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Abstract

We provide high-order approximations to periodic travelling wave profiles and to the
velocity field and the pressure beneath the waves, in flows with constant vorticity over a
flat bed.
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1 Introduction

Winds in offshore storms transmit energy to the ocean surface, creating waves. Once the
waves leave the storm area they become organised into two-dimensional regular wave trains,
in the form of a regular profile that propagates practically unchanged in a fixed direction.
These periodic travelling waves are called ‘swell’ in oceanography. Their shape is influenced
by the underlying currents. The most significant currents on areas of the continental shelf
and in many coastal inlets are the tidal currents [21]. These alternating horizontal movements
of water are created by the gravitational pull of the moon, and to a lesser degree, the sun, on
the earth’s surface, being associated with the rise and fall of the tide: the current associated
with a rising water level, called the flood, is directed towards the shore, while the current
associated with a receding water level, called the ebb, is directed back out to sea. Flows of
constant vorticity with a flat free surface provide adequate descriptions of pure tidal currents,
cf. the discussion in [6], positive constant vorticity γ > 0 being appropriate for the modelling
of the ebb current and negative constant vorticity γ < 0 for the flood current. A spectacular
example of wave-current interaction is the Columbia River entrance, made by appreciable
tidal currents one of the most hazardous navigational regions in the world since wave heights
can easily be doubled in just a few hours [21]. At this location, tidal velocities in excess
of 2 m/s are encountered and in winter wave heights in excess of 6 m, up to 14-15 m, are
common, cf. [22]. Note that moderate tidal currents reach speeds of up to 0.7 m/s, cf. [37],
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while tidal currents with speeds of 5.5 m/s are encountered in between the Scottish mainland
and the Orkney Islands, in the Pentland Firth — see the data provided in [19].

In this paper we provide accurate approximations for the interaction of waves with under-
lying currents of constant vorticity in the absence of flow-reversal; for theoretical studies and
numerical simulations of wave-current interactions with flow-reversal we refer to [15, 16, 36]
and [28, 34], respectively. Let us specify that in a flow where both waves and currents are
present, given velocity measurements at one point, the ‘current’ is defined as the average
velocity, and the periodic components that vary around this average are ascribed to the
wave motion. Since irrotational flows do not present flow-reversals as the underlying current
must be uniform, one of our main purposes will be to highlight the effects of vorticity on
the surface wave profile. This problem is of great practical relevance since the detection of
non-uniform underlying currents from the surface wave pattern is particularly important to
anticipate and avoid hazardous conditions, where possible. In addition to the wave profile,
we will also provide approximations for the velocity profile and the pressure throughout the
fluid. Not only is there a strong interplay of these flow characteristics that is very useful in
qualitative studies — see [5, 8, 14], but in practice information on the state of the sea surface
is often gathered from subsurface pressure and/or velocity measurements, cf. the discussions
in [3, 4, 7, 25, 29, 35]. Let us point out the following counter-intuitive fact: periodic travelling
waves that propagate at the surface of water with a flat bed in a flow of constant vorticity
must be symmetric if no flow-reversal occurs and if the wave profile is monotone between
successive crests and troughs, cf. [9, 10, 26]. This means that an underlying non-uniform
current of constant vorticity does not break the symmetry of irrotational wave trains, so
that the manifestation of vorticity on the surface wave pattern must take subtler forms.

The fact that even when both the wave motion and the underlying current of constant
vorticity are known with accuracy, their interaction produces a significantly different effect
from that obtained by simply adding the effect of the waves and the currents considered
separately, cf. the discussions in [30, 31, 32], shows the importance of dealing simultaneously
with these two flow components. Linear theory (see the discussion in [6]) provides the
dispersion relation

c = u0 −
γ tanh(kd)

2k
± 1

2k

√
γ2 tanh2(kd) + 4gk tanh(kd) (1.1)

for the wave speed c, expressed in terms of the surface current speed u0 in a flow of constant

vorticity γ in water of mean depth d; here k =
2π

L
is the frequency of a wave with wavelength

L. Note that (1.1) permits us to understand the effect of vorticity on the propagation speed
of waves of small amplitude (that are realistically described by linear theory). For example,
from the point of view of a fixed observer noticing right-propagating waves that interact with
a current with vanishing surface speed (a setting corresponding to c > 0 and u0 = 0), from
(1.1) we infer that the propagation speed is

c(γ) = −γ tanh(kd)

