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Abstract

Convergence rates results for variational regularization methods typ-
ically assume the regularization functional to be convex. While this as-
sumption is natural for scalar-valued functions, it can be unnecessarily
strong for vector-valued ones. In this paper we focus on regularization
functionals with polyconvex integrands. Even though such functionals
are nonconvex in general, it is possible to derive linear convergence rates
with respect to a generalized Bregman distance, an idea introduced by
Grasmair in 2010. As a case example we consider the image registration
problem.

1 Introduction

In this paper we consider solving ill-posed operator equations of the form

K(u) = v, (1)

using Tikhonov-type regularization, which consists in approximation of a solu-
tion of (1) by the minimizer of the functional

‖K(u)− v‖2 + αR(u). (2)

Regularization theory is well-established when R is convex, and in particular
when R(u) = 1

2 ‖u− u0‖2. See [9, 15, 23, 19, 20, 24, 25] for instance. Con-
vergence rates results have been developed in [11, 12, 13, 16, 19, 20] among
others. For nonconvex regularization functionals R, however, only few results
are available in the literature [3, 14, 26].

If the sought-for solution u is scalar-valued, then convexity of R is a natural
condition, because it is closely linked to weak lower semicontinuity of R. Yet if
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u : Ω ⊂ Rn → RN is a vector-valued function, then properties strictly weaker
than convexity are enough to ensure weak lower semicontinuity. On the other
hand, using a nonconvex R raises the question of how to obtain convergence
rates, since the most common approach involves Bregman distances, which in
turn require R to be subdifferentiable. The aim of this article is to develop con-
vergence rates results for regularization functionals with polyconvex integrands.

A function f : RN×n → R is polyconvex, if f(A) can be written as a convex
function of all subdeterminants of A. John Ball introduced this notion in the
context of nonlinear elasticity, where convex stored energy functions are known
to be too restrictive physically [2]. However, what lends importance to poly-
convex functions even outside the field of elasticity is the fact that they render
functionals of the form

R(u) =

∫
Ω

f(x, u(x),∇u(x)) dx (3)

weakly lower semicontinuous in W 1,p(Ω,RN ).
Recently, the merits of polyconvex functions have been exploited in the field

of image processing, in particular for image registration [4, 7, 17]. Practical
applications of registration models are numerous, one of the most prominent
being medical imaging [10, 22]. Registering two given images I1, I2 : Ω → R
means finding a deformation u : Ω→ Rn such that

I1 ◦ u = I2. (4)

The ill-posedness of this problem is typically overcome via variational regular-
ization, that is, by minimizing a functional of the form

S(I1 ◦ u, I2) +R(u),

where S measures the similarity between I1 ◦ u and I2. A regularization func-
tional R with a polyconvex integrand can be a reasonable choice, if one models
I1 and I2 as hyperelastic materials. However, in this case standard convergence
rates results from regularization theory do not apply [19, 20]. The aim of this
paper is to address this issue.

Outline. The next section (Sec. 2) introduces the most important concepts
and fixes some notation. It consists of three parts. In the first part, Section
2.1, we introduce (generalized) Bregman distances. In Section 2.2, we review
standard results on convergence rates for variational regularization of inverse
problems in a Banach space setting. Section 2.3, briefly discusses polyconvex
functions and their properties. Section 3 considers the image registration prob-
lem with polyconvex regularization from an inverse problems point of view.
It also contains a specific example where in spite of nonconvex regularization
the standard convergence rates result as stated in Sec. 2.2 applies. Finally, in
Section 4 we define Wpoly-Bregman distances for functionals with polyconvex
integrands and state the corresponding convergence rates result.
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2 Preliminiaries

2.1 Bregman distances

In this article U always denotes a Banach space with dual U∗. The dual pairing
between u ∈ U and u∗ ∈ U∗ is denoted by 〈u∗, u〉U∗,U . There are two notable

special cases. If U = U∗ = RN×n, we write u · u∗ =
∑N
i=1

∑n
j=1 u

∗
ijuij . In

the case of Lebesgue spaces (of possibly matrix-valued functions), we use dual
brackets without subscripts and write

〈u∗, u〉 =

∫
u∗(x) · u(x) dx.

Let Ω ⊂ Rn be an open set, 1 ≤ p <∞ and let p∗ be the Hölder conjugate of p.
For a vector-valued Sobolev function u ∈ U = W 1,p(Ω,RN ) we denote by ∇u
the N × n matrix of weak partial derivatives of u. Every element u∗ of U∗ can
be identified with a pair (u∗0, u

∗
1) ∈ Lp∗(Ω,RN × RN×n) acting on u ∈ U as

〈u∗, u〉U∗,U = 〈u∗0, u〉+ 〈u∗1,∇u〉.

This is an immediate consequence of Thm. 3.9 in [1].
Let R be a function defined on U taking values in the extended reals R ∪

{±∞}. Its effective domain domR is the set {u ∈ U : R(u) < +∞}. The
subdifferential of R at u ∈ U is defined as

∂R(u) =

{
{u∗ ∈ U∗ : R(v) ≥ R(u) + 〈u∗, v − u〉U∗,U for all v ∈ U}, R(u) ∈ R
∅, R(u) /∈ R.

