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Abstract

We address the classical issue of appropriate choice of the regularization and
discretization level for the Tikhonov regularization of an inverse problem with im-
perfectly measured data. We focus on the fact that the proper choice of the dis-
cretization level in the domain together with the regularization parameter is a key
feature in adequate regularization. We propose a discrepancy-based choice for these
quantities by applying a relaxed version of Morozov’s discrepancy principle. Indeed,
we prove the existence of the discretization level and the regularization parameter
satisfying such discrepancy. We also prove associated regularizing properties concern-
ing the Tikhonov minimizers. We conclude by presenting some numerical examples
of interest.
Key words: Tikhonov Regularization, Discrete Setting, Regularization Convergence
Rates, Discrepancy Principles.

1 Introduction

In many applications, inverse problems are solved under a finite-dimensional and discrete
setup with noisy, and sparse data, although the theoretical framework is infinite dimen-
sional. See [11, 12, 23]. Thus, the relation between the finite- and the infinite-dimensional
descriptions of the same problem should be well-understood. More precisely, it is impor-
tant to state a criterion to find appropriately the domain discretization level in terms of
the available data, in order to find a reliable solution of the inverse problem, which is in
general ill-posed.

Thus, under the context of Tikhonov-type regularization, we propose a discrepancy-
based rule for choosing appropriately a regularization parameter and a domain discretiza-
tion level. We also establish the corresponding regularizing properties of this rule under
fairly general assumptions inspired by [23, Chapter 3].
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Several authors have considered discretization as a regularization tool. See [12, 13, 16,
19] and references therein. We go one step further by analyzing the interplay between the
regularization parameter and the domain discretization level from a discrepancy principle
viewpoint.

Assume that a model is given by the operator F : D(F ) ⊂ X → Y , defined in the
reflexive Banach spaces X and Y , with a convex domain D(F ). Thus, we want to identify
the element x in D(F ) ⊂ X that generated, through F , the data y ∈ R(F ) ⊂ Y . In other
words, we have the following problem:

Problem 1. Given y ∈ R(F ) ⊂ Y , find x ∈ D(F ) ⊂ X satisfying:

F (x) = y. (1)

Problem 1 is an idealization, since it is intrinsically assumed that the data y is perfectly
measurable, i.e., there is no uncertainty when measuring y. However, in practice we have
access only to noisy data in Y , denoted by yδ. Furthermore, in general the inverse of the
forward operator is not continuous or not well-defined (ill-posed).

Remark 1. In the present framework we can include the class of locally ill-posed inverse
problems. More precisely, the class of problems where, for a given solution x† of the inverse
problem (1), in every closed ball B(x†, r), we always find a sequence {xk}k∈N ⊂ B(x†, r) ∩
D(F ), such that, {F (xk)}k∈N converges to F (x†), but xk 9 x†.

This is the case, for example, when x† is a cluster point of solutions of (1). For more
details and examples on locally ill-posed problems, see [15, 17] and [24, Section 3.1.2].

When the statistics of the noise is available and the way it corrupts the data is known,
the noisy and the noiseless data are related by:

yδ = h(y, e),

where e is the noise, which is given by some random variable and the function h(·, ··) states
how the uncertainties corrupts the data. See [25].

Remark 2. Let us assume that X and Y are Hilbert spaces 1.
Let the noise be additive, i.e., h(y, e) = y + e, and let e be a zero-mean Gaussian random
variable with covariance operator Σ, where Σ : Y −→ Y is a positive-definite and bounded
from below linear operator. Then, the noiseless and the noisy data should satisfy

〈y − yδ,Σ−1(y − yδ)〉 ≤ δ2, (2)

with δ > 0 and ‖Σ‖ ≥ 1/δ2.
By the positiveness and the boundedness of Σ, it follows that 〈·,Σ−1 · ·〉 is a scalar product
equivalent to the standard one of Y . In other words, Y with 〈·,Σ−1 · ·〉 is also a Hilbert
space. Therefore, when we have a zero-mean Gaussian noise with covariance operator Σ,
there is no loss of generality if we assume that yδ, y and the noise level δ > 0 satisfy:

‖y − yδ‖ ≤ δ. (3)

1The case of Banach spaces follows similarly by replacing the scalar product by the dual pairing.
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The presence of noise and the intrinsic ill-posedness of Problem 1 imply that some
regularization technique should be addressed to find stable approximate solutions. Thus,
we investigate a Tikhonov-type regularization approach. See [11, 23]. More precisely, we
analyze:

Problem 2. Find a minimizer in the domain of the operator F , which is assumed to be
convex, for the Tikhonov functional

Fyδα,x0(x) = ‖F (x)− yδ‖p + αfx0(x), (4)

with α > 0 and 1 ≤ p < +∞.

In the sequel, we shall make some fairly general assumptions on the functional fx0 . We
remark that, we introduced x0 in (4) to allow the introduction of some a priori information.

We analyze Problem 1 in a discrete setup. Thus, besides choosing appropriately the
regularization parameter α, we should choose also a proper level of discretization in the
domain of the forward operator. Such choice should be made taking into account the
available data yδ. Thus, we base our choice of both parameters on the same relaxed
version of Morozov’s discrepancy principle. The present approach applies in a nontrivial
way the methodology developed in [18, 6, 4, 5] to the context of nonlinear operators under
a discrete setting. We also establish that the continuous case can be recovered from the
discrete one, when the discretization level goes to infinity.

We propose an a posteriori choice for the discretization level in the domain of the
forward operator and the regularization parameter α in the Tikhonov functional (4) based
on the following relaxed version of the Morozov’s discrepancy principle:

Problem 3. Given 1 < τ < λ fixed, find m ∈ N and α > 0, such that

τδ ≤ ‖F (xδm,α)− yδ‖ ≤ λδ, (5)

where xδm,α, is a minimizer of (4) in D(F )∩Xm, with Xm a finite-dimensional subspace of
X.

Under this framework, we prove that, if Problem 1 has a unique solution and the
parameters α and m satisfy (5), then its discrete regularized reconstructions (weakly)
converge, when the noise level δ goes to zero, to the solution of Problem 1. When uniqueness
does not hold, we also have convergence for some solution of Problem 1. However, in this
case, the regularized solutions converge to some fx0-minimizing solution of Problem 1 (see
Definition 1), under some restrictions on the choice of m.

We observe that, in general the set of elements in the finite-dimensional subspace Xm

satisfying (5) maybe empty. Thus, we shall prove that there exists some m and α such
that the discrepancy principle (5) is satisfied. Furthermore, under suitable assumptions,
convergence and convergence-rate results for the Tikhonov minimizers can be obtained for
such parameters in terms of the noise level δ.

Part of the proof of these results rely on the well-posedness of a discrete version of the
Morozov’s discrepancy principle presented in [4, 5, 6].

We also present some guidelines to adapt the proofs of these results when the forward
operator is replaced by a discrete approximation or the discrepancy principle (5) is replaced
by the sequential discrepancy principle studied in [3].
This article is divided as follows:

3



In Section 2 we introduce the discrete setup and make some assumptions concerning
Tikhonov-type regularization. We also present existence and stability results for the mini-
mizers of (4) with a fixed discretization level. In addition, we prove the convergence of the
approximated solutions to some solution of Problem 1.
The well-posedness of the discrepancy principle (5) for finding the appropriate discretiza-
tion level in the domain and regularization parameter is stated in Section 3.
The convergence and convergence-rate results associated to the discrepancy principle (5)
are established in Section 4.
We also observe a key change in the proof of the convergence result when, instead of the
forward operator F , we consider a discrete approximation of F in Section 5.
In Section 6, we introduce an alternative discrepancy principle, which is more general than
that of Equation (5). We also comment the principal changes in the proof of the conver-
gence results, when using this discrepancy principle.
Section 7 is devoted to numerical examples that illustrate the present approach.
The regularizing properties of the auxiliary discrepancy principle introduced in Section 3
is proved in Appendix A.

2 Preliminaries

We now define the discrete framework used in the subsequent sections. We also present
some preliminary results on Tikhonov regularization under the discrete setup and make
some important assumptions.

Assumption 1. The regularizing functional fx0 : D(fx0) → R+ is weakly lower semi-
continuous, convex, coercive, and proper.