2k
+

1

2k

√
γ2 tanh2(kd) + 4gk tanh(kd) , (1.2)

irrespective of the sign of γ. In this setting the underlying current beneath the flat free
surface y = 0 and above the bed y = −d is given by u(y) = γy, so that γ > 0 corresponds
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to an adverse current since everywhere beneath the surface the current velocity opposes
the direction of wave propagation, γ < 0 corresponds to a favourable current (the current
velocity points everywhere beneath the surface in the direction of wave propagation), while
the irrotational case γ = 0 is characterized by the absence of an underlying current. A simple
analysis of (1.2) confirms that

c(−|γ|) > c(0) > c(|γ|)

for every γ 6= 0. This means that favourable currents enhance the wave speed, while adverse
currents reduce it. In contrast to this analysis of the wave speed, the first-order approx-
imation that is pursued within the framework of linear theory is not conclusive in regard
to the effect of underlying currents on the wave profiles: at first order, periodic travelling
waves in flows of constant vorticity are sinusoidal (see [6]). Consequently, nonlinear effects
have to be accounted for and higher-order approximations are needed. We present in this
paper an approach that provides the second and third order asymptotic expansion of waves
of small amplitude, expressed in terms of a suitable amplitude parameter b. Following this
procedure, we can readily obtain other characteristics of the water flow, such as the velocity
field and the pressure beneath the wave. The knowledge of accurate approximations for
these wave characteristics allows us to compare the results with those for irrotational flows.
In the last part of the work we illustrate these flow characteristics for several different types
of wave-current interactions. Laboratory experiments and numerical simulations for irrota-
tional waves are discussed in [1, 2, 33], while this type of studies for wave-current interactions
in flows of constant vorticity were pursued in [12, 17, 23, 24, 30, 31]. The results presented
below permit a more detailed analysis and numerical simulation.

2 Mathematical Formulation

In this paper we discuss two dimensional, periodic travelling waves with constant vorticity.
We assume that the water is incompressible and inviscid, over a flat bed and acted upon by
gravity g. In what follows we make no shallowness or small amplitude approximation. In
order to avoid extended revision we refer to the recent works [6, 12, 13] for the mathematical
formulation of the problem. In this section we make only a brief review of the problem, in
order to provide sufficient terminology for the fundamental Boundary Value Problem (BVP)
(2.10).

We are studying two-dimensional waves travelling at constant speed c. This means that
in a two-dimensional frame moving with the constant speed c, the flow pattern — and, in
particular, the shape of the surface of the fluid — does not change over time.

These assumptions, see [12], allow the definitions of the free surface profile by

S = {(x, y) : −π < x < π and y = η(x)} ,

and the flat bed by
B = {(x, y) : −π < x < π and y = −d} ,

with d > 0, for the normalized wavelength 2π.
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Without loss of generality, the assumption that the waves oscillate around the flat free
surface y = 0 is made, i.e., ∫ π

−π
η(x)dx = 0. (2.1)

We denote the velocity field of the flow by (u(x, y), v(x, y)), with (x, y) ∈ D, where

D = {(x, y) : −π < x < π and − d < y < η(x)} .

In this paper we follow the assumption made in [13], that there are no flow-reversals,
which is formulated as the condition

u < c throughout the fluid. (2.2)

We denote the pressure in the fluid by P (x, y), with (x, y) ∈ D. Neglecting the effects of
surface tension — a hypothesis that is appropriate for waves of moderate and large amplitude
(see the discussion in [6]) — we impose that the water pressure is constant on S, P (x, η(x)) =
Patm, where Patm is the atmospheric pressure.

Let us recall the following definitions:

• The vorticity of the flow is defined by

γ := uy − vx, (2.3)

which for the rest of the paper we will assume constant.