Note that we have not assumed R to be convex. If ∂R(u) 6= ∅, then R is said
to be subdifferentiable at u and elements u∗ ∈ ∂R(u) are called subgradients.
Recall Fermat’s rule: A proper function R attains its minimum at u ∈ U , if
and only if 0 ∈ ∂R(u). Let u ∈ domR and u∗ ∈ ∂R(u). The Bregman distance
associated to R at (u, u∗) is defined as

Du∗(v;u) = R(v)−R(u)− 〈u∗, v − u〉U∗,U .

The following lemma justifies the use of the Bregman distance as a similarity
measure.

Lemma 2.1. The Bregman distance is nonnegative and satisfies Du∗(u;u) = 0.

The Bregman distance is only defined at points where R has a subgradient.
For convex functions these points can be characterized easily. The first two of
the following three lemmas are classical results on subdifferentiability of convex
functions. The third one deals with the special case of integral functionals on
Sobolev spaces.

Lemma 2.2. Let R : U → R ∪ {±∞} be a convex function. If R is finite and
continuous at one point ū ∈ U , then ∂R(u) 6= ∅ for all u ∈ int domR.
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Proof. See Proposition 5.2 in Chapter I of [8].

Lemma 2.3. If R : U → R∪{±∞} is proper, convex and lower semicontinuous,
then the set {u ∈ U : ∂R(u) 6= ∅} is dense in domR.

Proof. See Corollary 6.2 in Chapter I of [8].

Lemma 2.4. Let Ω ⊂ Rn be an open set and let

f : Ω× RN × RN×n → R≥0 ∪ {+∞}

be a Carathéodory function. Assume that, for almost every x ∈ Ω, the map
(u,A) 7→ f(x, u,A) is convex and differentiable throughout its effective domain.
Let p ∈ [1,∞) and define the following functional on W 1,p(Ω,RN )

R(v) =

∫
Ω

f(x, v(x),∇v(x)) dx.

Denote by ∇u,Af the gradient of f with respect to its second and third variables.
If v ∈ domR and the function

x 7→ ∇u,Af(x, v(x),∇v(x))

lies in Lp
∗
(Ω,RN × RN×n), then this function is a subgradient of R at v.

Proof. This is a direct consequence of Lemma 4.1 in Chapter X of [8].

Bregman distances play an important role for convex variational regular-
ization, as they can be used to measure the rate of convergence of regularized
solutions. In this paper we want to consider nonconvex regularization func-
tionals. Nonconvex functions, however, are not subdifferentiable in general and
therefore the associated Bregman distance is not of much use. One way to over-
come this problem was explored by Grasmair in [14]. It is based on an abstract
version of convexity theory where, essentially, the dual space U∗ is replaced by
some other set W of (extended) real-valued functions on U . See also Chapter 8
of [21].

Definition 2.1. Let W be a family of real-valued functions defined on U .
Following [14, 21] we define the W-subdifferential of R at u ∈ U as

∂WR(u) =

{
{w ∈W : R(v) ≥ R(u) + w(v)− w(u) for all v ∈ U}, R(u) ∈ R
∅, R(u) /∈ R.

For w ∈ ∂WR(u) the corresponding W -Bregman distance is given by

DW
w (v;u) = R(v)−R(u)− w(v) + w(u). (5)

Clearly, the U∗-subdifferential and the U∗-Bregman distance coincide with
their classical counterparts.
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Lemma 2.5. The W -Bregman distance is nonnegative and satisfies

DW
w (u;u) = 0.

When using a W -Bregman distance to measure convergence rates, it is im-
portant to be able to characterize its domain of definition, that is, the set
{u ∈ U : ∂WR(u) 6= ∅}. For the classical Bregman distance this characteriza-
tion is done by Lemmas 2.2, 2.3 and 2.4. Below, in Section 4, we introduce a
particular instance of a set W . This set, denoted by Wpoly, is designed specif-
ically for functionals with polyconvex integrands. In Lemma 4.1, we address
the problem of characterizing the domain of definition of the Wpoly-Bregman
distance by proving a result analogous to 2.4.

2.2 Variational regularization on Banach spaces

Let U , V be Banach spaces and K : D(K) ⊂ U → V . We consider the inverse
problem of finding u ∈ U such that

K(u) = v†. (6)

Exact data v† ∈ ranK ⊂ V are assumed to be available as noisy measurements
vδ ∈ V only, satisfying ‖v† − vδ‖ ≤ δ for some δ ≥ 0. Since such problems are
ill-posed in general, regularization is needed for the approximate inversion of K.
Variational regularization consists in minimization of a functional of the form

u 7→ Tα(u; vδ) = ‖K(u)− vδ‖q + αR(u), (7)

where q ≥ 1, α > 0, ‖ · ‖ denotes the norm on V and R : U → R≥0 ∪ {+∞}
is such that domR ∩ D(K) 6= ∅. We set Tα(u; vδ) = +∞, if u /∈ D(K). We
call this variational approach a well-defined regularization method, if it fulfils
the following requirements.