Assumption 2. The forward operator F is continuous under the strong topologies of X
and Y . We also assume that the level sets

Mα(ρ) = {x ∈ D(F ) : Fyδα,x0(x) ≤ ρ}

are weakly pre-compact and weakly closed. Moreover, the restriction of F to Mα(ρ) is
weakly continuous under the weak topologies of X and Y .

Definition 1. An element x† of D(F ) is called a least-square fx0-minimizing solution or
simply an fx0-minimizing solution of Problem 1 if it is a least-square solution, i.e.,

x† ∈ LS := {x ∈ D(F ) : ‖F (x)− y‖ = 0}

and minimizes fx0 in LS, i.e.,

x† ∈ L := argmin{fx0(x) : x ∈ LS}.

We always assume that L 6= ∅.
Note that the sets LS and L depend on the noiseless data y.
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Assumption 3 (Condition 4.7 in [4]). Let x† be an fx0-minimizing solution for Problem 1
and x0 ∈ D(F ) be fixed. We assume that:

lim inf
t→0+

‖F ((1− t)x† + tx0)− y‖p

t
= 0 (6)

Note that Assumption 3 is satisfied by many classes of operators, such as the class
of locally Hölder continuous functions with exponent greater than 1/2, with p = 2. See
[11, 23] and references therein.

In the remaining part of this section we define the discrete setup of the present article.
Let the sequence {Xm}m∈N of finite-dimensional subspaces of X satisfy:

Xm ⊂ Xm+1, for m ∈ N, and
⋃
m∈N

Xm = X. (7)

Definition 2. Define the finite-dimensional sets:

Dm = D(F ) ∩Xm, for m ∈ N. (8)

The set Dm is convex since it is the intersection of a subspace of X with a convex set.
Note that, if we had chosen Dm as the orthogonal projection of D(F ) onto the finite-

dimensional subspace Xm, we could possibly have that Dm∩X −D(F ) 6= ∅, since F is not
necessarily linear and D(F ) is not necessarily a subspace of X. Therefore, this definition
ensures that Dm ⊂ D(F ) for every m ∈ N.

For now on, we assume that Dm 6= ∅, for every m. Thus, we want to find xδm,α ∈ Dm
minimizing (4), with m and α appropriately chosen.

The analysis that follows depends on how fast the restriction of the operator F to Dm
converges to F as m→∞. Thus, we have the following definition:

Definition 3. Let Pm : X → Dm be the projection of X onto Dm, x† be a least-square
fx0-minimizing solution of Problem 1. Define:

γm := ‖F (x†)− F (Pmx
†)‖ and φm := ‖x† − Pmx†‖. (9)

The quantities in γm and φm in Definition 3 are not available in practice, since it
depends on the unknown x†. They are introduced only for theoretical purposes. Also in
Definition 3, the projection Pm is not an orthogonal projection, since the spaces X, and
Xm are Banach spaces. It is called projection, since it maps uniquely an element of X onto
the convex set Dm ⊂ Xm.

Lemma 1. For every x ∈ D(F ), ‖F (x)− F (Pmx)‖ → 0 when m→∞.

Proof. From (7) it follows that ‖x− Pmx‖ → 0 as m→∞ for every x ∈ D(F ). Since the
operator F is continuous, the assertion follows.
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Existence and Stability of Tikhonov minimizers

We consider the following optimization problem:

Problem 4. Find an element of

argmin{‖F (x)− yδ‖p + αfx0(x)}, subject to x ∈ Dm. (10)

We present below some well-known results concerning the existence and the stability
of the solutions of Problem 4. See [21, Proposition 2.3].

Theorem 1 (Existence). Let m ∈ N and δ > 0 be fixed. Then, for any yδ ∈ Y , it follows
that Problem 4 has a solution.

Definition 4. For given data yδ, we call a solution of Problem 4 stable if for a strongly
convergent sequence {yk}k∈N ⊂ Y , with limit yδ, the corresponding sequence {xk}k∈N ⊂ X
of solutions of Problem 4, where yδ is replaced by yk in the functional of Problem 4, has
a weakly convergent subsequence {xkl}l∈N, with limit x̃, a solution of Problem 4 with data
yδ.

Theorem 2 (Stability). For each m ∈ N, the solutions of Problem 4 are stable in the
sense of Definition 4. Moreover, the convergent subsequence {xkl}l∈N with limit x̃ from
Definition 4 satisfies the limit fx0(xkl)→ fx0(x̃).

Convergence

The following theorem shows that the finite-dimensional Tikhonov minimizers converge to
some fx0-minimizing solution of Problem (1).

Theorem 3. Assume that α = α(δ, γm) > 0 satisfies the limits:

lim
δ,γm→0

α(δ, γm) = 0 and lim
δ,γm→0

(δ + γm)p

α(δ, γm)
. (11)

Let {xk}k∈N be a sequence of solutions of Problem 4 with xk = xδkmk,αk and δk, γmk → 0
when k → ∞. Then, it has a weakly convergent subsequence {xkl}l∈N with weak limit x†,
an fx0-minimizing solution of Problem 1 with fx0(xkl)→ fx0(x

†).

Proof. The proof follows by standard arguments in Tikhonov regularization theory. Thus,
let us consider a sequence {xk}k∈N of solutions of Problem 4 with data yδk , where xk ∈ Xmk

and α = α(δk, γmk) satisfy (11). Then, ‖F (xk) − yδk‖p + αkfx0(xk) ≤ (δk + γmk)
p +

αkfx0(Pmkx
†). Denoting the weakly convergent subsequence also by {xk}k∈N, with limit

x̃ ∈ D(F ), we have

fx0(xk) ≤
(δk + γmk)

p

αk
+ fx0(Pmkx

†),

and then, lim sup
k→∞

fx0(xk) ≤ fx0(x
†), since fx0(Pmkx

†) → fx0(x
†). We also have that

‖F (xk) − yδk‖p ≤ (δk + γmk)
p + αkfx0(Pmkx

†). By the weakly lower semi-continuity of
fx0 and the norm, the weak continuity of F , and the above estimates, it follows that x̃ is
an fx0-minimizing solution of Problem (1).
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3 The Discrepancy Principle

In this section we consider the simultaneous choice of the discretization level in the domain
and the regularization parameter based on the same discrepancy principle.

Definition 5. Let δ > 0 and yδ be fixed. For λ > τ > 1, we choose the greatest m ∈ N
and α > 0, with m = m(δ, yδ) and α = α(δ, yδ), such that

τδ ≤ ‖F (xδm,α)− yδ‖ ≤ λδ, (12)

holds for xδm,α a solution of (4) with these same m and α.

We shall see in Proposition 2 that, under suitable conditions, there exist m and α
satisfying the discrepancy principle (12). In Section 6 we present an alternative discrepancy
principle, where only one of the inequalities of (12) should be satisfied. Thus, even the
functional α 7→ ‖F (xδm,α)− yδ‖ has some discontinuity, the inequality is satisfied by some
α, since, we shall see that limα↘0 ‖F (xδm,α)− yδ‖ = 0.

The existence of the regularization parameter and the discretization level satisfying
the Discrepancy Principle (12) follows by the well-posedness of the modified Morozov’s
discrepancy principle (7). More precisely, we have to choose m ∈ N such that γm satisfies
a modified version of (12). For this same m, we choose α > 0 through (7), given that it is
well-posed. Then, these α and m satisfy the same discrepancy principle, as required. The
well-posedness proof of this problem, for each discretization level m ∈ N, is the aim of the
following paragraph.

In what follows we assume that x0 in the penalization fx0 is an element of the finite-
dimensional sub-domain Dm0 for some m0 ≤ m, for every m considered in the analysis.

Discrete Morozov’s Principle

We now present a criterion to choose the regularization parameter α by a modified version
of the Morozov’s principle for a given discretization level m ∈ N.

In what follows we assume that:

fx0(x) = 0 if, and only if, x = x0. (13)

Definition 6. Let δ, yδ and the domain discretization level m be fixed. For α ∈ R+, we
define the functionals:

L(xδm,α) = ‖F (xδm,α)− yδ‖, (14)

H(xδm,α) = fx0(x
δ
m,α), (15)

I(α) = ‖F (xδm,α)− yδ‖p + αfx0(x
δ
m,α). (16)

We also define the set of all solutions of Problem 4 for each α ∈ (0,∞) and m ∈ N:

Mα,m := {xδm,α ∈ Dm : Fyδα,x0(x
δ
m,α) ≤ Fyδα,x0(x),∀x ∈ Xm}.