• The relative mass flux1 is defined by

p0 :=

∫ η(x)

−d

(
u(x, y)− c

)
dy < 0, (2.4)

which in fact is independent of x, see [12]. Moreover, (2.4) and (2.2) show that p0
is negative. This relation shows that the amount of water passing any vertical line is
constant throughout D.

• The stream function ψ(x, y) is defined as the unique solution of the differential equa-
tions

ψx = −v, ψy = u− c in D , (2.5)

subject to
ψ(x,−d) = −p0 . (2.6)

• In [13] it was proven that the expression

(u− c)2 + v2

2
+ gy + P − γψ (2.7)

equals a constant E throughout D. The constant Q = E−Patm is called the hydraulic
head.

1The terminology ‘relative’ is due to the fact that (u − c) is the relative horizontal velocity of the flow,
with reference to the moving frame at speed c.
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We also recall some basic terminology, as used in [13]:

• Firstly, the Dubreil-Jacotin transformation maps the unknown domain D to the rect-
angle

R = {(q, p) : −π < q < π , p0 < p < 0} , (2.8)

The independent variables as they appear in the Dubreil-Jacotin transformation [18]

Figure 1: Dubreil-Jacotin transformation

are
q = x, p = −ψ.

• Secondly, the height function of the wave above B is defined as

h(q, p) = y + d . (2.9)

This function satisfies the following nonlinear BVP on the rectangle R. We omit here
the details of this construction, and refer to [13].

Definition 2.1. The constitutive equations for the height function h(q, p), which is even and
2π-periodic in q, are the following:

H[h] := (1 + h2q)hpp − 2hphqhpq + h2phqq − γh3p = 0 on R ,

B0[h] := 1 + h2q(q, 0) + (2gh−Q)h2p(q, 0) = 0 ,

B1[h] := h(q, p0) = 0 .

(2.10)

Moreover, the free boundary S is given by the expression

h(q, 0) = η(x) + d.

In this equation γ denotes the vorticity as defined in (2.3), which is assumed constant,
being indicative of underlying currents. Vanishing vorticity is the property typical of uniform
currents and a constant vorticity characterizes the linearly sheared tidal currents. We also
recall that g is the gravitational constant of acceleration, Q is the hydraulic head and p0 is
the relative mass flux, introduced above. Moreover, we define the height of the wave as the
maximal variation of the oscillations of the free surface, given by

a := max
q∈[−π,π]

h(q, 0)− min
q∈[−π,π]

h(q, 0) = h(0, 0)− h(π, 0). (2.11)

5



In fact, the BVP (2.10) is a reformulation of the Euler equations restricted to D, under
the assumptions made previously in this section.

In the following subsections we discuss some results from [13], and provide a new point
of view, which allows a generalization of these results.

2.1 Laminar solutions

The laminar flows are readily obtained as the q-independent solutions of the boundary-value
problem (2.10), given by the following formula

H(p;λ) =
2(p− p0)√

λ− 2γp+
√
λ− 2γp0

, p0 ≤ p ≤ 0 , (2.12)

provided that the parameter λ > 0 satisfies the equation

Q = λ+
4g|p0|√

λ+
√
λ− 2γp0

. (2.13)

2.2 Solutions of the linearised problem

Apart from the laminar flows one can obtain the solution of the linearised problem. For this,
the BVP (2.10) is linearised around the laminar flow H(p;λ). For the specific value λ∗ that
satisfies the dispersion equation

λ

g − γ
√
λ

+ tanh

(
2p0√

λ+
√
λ− 2p0γ

)
= 0, (2.14)

an existence result for the solution of this BVP is presented in [13]. Moreover, the linearised
solution is given by ĥ(q, p; b) = H(p;λ∗) + b m(q, p), where

m(q, p) =

√
λ∗ − 2p0γ√
λ∗ − 2pγ

sinh

(
2(p− p0)√

λ∗ − 2γp+
√
λ∗ − 2γp0

)
cos q. (2.15)

In our investigation we start from this result and we obtain an extension of it by making a
two-fold interpretation.