Existence: Tα(·; vδ) has a minimizer uδα for every vδ ∈ V and α > 0.

Stability: The inversion vδ 7→ uδα is continuous.

Convergence: There exists a parameter choice rule α : R>0 → R>0 such that
regularized solutions uδα converge to a solution of (6) as δ → 0.

The last point in particular requires that the set of exact solutions K−1(v†) be
nonempty. Exact solutions which minimize R, that is, elements of the set

arg min{R(u) : u ∈ K−1(v†)},

are called R-minimizing solutions. The following theorem gives conditions for
when minimization of (7) is a well-defined regularization method (cf. Section
3.2 of [19]).

Theorem 2.1. Endow the Banach spaces U and V with topologies weaker than
the respective norm topologies. Assume that the following four statements hold
with respect to these topologies:
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1. The sublevel sets of Tα(·; v†) are sequentially precompact.

2. ‖ · ‖ is sequentially lower semicontinuous.

3. R is sequentially lower semicontinuous.

4. The sublevel sets of Tα(·; v†) are sequentially closed and K is sequentially
continuous there.

Then the functional Tα(·; vδ) has a minimum for all α > 0 and vδ ∈ V .
Moreover minimization of Tα is continuous in the following sense. Whenever
‖vk − vδ‖ → 0, then every sequence (uk), uk ∈ arg min Tα(·; vk), has a converg-
ing subsequence and the limit of every such sequence is a minimizer of Tα(·; vδ).
Assume, in addition, that

5. there is an exact solution in domR and

6. the parameter choice rule α : R>0 → R>0 satisfies α(δ)→ 0 and δq/α(δ)→
0 as δ → 0.

Then, whenever δk → 0, every sequence (uk), uk ∈ arg min Tα(·; vδk), has a
converging subsequence and the limit of every such sequence is an R-minimizing
solution.

Remark 2.1. Note that convexity of R is not required for a well-defined reg-
ularization method.

In principle convergence of regularized solutions can be arbitrarily slow.
Therefore it is useful to have a bound in terms of δ on the discrepancy between
regularized and exact solution. In a Banach space setting a typical discrepancy
measure is the Bregman distance associated to the regularization functional [5].
Concerning convergence rates for variational regularization in Banach spaces we
have the following result (cf. [16] or Section 3.2 of [19]).

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. In addition assume
that R has a subgradient u∗ at an R-minimizing solution u† and that there are
constants β1 ∈ [0, 1), β2, ᾱ > 0 and ρ > ᾱR(u†) such that

〈u∗, u† − u〉 ≤ β1Du∗(u;u†) + β2‖K(u)− v†‖ (8)

holds for all u with Tᾱ(u; v†) ≤ ρ.
If q > 1, assume α(δ) ∼ δq−1. Then

Du∗(uδα;u†) = O(δ) and ‖K(uδα)− vδ‖ = O(δ).

If q = 1, assume α(δ) ∼ δε for ε ∈ (0, 1). Then

Du∗(uδα;u†) = O(δ1−ε) and ‖K(uδα)− vδ‖ = O(δ).
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Remark 2.2. In contrast to [16, 19] we have not assumed R to be convex
and have not added any other assumption in its place. This does not change
the theorem’s validity. However, for a general nonconvex R the condition u∗ ∈
∂R(u†) cannot be expected to hold except in certain special cases. (Recall that
standard results on subdifferentiability, such as Lemmas 2.2, 2.3 and 2.4, require
R to be convex.) Example 3.2 below is devoted to such a special case. That is,
we construct a well-defined regularization method where R is not convex but
condition (8) is still satisfied.

Remark 2.3. Moreover, Example 3.2 exploits the following observation. If the
regularization functional is chosen “perfectly”, that is, it has a global minimizer
that is also an exact solution, then condition (8) is always satisfied: Assume
that ū† is such a solution, that is, K(ū†) = v† and 0 ∈ ∂R(ū†). Then, with
u∗ = 0 inequality (8) becomes

0 ≤ β1(R(u)−R(ū†)) + β2‖K(u)− v†‖,

which is true for all u ∈ U and all nonnegative β1, β2.

2.3 Polyconvex functions

When considering regularization functionals of the form

R(u) =

∫
Ω

f(x, u(x),∇u(x)) dx

on U = W 1,p(Ω,RN ) one major concern is how to ensure weak lower semicon-
tinuity. While convexity of f in its third argument is essentially an equivalent
condition in the scalar setting (n = 1 or N = 1), convexity is unnecessarily
restrictive when n > 1 and N > 1. There, the weaker notion of quasiconvexity
is already sufficient. Unfortunately, quasiconvexity can be a difficult property
to verify. Polyconvexity, however, while still weaker than convexity, is stronger
than quasiconvexity and easier to work with.