Note that, in what follows we assume that the Tikhonov functional is defined for any x ∈
Xm, i.e., it assume finite values if x ∈ Dm and it assumes the value +∞ if x 6∈ Dm.

In the following results, some properties of the functionals L, H and I are presented.
See [26, Section 2.6].
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Lemma 2. [26, Lemma 2.6.1] As functions of α ∈ (0,∞), it follows that, the functional
H(·) is non-increasing and the functionals L and I are non-decreasing. More precisely, for
0 < α < β we have

sup
x∈Mm,α

L(x) ≤ inf
x∈Mm,β

L(x), inf
x∈Mm,α

H(x) ≥ sup
x∈Mm,β

H(x) and I(α) ≤ I(β).

Lemma 3. The functional I : (0,∞)→ [0,∞] is continuous. The sets

Mm :=

{
α > 0

∣∣∣∣∣ inf
x∈Mm,α

L(x) < sup
x∈Mm,α

L(x)

}

and

Nm :=

{
α > 0

∣∣∣∣∣ inf
x∈Mm,α

H(x) < sup
x∈Mm,α

H(x)

}
are countable and coincide. Moreover, for each m ∈ N the maps L and H are continuous
in (0,∞)\Mm.

Lemma 4. For each α > 0, there exist x1, x2 ∈Mm,α such that

L(x1) = inf
x∈Mm,α

L(x) and L(x2) = sup
x∈Mm,α

L(x).

Remark 3. Even we are under a discrete setting, it follows that the proofs of the Lemmas 2,
3 and 4 hold, if the functionals L, H and I are restricted to the finite-dimensional subspace
Xm, with m ∈ N fixed.

In the present section we consider the relaxed version of Morozov’s discrepancy principle
below. However, this is not used for practical purposes, since it relies on the knowledge of
γm, which depends on the unknown x†. It is used only for theoretical purposes, i.e., it is
an auxiliary definition.

Definition 7 (Discrete Morozov’s Principle). Let δ, yδ and the domain discretization
level m be fixed. Define τ1 := τ and let τ2 be such that 1 < τ1 ≤ τ2 < λ. Then, find
α = α(δ, yδ,m) > 0 such that

τ1(δ + γm) ≤ ‖F (xδm,α)− yδ‖ ≤ τ2(δ + γm), (17)

holds for xδm,α, a solution of Problem 4.

In Section 6 we present an alternative discrepancy principle.

Proposition 1. Let 1 < τ1 ≤ τ2 be fixed. Suppose that ‖F (Pmx0) − yδ‖ > τ2(δ + γm).
Then, we can find α and α > 0, such that

L(x1) < τ1(δ + γm) ≤ τ2(δ + γm) < L(x2),

where we denote x1 := xδm,α and x2 := xδm,α.
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Proof. This proof follows almost directly from [4, Proposition 3.8]. Let us hold m fixed
and consider two sequences, {αk}k∈N converging monotonically to zero, and {α′k}k∈N such
that α′k →∞. Then, we can find sequences of Tikhonov minimizers of Problem 4, {xk}k∈N
and {x′k}k∈N, corresponding to αk and α′k, respectively. Then, replacing x† by Pmx

†, 0 by
x0, and δ by δ + γm in [4, Proposition 3.8], the assertion follows.

Extending [4, Condition 3.9] to this discrete setting, we have the following:

Assumption 4. For each m ∈ N fixed, there is no α > 0 such that the estimate

‖F (x)− yδ‖ < τ1(δ + γm) ≤ τ2(δ + γm) < ‖F (x)− yδ‖. (18)

is satisfied for some x, x ∈Mα,m.

The following result shows the well-posedness of the discrepancy principle of Defini-
tion 7.

Theorem 4. Let Assumption 1, 2 and 3 hold. Then, by Proposition 1 there exists an
α := α(δ, yδ, γm) > 0 and an xδm,α ∈Mm,α, such that

τ1(δ + γm) ≤ ‖F (xδm,α)− yδ‖ ≤ τ2(δ + γm). (19)

Proof. This proof follows almost directly from [4, Proposition 3.10]. Let m be fixed. We
replace x† by Pmx

†, 0 by x0, and δ by δ + γm in [4, Proposition 3.10], and the assertion
follows.

We have thus established the well-posedness of the discrete Morozov’s principle. See
Appendix A for the corresponding regularizing properties.

Under the present setup, if we choose m ∈ N sufficiently large and such that

γm ≤
(
λ

τ2
− 1

)
δ (20)

is satisfied with λ > τ2 > 1. Then, for this same m ∈ N, it follows that, when α is chosen
through Definition 7, the discrepancy

τ1δ ≤ ‖F (xδm,α)− yδ‖ ≤ λδ, (21)

is satisfied with xδm,α a solution of (4). This follows since, τ1δ ≤ τ1(δ+γm) and τ2(δ+γm) ≤
λδ.

This leads us to the Proposition 2:

Proposition 2. et 1 < τ1 ≤ τ2 < λ be fixed, ‖F (Pmx0)− yδ‖ > τ2(δ + γm), and Assump-
tion 4, hold for every m sufficiently large. Then, there exist m ∈ N and α > 0 satisfying
(12).

Proof. Let us consider the sets Mα,m of solutions of Problem 4, corresponding to α and m.
Recall that, by Theorem 1, these sets are nonempty. We also define the sets:

Aδ,m := {x ∈ Dm : τδ ≤ ‖F (x)− yδ‖ ≤ λδ}.
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Note that, it may occur that Mα,m ∩ Aδ,m = ∅. Thus, assuming that γm = O(δ), by
Theorem 4 there exist some α > 0 and m ∈ N such that Mα,m ∩Aδ,m 6= ∅. More precisely,
let m satisfy γm ≤ (λ/τ2−1)δ, with τ < τ2 < λ. Also, let α be chosen through Definition 7,
with τ1 = τ . Then, for such m and α, it follows that

τδ ≤ τ(δ + γm) ≤ ‖F (xδm,α)− yδ‖ ≤ τ2(δ + γm) ≤ λδ.

Thus, Mα,m ∩ Aδ,m 6= ∅.

Remark 4. Therefore, the problem of finding m and α through the discrepancy principle
of Definition 5 is well-posed.

4 Regularizing Properties

In the previous section we have established the well-posedness of the discrepancy principle
(12) as a rule to select the parameters m and α, with fixed data yδ and noise level δ. We
now explore some corresponding regularizing properties.

Definition 8. Let ε ∈ (0, τ − 1) be fixed. Then, for every m ∈ N, define the sets:

Hm := {x ∈ Dm : ‖F (x)− yδ‖ < (τ − ε)δ},

with the same τ of Definition 5.

The sets defined above shall be used in the proof of convergence results, whenever we
need to assume that Hm is nonempty. Observe that, for m sufficiently large, Hm is indeed
nonempty, since:

Hm =
(
F−1

(
B(yδ, (τ − ε)δ)

)
∩ D(F )

)
∩Xm,

where B(yδ, (τ−ε)δ) is the open ball centered in yδ and with radius (τ−ε)δ. It also follows
that

x† ∈
⋃
m∈N

Hm.

Then, it is possible to find a sequence {xk}k∈N, with xk ∈ Hmk , converging strongly to x†.
The following proposition states a connection between the discrete setting and the

continuous one.

Proposition 3. Let us consider the limit m → ∞, with δ > 0 fixed. We select sequences
{αk}k∈N and {xδmk,αk}k∈N, such that αk → α̃ and xδmk,αk ⇀ x̃, where, for each k ∈ N, xδmk,αk
is a solution of Problem 4 in Dmk and αk is the corresponding regularization parameter.
Assume that, for each k, xδmk,αk satisfies the discrepancy principle (12). Then, x̃ is a
Tikhonov minimizer in D(F ) with regularization parameter α̃, satisfying the discrepancy
principle

τδ ≤ ‖F (x̃)− yδ‖ ≤ λδ. (22)

Proof. Choose a sufficiently large m0 ∈ N, such that, for every m ≥ m0, the set Hm is
nonempty. Then, whenever m ≥ m0, we choose α = α(δ, yδ,m) satisfying (22), with xδm,α
a corresponding Tikhonov solution in Dm.