Firstly, we interpret the function

ĥ(q, p; b) = H(p;λ∗) + b m(q, p), (2.16)

as a perturbation of a laminar solution of the system (2.10), in the following sense: the
system (2.10) is satisfied up to order b2, i.e.,

H[ĥ](q, p) = O(b2) , B0[ĥ](q) = O(b2) and B1[ĥ](q) = 0 (2.17)

and the height of the water wave is of order b, i.e,

ĥ(0, 0; b)− ĥ(π, 0; b) = b [m(0, 0)−m(π, 0)] = O(b).

Having in mind that the wave height vanishes for laminar flows, we can view the expression
(2.16) as an approximation of small amplitude water waves.

Secondly, we can regard this expression as the first order asymptotic expansion of the
exact solution to the BVP (2.10), which leads to the natural question of finding higher-order
terms. This point of view is motivated by a bifurcation argument, provided in [13] and
discussed below.
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2.3 Bifurcation

We define the curve that represents the laminar flows

T = {(Q(λ), H(p;λ)) : λ > 0} ,

with Q and H given by (2.13) and (2.12), respectively.
Restricting our attention to rotational flows with constant vorticity γ, in [13] it was proven

that near this curve, as the parameter λ varies, there are generally no genuine waves, except
at critical values λ = λ∗ determined by the dispersion relation (2.14). Near this bifurcating
laminar flow H∗, we have two solution curves: one laminar solution curve λ 7→ H(p;λ),
where λ and Q are related by (2.13), and one non-laminar solution curve Q 7→ h(q, p;Q)
such that hq 6≡ 0 unless h = H∗, see Figure 2.

Figure 2: Bifurcation on the curve of laminar flows.

2.4 Higher order approximation

Using the above argument we observe that the variation of the parameter Q (which is the
hydraulic head of the flow) about the uniquely determined value Q∗ implies an approximation
of non-laminar flows, in the following sense. Consider the approximation for the hydraulic
head of the flow,

Q ≈ Q(m) = Q(b) = Q∗ +
m∑
n=1

Qnb
n,

and the approximation for the height function h(q, p;Q),

h(q, p;Q) ≈ h(m)(q, p; b) =

m∑
n=0

hn(q, p;Q∗)bn, (2.18)

with h0(q, p;Q
∗) ≡ H(p, λ∗).

Our goal is to determine {hn(q, p;Q∗)}mn=1 such that the system (2.10) is satisfied up to
order bm+1, i.e.,

H[h(m)](q, p) = O(bm+1) , B0[h(m)](q) = O(bm+1) and B1[h(m)](q) = 0 . (2.19)

Moreover, the dominant term of the wave height of this approximation of the water wave
is of order b, i.e,

a(m) = h(m)(0, 0; b)− h(m)(π, 0; b) = b [h1(0, 0;Q∗)− h1(π, 0;Q∗)] +O(b2). (2.20)
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This condition indicates the accuracy of approximation of genuine waves in the following
sense: The relation (2.19) shows that h(m) is an approximation of a solution up to order
bm, whereas the relation (2.20) shows that h(m) differs from the laminar solution at order b.
Thus h(m) is ‘closer’ to a non-laminar solution.

In Section 3, we present the results for m = 2. In Section 4, where we work out the case
m = 3, the situation is different. There we observe that there is no h(3)(q, p; b) such that
both conditions H[h(3)](q, p) = O(b4) and B0[h(3)](q) = O(b4) are satisfied. This means that
the approximation made on (2.18) is accurate up to m = 2, and there appears an additional
error for m ≥ 3. Thus, we introduce an auxiliary parameter which allows the control of this
additional error. Indeed, we construct the following estimates∥∥∥H[h(3)](q, p)

∥∥∥ ≤ ε1b3 and
∥∥∥B0[h(3)](q)∥∥∥ ≤ ε2b3,

for some small ε1 ≥ 0 and ε2 ≥ 0, which depend on this auxiliary parameter.
Moreover, for particular values of the auxiliary parameter we can make each of ε1 and ε2

arbitrarily small (but not simultaneously), i.e.,

• either, H[h(3)](q, p) = O(b4),

• or, B0[h(3)](q) = O(b4).

The selection of the proper value of the auxiliary parameter is discussed in the last parts of
Section 4.1 and Section 4.2, as well as in Section 5.2.