Let N,n ∈ N and let N ∧ n = min(N,n). For A ∈ RN×n and 1 ≤ s ≤ N ∧ n
denote by adjs(A) the matrix consisting of all s × s minors of A. Note that
adj1(A) = A and adjs(A) ∈ Rσ(s), where σ(s) =

(
N
s

)(
n
s

)
. Set τ(N,n) =∑N∧n

s=1 σ(s) and denote by T : RN×n → Rτ(N,n) the function that maps a matrix
to the vector containing all its minors, which with a slight abuse of notation can
be written as

T (A) = (A, adj2(A), . . . , adjN∧n(A)).

A function f : RN×n → R ∪ {+∞} is called polyconvex, if there exists a convex
function F : Rτ(N,n) → R ∪ {+∞} satisfying f = F ◦ T . Notice that this F is
not unique in general. Clearly, every convex function is polyconvex. If N = 1 or
n = 1, then also the converse holds. If n = N > 1, an example of a polyconvex
function which is not convex is f(A) = |detA|2. See Chapter 5 in [6] for more
details on polyconvex functions.

The following result is a special case of the more general Theorem 8.16 in
[6].
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Lemma 2.6. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and
let

F : Ω× RN × Rτ(N,n) → R≥0 ∪ {+∞}
be a Carathéodory function such that the map A 7→ F (x, u,A) is convex for
almost every x ∈ Ω and every u ∈ RN . Then, for p > N ∧ n, the functional

u 7→
∫

Ω

F (x, u(x), T (∇u(x))) dx

is sequentially weakly lower semicontinuous in W 1,p(Ω,RN ).

In the last part of this paper we will make use of the following variant of the
map T . Set τ2(N,n) =

∑N∧n
s=2 σ(s). We denote by T2 : RN×n → Rτ2(N,n) the

function defined by

T2(A) = (adj2(A), . . . , adjN∧n(A)).

3 Image registration

In this section we treat the image registration problem from an inverse problems
perspective. First, by applying Theorem 2.1 we show that minimization of

‖I2 ◦ u− I1‖q + αR(u),

where R is a first order functional with polyconvex integrand, constitutes a
well-defined regularization method. Second, we highlight a particular situation
where, in spite of R being nonconvex, Theorem 2.2 applies as well.

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Given a target
image I1 : Ω→ R and a reference image I2 : Ω→ R the model equation for the
image registration problem reads

I2 ◦ u = I1,

where u : Ω → Rn is an unknown deformation of the image domain. We
interpret this as a particular instance of the abstract operator equation (6).
Thus K is the composition operator that sends every deformation u to the
deformed reference image I2 ◦ u = K(u). Note that in Section 2.2 we have
implicitly assumed that the operator be known exactly. Therefore, I2 is known
exactly, whereas the exact target image I†1 , i.e. the exact data, is available only
as noisy measurements Iδ1 .

Theorem 3.1. Let p > n and q ≥ 1. Endow U = W 1,p(Ω,Rn), with its weak
and V = Lq(Ω) with its strong topology. Assume I2 ∈ C0(Ω̄) and define the
operator

K : D(K) ⊂ U → V, u 7→ K(u) = I2 ◦ u
with domain D(K) = {u ∈ U : u(Ω) ⊂ Ω̄}. Let

F : Ω× Rn × Rτ(n,n) → R≥0 ∪ {+∞}
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be a Carathéodory function such that, for almost every x ∈ Ω and every u ∈ Rn,
the map ξ 7→ F (x, u, ξ) is convex and

F (x, u, T (A)) ≥ c|A|p (9)

holds for every A ∈ Rn×n and some c > 0. For u ∈ U define

R(u) =

∫
Ω

F (x, u(x), T (∇u(x))) dx

and assume that domR∩D(K) is not empty. Then, minimization of

Tα(u; Iδ1 ) = ‖K(u)− Iδ1‖
q
Lq(Ω) + αR(u), α > 0, (10)

is a well-defined regularization method in the sense of Theorem 2.1.

Proof. We show that all the assumptions of Theorem 2.1 are satisfied.
Item 2: The norm is continuous and therefore also semicontinuous.
Item 3: Lower semicontinuity of R follows from Lemma 2.6.
Item 1: We have to show that the sublevel sets of Tα(·; I1) are weakly sequen-

tially precompact. Let α,M > 0, I1 ∈ V and (uk) ⊂ U with Tα(uk; I1) ≤ M
for k ≥ 1. Then, in particular, (uk) ⊂ D(K) and therefore uk(Ω) ⊂ Ω̄ for all
k. Since Ω is bounded, the sequence (uk) is bounded in Lp(Ω,Rn). The lower
bound (9) on F yields boundedness of (uk) in U . Since p > 1, U is reflexive
and therefore, by the Eberlein-Šmulian theorem, every bounded sequence has a
weakly convergent subsequence. Thus, the sublevel sets of Tα(·; I1) are weakly
sequentially precompact.