By Lemma 3, the functionals defined in the Equations (14), (15) and (16) are mono-
tone. Since α(δ, yδ,m) satisfies the discrepancy in (12), it follows that lim inf

m→∞
α(δ, yδ,m)
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and lim sup
m→∞

α(δ, yδ,m) have finite values. To see that, by contradiction, we find an un-

bounded subsequence {αk}k∈N, and following the proof of [4, Proposition 3.8], it implies
that, the corresponding sequence of minimizers would weakly converge to x0, and then, for
a sufficiently large k, the discrepancy principle would not be satisfied.

In addition, for every m, we have

‖F (xδm,α)− yδ‖p + αfx0(x
δ
m,α) ≤ ‖F (x0)− yδ‖p.

This implies that, the sequence {xδm,αm}m∈N is contained in a level set of the Tikhonov
functional defined in D(F ), with the regularization parameter α = supk{αk}. Since
the level sets of Tikhonov functional are assumed weakly pre-compact, and the sequence
{α(δ, yδ,m)}m∈N is bounded, we define α̃ = lim inf

m→∞
αm, and select the convergent subse-

quence {αmk}k∈N and the weakly convergent subsequence {xδmk,αk}k∈N, such that αmk → α̃
and xδmk,αk ⇀ x̃, where x̃ ∈ D(F ). The latter follows since D(F ) is weakly closed.

Recall that F is weakly continuous. Then, we have the estimates:

τδ ≤ lim inf
k→∞

‖F (xδmk,αk)− y
δ‖ ≤ lim sup

k→∞
‖F (xδmk,αk)− y

δ‖ ≤ λδ.

This leads to τδ ≤ ‖F (x̃)− yδ‖ ≤ λδ.
We now claim that x̃ is a Tikhonov minimizer in D(F ), with regularization parameter

α̃. Indeed, for an arbitrary and fixed x ∈ D(F ), we choose a sequence {xk}k∈N, with
xk ∈ Dmk for each k ∈ N and xk → x strongly. Since D(F ) is in the interior of D(fx0) and
the operator F is continuous, it follows that

lim inf
k→∞

F δαmk ,x0(xk) = lim
k→∞
F δαmk ,x0(xk) = F δα̃,x0(x). (23)

By the (weak) lower semi-continuity of fx0(·) and ‖F (·)− yδ‖, it follows that:

‖F (x̃)− yδ‖p + α̃fx0(x̃) ≤ lim inf
k→∞

{
‖F (xδmk,αmk

)− yδ‖p + αmkfx0(x
δ
mk,αmk

)
}
. (24)

Since, for each m, xδmk,αmk
is a Tikhonov minimizer in Dmk , with regularization parameter

αmk . Thus, F δαmk ,x0(x
δ
mk,αmk

) ≤ F δαmk ,x0(xk), for every k. Therefore, by applying lim inf on

both sides and considering Equations (23) and (24), it follows that:

‖F (x̃)− yδ‖p + α̃fx0(x̃) ≤ ‖F (x)− yδ‖p + α̃fx0(x).

Since x was arbitrarily chosen in D(F ), the assertion follows.

Convergence

We now present results concerning the convergence of the approximate solutions.

Theorem 5. Let m and α satisfy the discrepancy principle (12). Let us consider the
sequence of real numbers {δk}k∈N, satisfying δk > 0 and δk → 0. Then, every sequence of
regularized solutions {xk}k∈N, with xk = xδkmk,αk , has a subsequence converging weakly to
some least-square solution of Problem 1. Moreover, If there exists a unique solution x† for
Problem 1, then the whole sequence converges weakly to x†.

11



Proof. Let us choose the sequence {δk}k∈N, satisfying δk → 0 monotonically. For each δk,
it follows by Proposition 2 that there exist mk and αk and some regularized solution xk =
xδkmk,αk satisfying the discrepancy principle (12). Then, we can find a sequence {xk}k∈N,
associated to {δk}k∈N.

According to Assumption 2, the level sets of the Tikhonov functional (4) are weakly pre-
compact. Since D(F ) is convex, the sequence {xk}k∈N has a weakly convergent subsequence
{xkl}k∈N with limit x̃ ∈ D(F ).

By the weak lower semi-continuity of the norm and the weak continuity of F , it follows
that:

‖F (x̃)− y‖ ≤ lim inf
l→∞

‖F (xkl)− yδkl‖+ δkl . (25)

Since, for each l ∈ N, xkl satisfies the discrepancy principle, in particular, ‖F (xkl)−yδkl‖ ≤
λδkl , then:

lim inf
l→∞

‖F (xkl)− yδkl‖+ δkl ≤ lim
l→∞

(λ+ 1)δkl = 0. (26)

This leads to ‖F (x̃) − y‖ = 0. Therefore, x̃ is a least-square solution of Problem 1. If
the inverse problem has a unique solution x†, then x† = x̃ and γmkl → 0. Furthermore,
the whole sequence {xk}k∈N converges weakly to x̃, since it is the unique cluster point of
{xk}k∈N, which is bounded.

Remark 5. The existence of the parameters m and α satisfying the discrepancy princi-
ple (12) is guaranteed by Proposition 2. Intuitively, m is the largest discretization level
satisfying such discrepancy principle and α is the associated Morozov’s regularization pa-
rameter. When implementing the Tikhonov regularization numerically, the discrepancy
principle can be used as a stopping criterion in the minimization procedure.

Observe also that, if we are looking for a least-square solution of Problem 1, or if the
inverse problem has a unique solution, then no further assumption or restriction on the
choice of m is needed. Thus, the convergence result holds.

The following theorem is a immediate consequence of [4, Theorem 4.11]

Theorem 6 (Convergence). Let m and α satisfy the discrepancy principle (12). Les us
consider the sequence of real numbers {δk}k∈N, satisfying δk > 0 and δk → 0. If Hm is
nonempty for every m, then, every sequence of regularized solutions {xk}k∈N, with xk =
xδkmk,αk , has a subsequence converging weakly to a fx0-minimizing solution of Problem 1.
Moreover, the following limits hold:

lim
δ→0

α(δ, yδ) = 0, and lim
δ→0

δp

α(δ, yδ,m(δ, yδ))
= 0. (27)

Remark 6. If we assume that Hm is nonempty, then x̃, the weak limit of the sequence of
minimizers defined in the proof of Theorem 6, is an fx0-minimizing solution of Problem (1).
Note that, it is always possible to increase the discretization level m, in order that Hm 6=
∅. On the other hand, if Problem (1) has a unique solution, then this assumption is
unnecessary. See Proposition 3.
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Convergence Rates

The first theorem of the present section states the convergence rates of the regularized
solutions of Problem 1, associated to m and α satisfying the discrepancy principle (12),
with respect to δ. The following results generalize this theorem for more general forward
operators, however further restrictions on the choice of m are necessary.

In the first part of this section we introduced some definitions, assumptions and auxil-
iary lemmas that are necessary to establish the convergence rates results.

Definition 9 ([23],Definition 3.15). Let U denote a Banach space and

f : D(f) ⊂ U → R ∪ {∞}

be a convex functional with sub-differential ∂f(u) at u ∈ D(f). The Bregman distance (or
divergence) of f at u ∈ D(f) and ξ ∈ ∂f(u) ⊂ U∗ is defined by

Dξ(ũ, u) = f(ũ)− f(u)− 〈ξ, ũ− u〉, (28)

for every ũ ∈ U , where 〈·, ··〉 is the dual product of U∗ and U . Moreover, the set

DB(f) = {x ∈ D(f) : ∂f(u) 6= ∅}

is called the Bregman domain of f .

Lemma 5. Let m and α satisfy the discrepancy principle (12). Assume that for this m,
Hm is nonempty and let xδm,α be the respective minimizer of (4). Then,

Dξ†(x
δ
m,α, x

†) ≤ Dξ†(xm, x
†) + 〈ξ†, x† − xm〉+ 〈ξ†, x† − xδm,α〉, (29)

for any ξ† ∈ ∂fx0(x†).