3 Second Order Asymptotics

The problem of the extension of the asymptotic expansion of the solution of (2.10) takes
the following form: with λ∗ defined by (2.14), H(p;λ∗) given by (2.12) and m(q, p) given by
(2.15), determine u(q, p) such that the function

h∗(q, p; b) = H(p;λ∗) + b m(q, p) + b2u(q, p), (3.1)

satisfies the system (2.10) up to the second order, i.e.

H[h∗](q, p) = O(b3) , B0[h∗](q) = O(b3) and B1[h∗](q) = 0. (3.2)

Note that, in the absence of stagnation points, the real-analyticity of the wave profile for flows
of constant vorticity, established in [11], ensures the existence of a power series expansion.
Since the first-order (linear) approximation of the wave profile fails to capture the effects of
the underlying current, the issue of obtaining high-order approximations should be explored
in this regard.

3.1 Irrotational flow

For the purpose of comparison we analyse first the irrotational case γ = 0. This simpler case
provides us with the opportunity to explain in more detail the strategy we use throughout
this paper to obtain higher order terms of the expansion of the solution.
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In the irrotational case, the laminar solution H(p;λ∗) simplifies to

H(p;λ∗) =
p− p0√
λ∗

, (3.3)

the linearised solution m(q, p) becomes

m(q, p) = sinh

(
p− p0√
λ∗

)
cos q, (3.4)

where λ∗ > 0 satisfies, in this setting, the dispersion relation

λ+ g tanh

(
p0√
λ

)
= 0 . (3.5)

Moreover the corresponding value of Q is

Q∗ = λ∗ −
2gp0√
λ∗

. (3.6)

We first apply the operator H, defined in (3.2), to the expression (3.1). The outcome
will be a polynomial in the b variable, of order up to b6. The specific above choices yield
the vanishing of the zero and first order of the polynomial; for a detailed discussion of this
aspect, we refer to the [12]. Our present goal is the vanishing of the b2 coefficient of the
polynomial.

In particular, using the fact that Hq = 0, we get

H[h∗] = Hpp + b
(
mpp +H2

pmqq

)
+ b2

[
upp +H2

puqq +Hpp − 2Hp(mqmqp −mpmqq)
]

+O(b3).

Observing that (3.3) yields

Hp ≡
1√
λ∗

and Hpp ≡ 0 for all p ∈ [p0, 0] (3.7)

and substituting(3.4) in the previous expression for H[h∗], we get

H[h∗] = b2
[
upp +

1

λ∗
uqq −

1

λ∗
sinh

(
2
p− p0√
λ∗

)]
+O(b3). (3.8)

Proceeding similarly for the boundary condition, i.e. for the operator B0[h∗] in (3.2), yields

B0[h∗] = 1 + (2gH −Q)H2
p + b

{
2Hp

[
(2gH −Q)mp + gHpm

]}
+ b2

[
m2
q + 4gmHpmp + (2gH −Q)(m2

p + 2Hpup) + 2gH2
pu
]

+O(b3) ,

evaluated at p = 0. Applying the equalities (3.3), (3.4), (3.6) and (3.7) in the previous
expression and using the fact that (3.5) is equivalent to the identities

cosh

(
p0√
λ∗

)
=

g√
g2 − λ2∗

and sinh

(
p0√
λ∗

)
= − λ∗√

g2 − λ2∗
(3.9)
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we get that

B0[h∗] = −b22
√
λ∗

{(
up +

g

λ
3/2
∗

u

)∣∣∣∣
p=0

− 1

4
√
λ∗

1

g2 − λ2∗

[
3g2 + λ2∗ +

(
3g2 − λ2∗

)
cos(2q)

]}
+O(b3).

(3.10)

Consequently, we obtain the constitutive equations for the function u(q, p), even and 2π
periodic in q variable,

upp +
1

λ∗
uqq =

1

λ∗
sinh

(
2
p− p0√
λ∗

)
, (q, p) ∈ R,

up −
g

λ
3/2
∗

u =
1

4
√
λ∗

1

g2 − λ2∗

[
3g2 + λ2∗ +

(
3g2 − λ2∗

)
cos(2q)

]
, p = 0,

u = 0, p = p0.