Item 4: We need to verify that the sublevel sets of Tα(·; I1) are weakly
sequentially closed and that K is weak-strong sequentially continuous on these
sets. Let again Tα(uk; I1) ≤ M for k ≥ 1 and assume uk ⇀ ū for some ū ∈ U .
The compact embedding of U into C0(Ω̄,Rn) implies that uk → ū uniformly
and ū ∈ D(K). Since I2 ∈ C0(Ω̄), the sequence (I2 ◦uk) converges uniformly to
I2 ◦ ū and, because Ω is bounded, it also converges in Lq(Ω). Finally, continuity
of ‖ · ‖qLq and weak lower semicontinuity of R gives

Tα(ū; I1) ≤ lim inf
k→∞

Tα(uk; I1) ≤M.

Thus we have shown that the sublevel sets of Tα(·; I1) are weakly sequentially
closed and that K is weak-strong sequentially continuous there.

Example 3.1. Let n = 3. For γ1, γ2 ≥ 0 consider the following regularization
term

R(u) = Evol(u) + γ1Emem(u) + γ2Ebend(u),

where Evol, Emem and Ebend are the volume, membrane and bending energies,
respectively, from [17]. They all have polyconvex integrands and, in addition,
the volume energy satisfies the coercivity estimate (9). Moreover, the identity
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transformation lies in D(K) ∩ domR. It now follows from Theorem 3.1 that
minimization of

‖I2 ◦ u− Iδ1‖2L2(Ω) + αR(u)

over U = W 1,p(Ω,R3), p > 3, is a well-defined regularization method. Note,
however, that in [17] boundary conditions are imposed and the data matching
term is weighted with a nonnegative cutoff function whose support is a proper
subset of Ω.

As already pointed out in Remark 2.2, while Theorem 2.2 is in principle
applicable to regularization methods like (10), in most cases, due to the non-
convexity of R, it is unlikely to actually apply. Below, we use the idea from
Remark 2.3 to construct an instance of a registration problem where Theorem
2.2 does apply however.

Example 3.2. Let n = 2. Assume that I2 is a rotated version of the exact
data I†1 . That is, there is a deformation uR ∈ U , given by uR(x) = Rx for

some R ∈ SO(2), such that ‖I2 ◦ uR − I†1‖Lq(Ω) = 0. Of course, uR must lie
in D(K), which in this case translates to Ω being invariant with respect to the
rotation R. Below we construct a nonconvex regularization functional R which
not only satisfies all requirements from Theorem 3.1 but which is also minimal
for rotations. It then follows that 0 ∈ ∂R(uR) and, by Remark 2.3, Theorem
2.2 applies.

For u ∈W 1,p(Ω,R2), p > 2, we define

R(u) =

∫
Ω

f(∇u(x)) dx,

where
f(A) = tr

[
(A>A)p/2

]
+ pe1−detA

for all A ∈ R2×2. This particular choice of integrand is loosely inspired by
the tangential distortion energy from [17]. Next we verify the requirements of
Theorem 3.1.

The identity deformation lies in the set domR∩D(K). Hence it is nonempty.
The coercivity estimate (9) follows from

f(A) ≥ tr
[
(A>A)p/2

]
= λp1 + λp2 ≥ c(λ2

1 + λ2
2)p/2 = c|A|p.

Here λ1, λ2 are the singular values of A and c > 0 is a constant whose existence
is guaranteed by the equivalence of norms in finite dimensions. Convexity of the
maps x 7→ e1−x and A 7→ λp1 +λp2 (cf. [18, Lemma 3.11]) yields polyconvexity of
f . Therefore, minimization of (10) with R as specified above is a well-defined
regularization method.

To verify minimality on SO(2) it is convenient to rewrite f in terms of its
signed singular values µ1 = sgn(detA)λ1, µ2 = λ2:

f(A) = |µ1|p + µp2 + pe1−µ1µ2 .
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Now minimality on SO(2) translates to minimality for µ1 = µ2 = 1, which is
easy to check. Thus, R minimizes f and consequently uR minimizes R. Since
uR is also an exact solution, the convergence rates result Thm. 2.2 applies.

The fact that f only depends on signed singular values is actually equivalent
to f being SO(2)× SO(2) invariant, which is a desirable property in itself. See
[6, Sec. 5.3.3] for more details.

4 Generalized Bregman distances for
functionals with polyconvex integrands

The previous example has shown that there are problems where even noncon-
vex regularization can lead to a linear convergence rate in the classical Bregman
distance. In general, however, mainly due to a lack of subdifferentiability, this
cannot be expected. Therefore, we wish to find a weaker notion of subdifferentia-
bility that is better suited for functionals with polyconvex integrands. In doing
so we follow Grasmair’s approach from [14], which for our purposes boils down
to finding a set W that takes the place of the dual U∗ in the definition of the sub-
differential. This set is chosen such that we can prove a W -subdifferentiability
result, similar to Lemma 2.4, for a certain class of functionals with polycon-
vex integrands. In further consequence, the associated W -Bregman distance
allows us to translate the classical convergence rates result Theorem 2.2 to the
polyconvex setting.