Proof. Let m = m(δ, yδ) satisfy (12). By the same arguments of the proof of Theorem 6
and assuming that Hm 6= ∅, it follows that fx0(x

δ
m,α) ≤ fx0(xm), where xm ∈ Hm and

xm → x† strongly.
For any ξ† ∈ ∂fx0(x†), by Assumption 3, the definition of Bregman distance, and adding
and subtracting fx0(xm) and 〈ξ†, xm − x†〉, using the symbol ±, we have the following
estimates:

Dξ†(x
δ
m,α, x

†) = fx0(x
δ
m,α)− fx0(x†)− 〈ξ†, xδm,α − x†〉

= fx0(x
δ
m,α)± fx0(xm)− fx0(x†)± 〈ξ†, xm − x†〉 − 〈ξ†, xδm,α − x†〉

= fx0(x
δ
m,α)− fx0(xm)︸ ︷︷ ︸

≤0

+Dξ†(xm, x
†) + 〈ξ†, x† − xm〉+ 〈ξ†, x† − xδm,α〉

≤ Dξ†(xm, x
†) + 〈ξ†, x† − xm〉+ 〈ξ†, x† − xδm,α〉.

Lemma 6. Assume that D(F ) is in the interior of D(fx0). Let α and m be chosen through
the discrepancy principle (12). Let also ε′ ∈ (ε, τ − 1) be fixed and let Hm be nonempty.
Define

κ := inf{fx0(x) : x ∈ D(F ) and ‖F (x)− yδ‖ ≤ (τ − ε′)δ}.

If inf
x∈Hm

fx0(x) ≤ κ+
εpδp

α
, then

Dξ†(x
δ
m,α, x

†) ≤ 〈ξ†, x† − xδm,α〉. (30)

13



Proof. By the discrepancy principle (12), it follows that

τ pδp + fx0(x
δ
m,α) ≤ ‖F (xδm,α)− yδ‖p + αfx0(x

δ
m,α)

≤ ‖F (x)− yδ‖p + αfx0(x) ≤ (τ − ε)pδp + αfx0(x), (31)

for every x ∈ Hm. Then,

fx0(x) ≥ fx0(x
δ
m,α) +

εpδp

α
.

It follows that fx0(x
δ
m,α) ≤ κ ≤ fx0(x

†). Then,

Dξ†(x
δ
m,α, x

†) = fx0(x
δ
m,α)− fx0(x†)− 〈ξ†, xδm,α − x†〉 ≤ 〈ξ†, x† − xδm,α〉.

Note that, in Lemma 6 we have assumed that ε′ > ε. Recall that εpδp/α > 0, fx0 is
continuous in the interior of D(fx0) and D(F ) is in the interior of D(fx0). Then, the the
estimate

inf
x∈Hm

fx0(x) ≤ κ+
εpδp

α

is satisfied for every sufficiently large m ∈ N.
Inspired by [23, Chapter 3], we have the following assumption:

Assumption 5. There exist β1 ∈ [0, 1), β2 ≥ 0 and ξ† ∈ ∂fx0(x†) such that

〈ξ†, x† − x〉 ≤ β1Dξ†(x, x
†) + β2‖F (x)− F (x†)‖ (32)

for x ∈Mαmax(ρ), where αmax, ρ > 0 satisfy ρ > αmaxfx0(x
†).

The proof of the following theorem follows by standard arguments of variational meth-
ods in Tikhonov regularization, see [23, Chapter 3], however, we present it in detail for the
reader convenience.

Theorem 7 (Convergence Rates). Let m and α be chosen through the discrepancy princi-
ple (12) and let Assumption 5 be satisfied. In addition, suppose that Hm is nonempty. If
xδm,α is a minimizer of (4) and xm ∈ Hm, then the estimates hold:

‖F (xδm,α)− yδ‖ ≤ λδ and Dξ†(x
δ
m,α, x

†) ≤ 1 + β1
1− β1

Dξ†(xm, x
†) +

β2
1− β1

(τ + λ+ 2)δ,

(33)
with ξ† ∈ ∂fx0(x†). Moreover, if the hypotheses of Lemma 6 also hold, we have:

‖F (xδm,α)− yδ‖ ≤ λδ and Dξ†(x
δ
m,α, x

†) ≤ β2(1 + λ)

1− β1
δ. (34)

Proof. (i) The estimate
‖F (xδm,α)− yδ‖ = O(δ)

follows directly by the discrepancy principle (12).
(ii) Let us prove the estimate (33). By Assumption 5, if xm is an element of Hm, then

〈ξ†, x† − xm〉 ≤ β1Dξ†(xm, x
†) + β2‖F (xm)− F (x†)‖ ≤ β1Dξ†(xm, x

†) + β2(τ + 1)δ.
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Analogously, it follows that

〈ξ†, x† − xδm,α〉 ≤ β1Dξ†(x
δ
m,α, x

†) + β2(λ+ 1)δ.

Lemma 5 and the above estimates yield that

Dξ†(x
δ
m,α, x

†) ≤ (β1 + 1)Dξ†(xm, x
†) + β2(τ + λ+ 2)δ + β1Dξ†(x

δ
m,α, x

†).

Thus,

Dξ†(x
δ
m,α, x

†) ≤ 1 + β1
1− β1

Dξ†(xm, x
†) +

β2
1− β1

(τ + λ+ 2)δ,

and we have the second estimate in (33).
(iii) We pass now to the proof of the second estimate in (34), since the first one follows by
the same arguments of the first estimate of (33). By Lemma 6 and Assumption 5, there
exist constants β1 ∈ [0, 1) and β2 ≥ 0 such that

Dξ†(x
δ
m,α, x

†) ≤ β1Dξ†(x
δ
m,α, x

†) + β2‖F (xδm,α)− F (x†)‖.

Then,

Dξ†(x
δ
m,α, x

†) ≤ β2
1− β1

‖F (xδm,α)− F (x†)‖.

Since ‖F (xδm,α)− F (x†)‖ ≤ (1 + λ)δ, the assertion follows.

Remark 7. Let us replace, in Assumption 5, β2‖F (x)−F (x†)‖, by β2ϕ(‖F (x)−F (x†)‖),
where ϕ is a concave strictly increasing and continuous function, such that ϕ(0) = 0. The
resulting variational inequality is more general, and under the continuous setting it gives
a convergence-rate with respect to Bregman distances of O(ϕ(δ)). See [24, Section 4.2],
and references therein. In the present case, it follows that, we can replace, in (33) and
(34) in Theorem 7, δ by ϕ(δ). The proof is essentially the same of Theorem 7, just note
that ϕ(‖F (xm) − F (x†)‖) ≤ ϕ((τ + 1)δ) ≤ (τ + 1)ϕ(δ), and similarly, ϕ(‖F (xδm,α) −
F (x†)‖) ≤ (λ+ 1)ϕ(δ), by the hypotheses of the theorem and the properties of ϕ, including
ϕ(Ks) ≤ max{1, K}ϕ(s), with s > 0.

Proposition 4. Let m and α satisfy the discrepancy principle (12). Assume that for the
same m and α, Hm is nonempty and xδm,α is a minimizer of (4). Assume that F is Frechét
differentiable in x† and let the source condition

∃ ξ† ∈ ∂fx0(x†) ∩R(F ′(x†)∗), i.e., ∃ ω† ∈ Y ∗ s.t. ξ† = F ′(x†)∗ω† (35)

hold. Let also the estimates

‖F ′(x†)(x− x†)‖ ≤ C‖F (x)− F (x†)‖ (36)

hold with C constant and x in B(x†, η), for some η > 0. Again, let xm be an element of
Hm. Then, we have the convergence rates

‖F (xδm,α)− yδ‖ ≤ λδ and Dξ†(x
δ
m,α, x

†) = c‖xm − x†‖+ C‖ω†‖(2τ + λ+ 2)δ. (37)

The proof of Proposition 4 follows by [4, Theorem 5.3], since (36) is a consequence of
[4, Condition 5.2].
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Definition 10 (q-Coerciveness). Let 1 ≤ q < ∞ and u ∈ D(f) be fixed. The Bregman
distance Dξ(·, u) is called q-coercive with constant ζ > 0, if the inequality

Dξ(ũ, u) ≥ ζ‖ũ− u‖qU

is satisfied for every ũ ∈ D(f).

Example 1. Let X be a Hilbert space and let fx0(x) = ‖x−x0‖2X be the quadratic Tikhonov
functional. It follows that the norm of X is 2-coercive, since:

Dξ(x, x̃) = 2‖x− x̃‖2X .

