranged circles inside a square tube). As a second exam-
ple, we consider large arrays of particles, as illustrated in Figure 8, i.e., Ω is a square
with length L, and Ωs is the union of N2 small circles with radius δ, the outermost of
which are at distance a from ∂Ω. Here the intention is to illustrate particle size and
separation effects. Therefore, we emphasize that in this case |Ωs| is not constant for
different δ.

Two types of optimal sets appear: For δ small (left), we have Ω1 = Ωs, Ω− =
Openλ−1 (Ω) \ Ωs. For bigger δ (right), one gets Ω1 = Closeλ−1 (Ωs), and Ω− =
Openλ−1 (Ω \ Ωs) = Openλ−1 (Ω)\Ω1 for λ the corresponding Cheeger constant. One
could think of a third configuration in which isolated components of Ω− appear be-
tween the circles of Ωs, but it is easy to see that such a configuration has higher
energy. Figure 8 (top right) shows the variation in Yc with δ for a particular choice
of parameters (L = 12, N = 12, and a = 0.4). The observable kink is where the
transition between the two configurations occurs.

Although this example is quite theoretical, this type of phenomenon occurs com-
monly in non-Newtonian suspension flows. In hydraulic fracturing, proppant suspen-
sions are pumped along narrow fractures. For critical flow rates the individual dense
proppant particles may act together in settling: so-called convection; see, e.g., [16].
This represents a serious risk for the process in that in convective settling the group of
particles settles faster than when individually settling, as in the latter case secondary
flows are induced on a more local scale. It is interesting that these features (local and
global) are captured by the simple model here, where the yield stress fluid definitively
couples the particles via bridging. Convective settling is, however, not, in general,
reliant on the yield stress.
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N

L

a

Fig. 8. Upper row, left: Setup for the periodic case. Upper row, right: Dependence of the
critical yield number on δ, for L = 12, N = 12, and a = 0.4. The corner in the graph corresponds
to the transition from trivial to bridged optimal sets. Lower row: Optimal sets for δ = 0.04 and
δ = 0.2, when L = 12, N = 12, and a = 0.4.

These examples also expose an interesting question concerning individual particle
behavior. Dense suspensions in shear-thinning fluids often exhibit interesting settling
patterns, e.g., the column-like patterns in [17]. Such patterns are excluded in our
study as we have assumed that the speed of Ωs is uniform. There is a rich vein
of interesting problems here to study. For example, if we remove the constraint of
equal particle velocities, do particle arrays such as that considered above admit other
optimal solutions that select patterns amongst the particles, e.g., stripes moving at
different speeds, or are slight perturbations from the regular lattice favorable?
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