Definition 4.1. Let Ω ⊂ Rn be open. For p ≥ N ∧ n set U = W 1,p(Ω,RN ).
Recall the notation from Section 2.3 and observe that for u ∈ U by Hölder’s
inequality we have

T2(∇u) ∈
N∧n∏
s=2

L
p
s (Ω,Rσ(s)) =: S2. (11)

Therefore, we let Wpoly be the set of all functions w : U → R for which there is
a pair (u∗, v∗) ∈ U∗ × S∗2 such that

w(u) = 〈u∗, u〉U∗,U + 〈v∗, T2(∇u)〉S∗
2 ,S2

for all u ∈ U .

Remark 4.1. The previous definition can be regarded as a natural one in the
following sense. The dual U∗ basically consists of functions that act on all pairs
(u,∇u) ∈ Lp(Ω,RN ) × Lp(Ω,RN×n) in a linear and bounded way. Similarly,
the set Wpoly consists of functions acting on (u, T (∇u)) in a linear and bounded
way.

Remark 4.2. Identifying u∗ ∈ U∗ with (u∗, 0) ∈Wpoly we can regard Wpoly as
a superset of U∗. Hence the generalized subdifferential

∂polyR(u) =

{
{w ∈Wpoly : R(v) ≥ R(u) + w(v)− w(u) for all v ∈ U}, R(u) ∈ R
∅, R(u) /∈ R.
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can be regarded as a superset of the classical one ∂R(u) for all functionals
R : U → R ∪ {±∞} and u ∈ U . Put differently, every functional which is
subdifferentiable in the classical sense is also Wpoly-subdifferentiable. This is
analogous to polyconvexity being a weaker notion than convexity.

Remark 4.3. Let ū ∈ domR, u ∈ U and w = (u∗, v∗) ∈ ∂polyR(ū). The
associated Wpoly-Bregman distance can be written as

Dpoly
w (u; ū) = R(u)−R(ū)− w(u) + w(ū)

= R(u)−R(ū)− 〈u∗, u− ū〉U∗,U − 〈v∗, T2(∇u)− T2(∇ū)〉S∗
2 ,S2

.

Note that the first three terms in the second line correspond to the classical
Bregman distance at (ū, u∗), but their sum can be negative now, since u∗ /∈
∂R(ū) in general. If however v∗ = 0, then u∗ ∈ ∂R(ū) and the classical and
W -Bregman distances coincide. That is,

Dpoly
w (u; ū) = Du∗(u; ū)

for all u ∈ U .

The following statement justifies our definition of Wpoly and is analogous to
Lemma 2.4.

Lemma 4.1. Let Ω ⊂ Rn be an open set and let

F : Ω× RN × Rτ(N,n) → R≥0 ∪ {+∞}

be a Carathéodory function. Assume that, for almost every x ∈ Ω, the map
(u, ξ) 7→ F (x, u, ξ) is convex and differentiable throughout its effective domain.
Let p ∈ [1,∞) and define the following functional on U = W 1,p(Ω,RN )

R(u) =

∫
Ω

F (x, u(x), T (∇u(x))) dx.

If R(v̄) ∈ R and the function x 7→ ∇u,ξF (x, v̄(x), T (∇v̄(x))) lies in

Lp
∗
(Ω,RN )×

N∧n∏
s=1

L( p
s )∗(Ω,Rσ(s)), (12)

then this function is a Wpoly-subgradient of R at v̄.

Proof. Since, for almost every x ∈ Ω, the map (u, ξ) 7→ F (x, u, ξ) is convex and
differentiable throughout its effective domain, it is subdifferentiable. Therefore
for every (v, ζ) ∈ domF (x, ·, ·) we have

F (x,w, η) ≥ F (x, v, ζ) +∇u,ξF (x, v, ζ) · (w − v, η − ζ)

= F (x, v, ζ) +∇uF (x, v, ζ) · (w − v) +∇ξF (x, v, ζ) · (η − ζ)
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for all (w, η) ∈ RN × Rτ(N,n). In particular, for functions v̄, v ∈ U , R(v̄) ∈ R,
we get

F (x, v(x), T (∇v(x))) ≥ F (x, v̄(x), T (∇v̄(x)))

+∇uF (x, v̄(x), T (∇v̄(x))) · (v(x)− v̄(x))

+∇ξF (x, v̄(x), T (∇v̄(x))) · (T (∇v(x))− T (∇v̄(x)))

for almost every x ∈ Ω. Integration over Ω gives

R(v) ≥ R(v̄) +

∫
Ω

[
∇uF (x, v̄(x), T (∇v̄(x))) · (v(x)− v̄(x))

+∇ξF (x, v̄(x), T (∇v̄(x))) · (T (∇v(x))− T (∇v̄(x)))
]
dx.

Considering that v − v̄ ∈ Lp(Ω,RN ) and

T (∇v)− T (∇v̄) ∈
N∧n∏
s=1

L
p
s (Ω,Rσ(s)),

the integral on the right hand side is well-defined, if

x 7→ ∇uF (x, v̄(x), T (∇v̄(x))) ∈ Lp
∗
(Ω,RN )

and

x 7→ ∇ξF (x, v̄(x), T (∇v̄(x))) ∈
N∧n∏
s=1

L( p
s )∗(Ω,Rσ(s)),

which is just what we have assumed in (12).