Then, the estimate (34) of Theorem 2 implies in L2-convergence with order O(
√
δ). See

[23].

Example 2. Assume that X = Lp(D) with D ⊂ Rn open and bounded. Assume also that
D(f) = L1

>0(D), i.e., the set of strictly positive L1(D) functions. If

fx0(x) =

∫
D

[log(x(s)/x0(s))− (x0(s)− x(s))]ds

is the Kullback-Leibler divergence, then Theorem 2 implies in the L1-convergence. See [22].

Remark 8. In addition to the hypotheses of Theorem 6, let us assume that the norm of
X is q-coercive. Then, by (33) and (34) we have the estimates

‖xδm,α − x†‖ ≤
[

1

ζ

1 + β1
1− β1

Dξ†(xm, x
†) +

1

ζ

β2
1− β1

(τ + λ+ 2)δ

] 1
q

and

‖xδm,α − x†‖ ≤
[

1

ζ

β2(1 + λ)

1− β1
δ

] 1
q

,

respectively.

5 Discrete Forward Operator

We now present some aspects to be considered when we replace the continuous forward
operator by a finite-dimensional approximation.

Let us consider a sequence of finite-dimensional subspaces {Yn}n∈N of the space Y , such
that

Yn ⊂ Yn+1 ⊂ ... ⊂ Y and ∪n∈NYn = Y.

Then, we replace the continuous forward operator by some finite-dimensional approxima-
tion. In Section 7, we consider as an illustrative example, the discretization of the param-
eter to solution map that associates a diffusion parameter to the solution of a Parabolic
Cauchy problem. The discretization is then defined by Crank-Nicolson scheme that solves
numerically the associated parabolic partial differential equation.

In the present discrete setting, we consider the following alternative discrepancy prin-
ciple:
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Definition 11. Let δ > 0 and yδ be fixed. For λ > τ > 1, we choose m,n ∈ N and α > 0,
with m = m(δ, yδ), n = n(δ, yδ) and α = α(δ, yδ), such that

τδ ≤ ‖Fn(xδ,αm,n)− yδ‖ ≤ λδ, (38)

holds for xδ,αm,n, a solution of

min{‖Fn(x)− yδ‖p + αfx0(x)} subject to x ∈ Dm. (39)

In the present context, all the results of the previous sections hold. However, some
additional calculations should be done when F is replaced by Fm. The main argument in
the convergence analysis is based on the existence of a diagonal subsequence converging
(weakly) to an fx0-minimizing solution of Problem 1, when the limits δ → 0, m,n → ∞
are taken.

More precisely, when δ > 0 is fixed, the limit n → ∞ is taken and the discrepancy
principle (38) holds true for every n. Then, we can find a sequence of minimizers {xδ,αm,n}n,∈N,
converging weakly to some minimizer of (4), satisfying (12). By Proposition 3, if we also
take the limit m → ∞, the resulting sequence has a weakly convergent subsequence with
limit satisfying the continuous version of the Morozov discrepancy principle presented in [4].
For this reason, we can always assume the existence of a diagonal subsequence converging
(weakly) to an fx0-minimizing solution of Problem 1 when δ → 0.

The proof of these results in the specific example of local volatility calibration by
Tikhonov regularization can be found in Section 4 of [1].

6 An Alternative Discrepancy Principle

In general, Assumption 4 does not hold for nonlinear forward operators. See [24, Re-
mark 4.7]. More precisely, one of the inequalities of the discrepancy principle (12) is not
satisfied with prescribed constants 1 < τ ≤ λ or 1 < τ1 ≤ τ2. Thus, as an alternative,
whenever ensuring (12) is not possible, we base our choice of α, for a fixed m, on the
sequential discrepancy principle, presented in [3]. It goes as follows:

Definition 12 (Sequential Morozov Criteria). For prescribed τ̃ > 1, α0 > 0 and 0 < q < 1,
we choose k ∈ N such that αk := qkα0 satisfies the discrepancy

‖F (xδm,αk)− y
δ‖ ≤ τ̃ δ < ‖F (xδm,αk−1

)− yδ‖, (40)

for some xδm,αk ∈Mαk,m and xδm,αk−1
∈Mαk−1,m.

The existence of α and m satisfying the discrepancy (40), follows directly from Propo-
sition 1 and by assuming that m is sufficiently large. More precisely, we can replace, for
instance, τ̃ δ in (40) by (1 + ε)(γm + δ). Then, the estimate

‖F (xδm,αn)− yδ‖ ≤ (τ̃ − ε)(γm + δ) < ‖F (xδm,αn−1
)− yδ‖

always hold by Proposition 1, for every fixed m and ε ∈ (0, τ̃ − 1). Thus, for a sufficiently
large m, it follows that τ̃ δ ≈ (τ̃ − ε)(γm + δ).

Theorems 5 and 6 remain valid if the discrepancy principle 12 is replaced by the sequen-
tial discrepancy principle (40). This follows by noting that, whenever the lower inequality
in the discrepancy principle (12) holds, we can replace it by τ̃ ≤ ‖F (xδm,α/q)−yδ‖, where α
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satisfies the lower inequality of the sequential discrepancy principle (40) and α/q satisfies
the upper one. See [3, Section 3].

The discrepancy principle (12) is always preferable, since its lower inequality implies
that ‖F (xδm,αn)−yδ‖ ≥ τδ. This avoids the Tikhonov solutions to over fit and to reproduce
noise. On the other hand, the same conclusion is not necessarily true if the sequential
discrepancy principle (40) is used.

When using the sequential discrepancy principle (40), it is not alway possible to achieve
the rate of convergence Dξ†(x

δ
m,α, ax

†) = O(δ). The technical point is that, if α satisfies
the lower inequality of (40), then the estimate fx0(x

δ
m,α)− fx0(x†) ≤ 0 does not necessarily

holds. Such estimate holds for α/q, instead. An additional condition for achieving the
convergence rate Dξ†(x

δ
m,α, ax

†) = O(δ) with the sequential discrepancy principle (40) is
to assume that α = O(δ). For a more detailed discussion about convergence rates under
the sequential discrepancy principle (40), see [3, Section 4] and [14].

7 Numerical Examples

We shall now illustrate the theoretical results of the previous sections with some numerical
examples based on the calibration of a diffusion coefficient in a parabolic problem. See
[1, 7, 8, 9]. More precisely, let a1, a2 ∈ R be scalar constants such that 0 < a1 ≤ a2 < +∞
and let a0 ∈ H1+ε(R+ × R) be fixed. Define the set

Q := {a ∈ a0 +H1+ε(R+ × R) : a1 ≤ a ≤ a2}.

Assuming that the data u was generated by the following parabolic problem:

∂u

∂τ
− a(τ, y)

(
∂2u

∂y2
− ∂u

∂y

)
− b∂u

∂y
= 0 τ > 0, y ∈ R

u(τ = 0, K) = max{0, 1− ey}, for y ∈ R,

lim
y→+∞

u(τ, y) = 0, for τ > 0,

lim
y→0−∞

u(τ, y) = 1, for τ > 0,

(41)

our problem is to find the diffusion parameter a ∈ Q.
We define the forward operator by:

F : Q ⊂ H1+ε(R+ × R) −→ L2(R+ × R)
a 7−→ u(a)− u(a0),

with a0 ∈ Q fixed and a priori chosen. The choice of H1+ε(R+ × R) is justified in [8, 9].
The forward operator under consideration fulfills the hypotheses of the previous sec-

tions theorems. Here, we shall implement numerically the Tikhonov regularization for this
specific problem with synthetic data. For the technical details, see [1, 7, 8, 9].

In the calibration we take as true (known) diffusion coefficient the following:

σ(τ, y) =


2

5
− 4

25
e−τ/2 cos

(
4πy

5

)
, if − 2/5 ≤ y ≤ 2/5

2/5, otherwise,

(42)
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and set a = σ2/2. We also assume that b = 0.03 in Equation (41).
We illustrate the discrepancy principle and the convergence-rate results of the previous

sections by changing the noise and discretization levels.
The forward problem defined in Equation (41) as well as its adjoint, arising in the

evaluation of the gradient of the Tikhonov functional are numerically solved in the domain
D = [0, 1]× [−5, 5] by the Crank-Nicolson scheme,

un+1
m − 1

2
ηan+1

m (un+1
m+1 − 2un+1

m + un+1
m−1) +

1

4
α(an+1

m − b)(un+1
m+1 − un+1

m−1)

= unm +
1

2
ηanm(unm+1 − 2unm + unm−1)−

1

4
α(anm − b)(unm+1 − unm−1). (43)

with the boundary conditions:

lim
y→−5

u(τ, y) = 1 and lim
y→5

u(τ, y) = 0

See [1, 2, 8].
We generate the data as follows:

On a given mesh, we numerically solve the Cauchy problem of Equation (41) with the
diffusion coefficient given in Equation (42), which is evaluated on the same mesh. We add
a zero-mean Gaussian noise with standard deviation 0.01 to this numerical solution and
interpolate the resulting data in a coarser mesh. We then use this data to calibrate the
corresponding diffusion coefficient.

If ∆τ and ∆y denote the time and space mesh sizes, respectively, the calibration of
the diffusion coefficient is numerically solved with different values of ∆τ , ∆y and the
regularization parameter α, until the discrepancy principle

τδ ≤ ‖u(aδm,α)− uδ‖ ≤ λδ, (44)

is satisfied, where uδ is the noisy data and δ > 0 is the noise level. Note that, by the
definition of F , u(a) − uδ = F (a) − (uδ − u(a0)). Thus, instead of using F (aδm,α) in the
discrepancy principle of Equation (44), we simply use u(aδm,α), with no loss of generality.

We use this data to calibrate the diffusion coefficient by Tikhonov regularization with
the smoothing penalization:

fa0(a) = β1‖a− a0‖2L2(D) + β2‖∂y(a− a0)‖2 + β3‖∂τ (a− a0)‖2,

with β1 = 0.5, β2 = 0.25∆y, β3 = 0.25∆τ and a0 ≡ 0.08.
The minimization of the Tikhonov functional is performed recursively by the gradient

method. More precisely, if ak denotes the diffusion coefficient at the kth iteration, the next
step is given by

ak+1 = ak − λk∇Fu
δ

α,a0
(ak),

until the Morozov discrepancy principle is satisfied or the maximum number of iterations
is reached or yet the relative change in the residual is less than 1.0 × 10−4. We base the
choice of the step-length λk on the Wolfe rule. The algorithm is initialized with the step
length λ0k = ‖Fuδα,a0(a

k−1)‖2/‖Fuδα,a0(a
k)‖2. See Algorithm 3.5 and Algorithm 3.6 in Chapter

III of [20]. The parameters used in the Wolfe conditions are c1 = 10−8 and c2 = 0.95. The
iterations begun with a0 = a0 ≡ 0.08.

The data is generated with step sizes ∆τ = 0.0025 and ∆y = 0.01 and the coarser
grid is given by the step lengths ∆τ = 0.02 and ∆y = 0.1. In the numerical solution of

19



the inverse problem, Equation (41) is numerically solved in the same mesh we interpolate
the data, i.e., we use ∆τ = 0.02 and ∆y = 0.1 in both cases. We vary the mesh used to
evaluate the diffusion coefficient in order to highlight the discrepancy principle (44). The
step sizes used in the tests were the following:

∆τ = 0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.0075, 0.005, 0.0025

and
∆y = 0.25, 0.22, 0.20, 0.17, 0.15, 0.13, 0.11, 0.1, 0.05, 0.04, 0.02, 0.01.

Figures 1 and 2 presents the residual and the error estimates associated to the regularized
solutions for the above meshes, respectively.

We stress that, in the present set of examples, we chose τ = 1.025 and λ = 1.125 in the
discrepancy principle (44) and the illustration of this discrepancy principle can be found
in Figure 1.

If ũ and Pn0(ũ+ e) denote the full noiseless data and the noisy data in the coarser grid
with noise e, respectively, then the noise level can be estimated by:

δ = ‖ũ− Pn0(ũ+ e)‖L2(D) =

(∫ 1

0

∫ 5

−5
|ũ(τ, y)− Pn0(ũ+ e)(τ, y)|2dydτ

)1/2

.

This integral is solved by the 2D-Simpson’s rule and the data was interpolated linearly.

Figure 1: Evolution of the residual as a func-
tion of the number of mesh points. We
choose the regularization parameter present-
ing lower residual. In the presence of noise,
some discretization levels in the domain sat-
isfy the discrepancy principle. Compare it to
the error estimation in Figure 2. The hori-
zontal line corresponds to λδ.

Figure 2: Evolution of the L2-error. In the
presence of noise, its minimum is attained
for a coarser mesh satisfying the discrepancy
principle of Equation (44).

The values of the regularization parameter used in the present test were:

β = 0.25, 0.10,
√
δ, 0.01, 0.006, δ, 0.001, 5.0× 10−4, 1.0× 10−4, 5× 10−5, δ2, 0.

In Figures 1, 2, 3 e 4, we have chosen the reconstructions with regularization parameter
presenting the lowest residual satisfying the discrepancy principle of Equation (44).
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Figure 3: Left: original surface. Center and right: reconstructions corresponding to the
first and second points satisfying the discrepancy principle of Figure 1, respectively.

Figure 4: Left: original surface. Center and right: reconstructions satisfying the discrep-
ancy principle of Figure 1.

We also calculate the L2-error, i.e., the L2(D) distance between the regularized solution
and the original diffusion coefficient. The resulting L2-error for the regularized solutions
used in Figure 1 can be found in Figure 2. Note that, reconstructions with coarser meshes
satisfying the discrepancy principle of Equation (44) presented satisfactory L2-error esti-
mates, illustrating the reliability of its use for finding the appropriate discretization level
in the domain and the regularization parameter.

Figures 3 and 4 present reconstructions satisfying the discrepancy principle of Equa-
tion (44). Note that, the reconstructions with coarser grid satisfying the discrepancy in
Figure 1 presented better L2-error estimates. Moreover, the surfaces displayed in Figure 3
are smoother than those of Figure 4.

8 Conclusions

Finding appropriate discretization levels is a well known challenge when solving Tikhonov-
type regularization problems. In this work, we have shown that the Morozov discrepancy
principle could also be used to find it appropriately. Since we are working in a discrete
setting, some additional assumptions ought be made in order to establish theoretical results.

Under the above mentioned discrepancy-based choices, we also presented a convergence
analysis with convergence rates in terms of the noise level. In addition, we presented some
guidelines on how to apply these results when the forward operator is replaced by a discrete
approximation. We also apply the sequential discrepancy principle given by Equation (40),
for this discrete setting.

A numerical example illustrated the discrepancy principle when the noise level and the
discretization level of the forward operator are kept fixed and the discretization level in
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the domain is varied.
Summing up, Morozov principle is a robust rule for determining appropriately the

regularization parameter and discretization levels in Tikhonov regularization.

Acknowledgements

V.A. acknowledges and thanks the financial support from CNPq through grant 201644/2014-
2, Petroleo Brasileiro S.A. and Agência Nacional do Petróleo.A.D.C. acknowledges and
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A Regularizing Properties of the Discrete Morozov’s

Principle

Theorem 8 (Convergence). The regularizing parameter α = α(δ, yδ, γm) obtained through
the discrepancy principle of Definition 7 satisfies the limits

lim
δ,γm→0+

α(δ, yδ, γm) = 0 and lim
δ,γm→0+

(δ + γm)p

α(δ, yδ, γm)
= 0. (45)

Proof. Consider the sequences {δk}k∈N and {γmk}k∈N converging monotonically to zero.
Define the sequence {αk}k∈N by setting αk to be the regularization parameter α(δk, γmk)
satisfying Definition 7 for each k. Thus, for each αk we can find xk = xδkmk,αk , a solution of
Problem 4. We thus define the sequence {xk}k∈N. By the pre-compactness of the level sets
of the Tikhonov functional, it follows that {xk}k∈N has a weakly convergent subsequence,
denoted by {xl}l∈N, with weak limit x̃ ∈ D(F ).
By the weak lower semi-continuity of the norm and the weak continuity of F , the following
estimates hold:

‖F (x̃)− y‖ ≤ lim inf
l→∞

‖F (xl)− yδl‖+ δl ≤ lim
l→∞

(τ2 + 1)(γml + δl) = 0.