Example 4.1. Let N = n = 2. Then T (A) = (A,detA) for A ∈ R2×2. Define
an integrand by F (x, u,A, detA) = F (detA) = (detA)2. If p = 4, then for all
u ∈ U = W 1,4(Ω,R2) we have

R(u) =

∫
Ω

(det∇u(x))2 dx ∈ R

and the function x 7→ F ′(det∇u(x)) = 2 det∇u(x) lies in L2(Ω). By Lemma
4.1 functional R is Wpoly-subdifferentiable everywhere.

Example 4.2. Let p > N = n ≥ 2, q > 1, and let Ω ⊂ Rn be bounded.
Consider the integrand F (x, u, T (A)) = F (A,detA) = |A|p/p + |detA|q/q. If
v̄ ∈W 1,∞(Ω,Rn), then clearly R(v̄) ∈ R. In addition

x 7→ ∇ξF (∇v̄(x),det∇v̄(x)) = (|∇v̄(x)|p−2∇v̄(x), |det∇v̄(x)|q−2 det∇v̄(x))

lies in L∞. Therefore, R has a Wpoly-subgradient everywhere on W 1,∞(Ω,Rn) ⊂
U = W 1,p(Ω,Rn), which implies that the associated Wpoly-Bregman distance is
defined on a dense subset of U . In addition, the functional satisfies the coercivity
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estimate (9) and is weakly lower semicontinuous in W 1,p according to Lemma
2.6. Thus, at least from a theoretical perspective, the functional R is well-
suited for regularizing inverse problems with Rn-valued unknowns. Since R is
not convex, however, it is not covered by most of existing regularization theory
[19, 20].

Remark 4.4. If a functional R on U is Wpoly-subdifferentiable at u ∈ U ,
then it is also locally Wpoly-convex at u in the sense of [14]. This means that
R(u) = R∗∗(u), where the asterisk indicates generalized Fenchel conjugation
with respect to Wpoly. (See Section 2 in [14] or [21] for more details.) Therefore,
Lemma 4.1 also provides sufficient conditions for a functional to be locally Wpoly-
convex.

The next theorem shows that standard convergence rates results can be
carried over to the Wpoly-Bregman distance.

Theorem 4.1. Let the assumptions of Theorem 2.1 hold with U = W 1,p(Ω,RN ).
In addition assume that R has a Wpoly-subgradient w at an R-minimizing solu-
tion u† and that there are constants β1 ∈ [0, 1), β2, ᾱ > 0 and ρ > ᾱR(u†) such
that

w(u†)− w(u) ≤ β1D
poly
w (u;u†) + β2‖K(u)− v†‖ (13)

holds for all u with Tᾱ(u; v†) ≤ ρ.
If q > 1, assume α(δ) ∼ δq−1. Then

Dpoly
w (uδα;u†) = O(δ) and ‖K(uδα)− vδ‖ = O(δ).

If q = 1, assume α(δ) ∼ δε for ε ∈ (0, 1). Then

Dpoly
w (uδα;u†) = O(δ1−ε) and ‖K(uδα)− vδ‖ = O(δ).

Proof. This proof is analogous to the one of Proposition 3.41 in [19]. We include
it here for the sake of completeness.

Since uδα minimizes Tα(·; vδ) and ‖v† − vδ‖ ≤ δ we have

Tα(uδα; vδ) ≤ Tα(u†; vδ) ≤ δq + αR(u†).

Adding α(Dpoly
w (uδα;u†) − R(uδα)) to the left and right hand sides of this in-

equality gives

‖K(uδα)− vδ‖q + αDpoly
w (uδα;u†) ≤ δq + α(R(u†) +Dpoly

w (uδα;u†)−R(uδα))

= δq + α(w(u†)− w(uδα)). (14)

Now, let ᾱ > 0 and ρ > ᾱR(u†). Remark 3.27 in [19] shows that Tᾱ(uδα; v†) ≤ ρ
for δ sufficiently small. (The possible lack of convexity of R does not make a
difference here.) Therefore, we can use (13) with u = uδα to further estimate the
right hand side of (14) yielding

‖K(uδα)− vδ‖q + αDpoly
w (uδα;u†) ≤ δq + α(β1D

poly
w (uδα;u†) + β2‖K(uδα)− v†‖)

14



Exploiting once again the fact that ‖v† − vδ‖ ≤ δ we arrive at

‖K(uδα)− vδ‖q + αDpoly
w (uδα;u†) ≤ δq + αβ1D

poly
w (uδα;u†)

+ αβ2(‖K(uδα)− vδ‖+ δ),
(15)

which holds for all sufficiently small δ > 0.
Assume first that q = 1. In this case we can rewrite inequality (15) in the

following way

(1− αβ2)‖K(uδα)− vδ‖+ α(1− β1)Dpoly
w (uδα;u†) ≤ (1 + αβ2)δ,

which directly implies that

Dpoly
w (uδα;u†) ≤ (1 + αβ2)

α(1− β1)
δ,

‖K(uδα)− vδ‖ ≤ (1 + αβ2)

(1− αβ2)
δ.