Note that in the above estimates we have used l instead of kl to easy notation. Note also
that, x̃ is a least-square solution of Problem 1.
We also have the estimates:

τ1(δl + γml)
p + αlfx0(xl) ≤ (δl + γml)

p + αlfx0(Pmlx
†).

Since τ1 > 1, it follows that fx0(xl) ≤ fx0(Pmlx
†), which implies that fx0(x̃) ≤ fx0(x

†).
Hence, x̃ is an fx0-minimizing solution of Problem 1.
Assume that there exists α > 0 and a subsequence {αln}n∈N such that αln ≥ α. Then, take
the respective subsequence of minimizers {xln}n∈N.

Define the sequence of minimizers {xn}n∈N, with xn := x
δln
mln ,αln . Since L is non-decreasing,

it follows that
‖F (xn)− yδln‖ ≤ ‖F (xln)− yδln‖ ≤ τ2(δ + γm)→ 0.

Note that, since x†, x̃ are fx0-minimizing solutions of Problem 1, it follows that fx0(x
†) =

fx0(x̃).
On the other hand,

lim sup
n→∞

αfx0(xn) ≤ αfx0(x
†).

By the weak pre-compactness of the level setsMα(ρ), it follows that {xn}n∈N has a weakly
convergent subsequence with limit x. By the above estimates, it follows that x is an fx0-
minimizing solution for Problem 4. Denoting this subsequence by {xn}n∈N, it follows by
the above estimates that

‖F (x)− y‖p + αfx0(x) ≤ lim inf
n→∞

(
‖F (xn)− yδln‖p + αfx0(xn)

)
≤ ‖F (x)− y‖p + αfx0(x) for every x ∈ X.

Then, x is a solution of Problem 4 with data y (noiseless) and regularization parameter α.
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Since fx0 is convex and fx0(x) = 0 if, and only if, x = x0, it follows that, for every t ∈ [0, 1)
we have

fx0((1− t)x+ tx0) ≤ (1− t)fx0(x) + tfx0(x0) = (1− t)fx0(x).

It also follows that

αfx0(x) ≤ ‖F ((1− t)x+ tx0)− y‖p + α(1− t)fx0(x).

This shows that,
αtfx0(x) ≤ ‖F ((1− t)x+ tx0)− y‖p.

Then, Assumption 3 implies that fx0(x) = 0, and thus x = x0. This is a contradiction
since

‖F (x0)− y‖ ≥ ‖F (x0)− yδ‖ − ‖yδ − y‖ ≥ (τ1 − 1)δ > 0.

Therefore, the first limit in (45) holds.
In order to prove the second limit we proceed as follows. Since {xl}l∈N weakly converges

to x̃ with fx0(xl)→ fx0(x̃), it follows that

τ p1 (δl + γml)
p + αlfx0(xl) ≤ (γm + δl)

p + αlfx0(Pmlx
†)

The above estimate combined with the limit fx0(Pmlx
†)→ fx0(x

†) leads to

(τ p1 − 1)
(δl + γml)

p

αl
≤ fx0(Pmlx

†)− fx0(xl)

where the right hand side converges to zero when l → ∞. Note that, we have used again
the fact that fx0(x

†) = fx0(x̃) if x†, x̃ ∈ L.

Choosing m based on Equation (20), we have the following corollary:

Corollary 1 (Convergence). Let α satisfy Definition 7. Then,

lim
δ→0

α(δ, γm(δ)) = 0 and lim
δ→0

δp

α(δ, γm(δ))
= 0. (46)

Moreover, we have the convergence result of Theorem 8 with this choice of m.

Proof. By Theorem 8, α = α(δ, yδ, γm) satisfies the limits:

lim
δ,γm→0

α(δ, yδ, γm) = 0 and lim
δ,γm→0

(δ + γm)p

α(δ, yδ, γm)
= 0. (47)

Then, following the same arguments in the proof of Equation (45) in Theorem 8 and
substituting τ1(δ + γm) by τ1δ and dominating δ + γm by λ/τ2δ based on (20), it follows
that the limits in Equation (46) hold.

Consider the sequence of positive constants {δk}k∈N converging monotonically to zero
and define the sequence {mk}k∈N, with mk := m(δk, y

δk) satisfying (20). Thus, we can
choose a sequence {xk}k∈N of solutions of Problem 4 with xk := xδkαk,mk and αk satisfying
Definition 7. Then, the convergence of a subsequence, denoted by {xl}l∈N, to an fx0-
minimizing solution x̃ follows by similar arguments in the proof of Theorem 8. We just
have to substitute τ1(δ + γm) by τ1δ and dominate δ + γm by λ/τ2δ based on (20).
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Define the estimate ηm := Dξ†(Pmx
†, x†). It follows from [10, Corollary 1.2.5] that

ηm → 0 whenever m→∞, since Pmx
† → x†.

Theorem 9 (Convergence Rates). Assume that xδm,α is a minimizer of the functional in
Equation (4)and the regularization parameter α = α(δ, yδ, γm) satisfies the discrepancy
principle (7). Then, we have the following estimates

‖F (xδm,α)− yδ‖ = O(δ + γm + ηm) and Dξ†(x
δ
m,α, x

†) = O(δ + γm + ηm + φm). (48)

with ξ† ∈ ∂fx0(x†).

Proof. The first estimate follows directly by Definition 7. Let Assumption 5 hold. Then,
by Definition 7 it follows that

τ p1 (δ + γm)p + αfx0(x
δ
m,α) ≤ (δ + γm)p + αfx0(Pmx

†).

This implies that fx0(x
δ
m,α) ≤ fx0(Pmx

†) since τ1 > 1. It also implies that, for m sufficiently
large, since δ > 0 is fixed, fx0(x

δ
m,α) ≤ fx0(x

†).
From Assumption 5 and the definition of Bregman distances, we have the following

estimates, with ξ† ∈ ∂fx0(x†):

Dξ(x
δ
m,α, x

†) ≤ fx0(x
δ
m,α)− fx0(x†)− 〈ξ†, xδm,α − x†〉

≤ Dξ†(Pmx
†, x†) + ‖ξ†‖‖Pmx† − x†‖+ β1Dξ†(x

δ
m,α, x

†) + β2‖F (xδm,α)− F (x†)‖
≤ ηm + ‖ξ†‖φm + β1Dξ†(x

δ
m,α, x

†) + β2(τ2 + 1)(δ + γm). (49)

In other words,

Dξ†(x
δ
m,α, x

†) ≤ ηm + ‖ξ†‖φm + β2(τ2 + 1)(δ + γm)

1− β1
. (50)

If m satisfies (20), we have the following corollary:

Corollary 2 (Convergence Rates). Assume that Assumption 5 holds true, m ∈ N satisfy
(20) and α > 0 is chosen through Definition 7. Then, we have the following convergence
rates:

‖F (xδm,α)− yδ‖ = O(δ) (51)

and

Dξ†(x
δ
m,α, x

†) ≤ (λδ)p

τ p2 (α− αβ1)
+

αβp2
2− 2β1

+
ηm + β2δ + ‖ξ†‖φm

1− β1
. (52)

This is an immediate result from the previous theorem.

Remark 9. If fx0 is q-coercive with respect to the norm of X and q = p, then (52) implies
that

‖xδm,α − x†‖ ≤

1

ζ

(λδ)p

τ p2 (α− αβ1)
+

αβp2
2− 2β1

+
1

ζ

ηm + β2δ + ‖ξ†‖
(
ηm
ζ

) 1
q

1− β1


1
q

(53)
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Remark 10. Note that in the proofs of the above results we have assumed the existence of
the abstract quantity

γm = ‖F (xδm,α)− F (Pmx
δ
m,α)‖,

which is obviously unknown. However, for some classes of operators F , it is possible to
estimate an upper bound for this quantity in terms of I − Pm, where I : X −→ X is the
identity operator. This is the case, for example, of uniformly Hölder continuous operators
when D(F ) is a subspace:

‖F (x)− F (x′)‖ ≤ C‖x− x′‖l,

for every x, x′ ∈ D(F ). Thus, I − Pm is a well-defined continuous linear operator, γm ≤
C‖I −Pm‖l‖x†‖l, and there exists a constant K > 0 such that ‖x†‖l ≤ K. In this case, we
can choose m sufficiently large such that the inequality below is satisfied:

CK‖I − Pm‖l ≤
(
λ

τ2

)
δ.
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