Note that β1 < 1 and that α(δ)β2 < 1 for δ sufficiently small. If the parameter
choice rule satisfies α(δ) ∼ δε, 0 < ε < 1, the assertion follows.

Now let q > 1 and rewrite (15) as

‖K(uδα)− vδ‖q − αβ2‖K(uδα)− vδ‖+ α(1− β1)Dpoly
w (uδα;u†) ≤ δq + αβ2δ.

Using Young’s inequality ab ≤ aq/q+ bq
∗
/q∗ for a = ‖K(uδα)− vδ‖ and b = αβ2

we obtain(
1− 1

q

)
‖K(uδα)− vδ‖q + α(1− β1)Dpoly

w (uδα;u†) ≤ δq + αβ2δ + (αβ2)q
∗
/q∗,

and consequently

Dpoly
w (uδα;u†) ≤ δq + αβ2δ + (αβ2)q

∗
/q∗

α(1− β1)
,

‖K(uδα)− vδ‖q ≤ q

q − 1

(
δq + αβ2δ + (αβ2)q

∗
/q∗
)
.

For α(δ) ∼ δq−1 the assertion follows.

Remark 4.5. Theorem 4.1 is a generalization of Theorem 2.2 in the following
sense. Whenever Theorem 2.2 applies to a variational regularization method
over W 1,p(Ω,RN ), Theorem 4.1 applies as well with w = (u∗, 0). In addition we
have Dpoly

w (uδα;u†) = Du∗(uδα;u†).

Remark 4.6. On the other hand, the results of Theorem 4.1 can be seen as
special cases of those in Section 3 of [14]. More specifically, if the assumptions
of Theorem 4.1 hold, then R is locally Wpoly-convex at u† in the sense of [14]
(cf. Remark 4.4) and minimization of Tα satisfies a variational inequality at u†

(again in the sense of [14]).
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Remark 4.7. Note that Theorem 4.1 does not require R to have a polyconvex
integrand, just as Theorem 2.2 does not require R to be convex. However, a
general non-polyconvex integrand cannot be expected to give rise to a Wpoly-
subdifferentiable functional R.

Example 4.3. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary
and n = 3. Consider the volumetric regularization energy from [17], which can
be written as

R(u) = Evol(u) =

∫
Ω

F (∇u(x), adj2(∇u(x)),det∇u(x)) dx,

where

F (A,B,C) =

{
η1|A|p + η2|B|r + η3C

−s, if C > 0,

+∞, if C ≤ 0.

Here, the ηi are arbitrary positive constants whereas p, r > n and s > r(n −
1)/(r − n). As in Example 3.1 it follows that minimization of

Tα(u; Iδ1 ) = ‖I2 ◦ u− Iδ1‖2L2(Ω) + αEvol(u)

over U = W 1,p(Ω,R3) is a well-defined regularization method.
Next, assume u† ∈ domEvol is an R-minimizing solution. According to

Lemma 4.1 Evol is Wpoly-subdifferentiable at u†, if

|adj2(∇u†)|r−1 ∈ L( p
2 )∗ and |det∇u†|−s−1 ∈ L( p

3 )∗ ,

and in this case Lemma 4.1 also provides an explicit formula for a Wpoly-
subgradient. If now, in addition, the source condition (13) is satisfied at u†,
then we obtain a linear convergence rate in the Wpoly-Bregman distance. How-
ever, finding specific examples where this is the case is non-trivial and remains
an open question.

5 Conclusion

Convexity is an unnecessarily strong requirement for functionals R defined on
W 1,p(Ω,RN ), if the main concern is to ensure weak lower semicontinuity. In
fact, polyconvexity of the integrand, or even quasiconvexity, is enough. How-
ever, if R is supposed to serve as a regularization functional, then the problem
is how to measure convergence rates. The standard approach using classical
Bregman distances Du∗(uδα;u†) must be expected to fail in general due to the
lack of convexity. In this article we have tried to answer two questions. (i) Are
there instances of nonconvex variational regularization where standard conver-
gence rates results do apply? (ii) What could a general strategy for obtaining
convergence rates for regularization functionals with polyconvex integrands look
like?
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With Example 3.2 we have given a positive answer to the first question. It
is based on the fact, explained in Remark 2.3, that source conditions are auto-
matically satisfied, if R has a minimizer which is also an exact solution of the
operator equation (6). Exploiting the fact that polyconvexity is compatible with
minimality on SO(n) we constructed an instance of the image registration prob-
lem with nonconvex regularization where a standard convergence rates result as
given in Theorem 2.2 applies.

The second question was addressed by introducing Wpoly-Bregman distances,
which are based on a recent idea from [14] and which have a reasonably large
domain of definition for a certain class of functionals with polyconvex integrands
(cf. Lemma 4.1). By adapting the usual source conditions one can obtain linear
convergence rates also for the Wpoly-Bregman distances (see Theorem 4.1).
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