(3.11)

In order to solve the above BVP we use separation of variables and we take in consideration
the following facts:

• A special solution of the PDE is given by
1

4
sinh

(
2
p− p0√
λ∗

)
.

• The function u(q, p) is even and 2π periodic.

• We must have u(q, p0) = 0.

Therefore, we get the general form

u(q, p) =
1

4
sinh

(
2(p− p0)√

λ∗

)
+A0(p− p0) +

∞∑
n=2

An cos(nq) sinh

(
n(p− p0)√

λ∗

)
(3.12)

and we have to determine the constants A0 and {An}∞2 such that the Robin Boundary
Condition (BC) at p = 0 is satisfied. Indeed, the separation of variables says that the
general solution of the Partial Differential Equation

upp +
1

λ∗
uqq = 0

on the rectangle is a bilinear combination of trigonometric functions in q and exponential
(hyperbolic) functions in p i.e. {cos(nq), sin(nq)}, n ∈ N and exp(±np/

√
λ∗), n ∈ N. This

is due to the periodicity in q.2 The evenness in q excludes the dependence on sin(nq), n ∈ N
and the condition u = 0, on p = p0 gives exactly the sinh

(
np−p0√

λ∗

)
dependence.

Thus, applying the form (3.12) to the second of the equations (3.11), we get

A0 =
λ∗
4

3g2 − λ2∗
g2 − λ2∗

1

gp0 + λ
3/2
∗

, A2 =
3g2 − λ2∗

8λ2∗
and An = 0, n ≥ 3,

with λ∗ given as the solution of (3.5).

2Once we have obtained {cos(nq), sin(nq)}, separation of variables gives the exponentials exp(±np/
√
λ∗).
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3.2 Constant Vorticity

The strategy is conceptually the same for the rotational case when the vorticity γ is constant.
The first goal is to derive the analogue of the BVP (3.11). In this case, the laminar solution
H(p) is given by

H(p) = 2
p− p0

r(p) + r(p0)
, (3.13)

where
r(p) =

√
λ∗ − 2γp, (3.14)

with λ∗ > 0 satisfying the dispersion relation (2.14). Moreover, the linearised solution m(q, p)
is given by (2.15) and rewritten as follows

m(q, p) =
r(p0)

r(p)
sinh

(
H(p)

)
cos q. (3.15)

The corresponding value of Q, using (2.13), is

Q∗ = λ∗ −
4gp0√

λ∗ +
√
λ∗ − 2γp0

. (3.16)

Then we evaluate the system (2.10) for h∗, defined by

h∗(q, p; b) = H(p) + b m(q, p) + b2u(q, p), (3.17)

with H(p) and m(q, p) given by (3.13) and (3.15), respectively. Demanding the validation of
this system up to the second order, i.e.

H[h∗](q, p) = O(b3) , B0[h∗](q) = O(b3) and B1[h∗](q) = 0, (3.18)

yields the analogue of the BVP (3.11). After tedious but straightforward calculations we
get the following form for the BVP, for the even and 2π-periodic function u(q, p) on the
rectangle R ≡ [−π, π]× [p0, 0]:

upp(q, p) +
1

r2(p)
uqq(q, p)−

3γ

r2(p)
up(q, p) = f0(p) + f2(p) cos(2q),

up(q, 0)− g

λ
3/2
∗

u(q, 0) = g0 + g2 cos(2q),

u(q, p0) = 0,

(3.19)

where

f0(p) = −r
2(p0)

r7(p)

[
3γ3 − 3γ

(
γ2 + 2r2(p)

)
cosh

(
2
r(p)− r(p0)

γ

)
+ 2r(p)

(
3γ2 + 2r2(p)

)
sinh

(
2
r(p)− r(p0)

γ

)]
,

f2(p) = −γ
4

r2(p0)

r7(p)

[
3γ2 − 2r2(p)−

(
3γ2 + 4r2(p)

)
cosh

(
2
r(p)− r(p0)

γ

)
+ 6γr(p) sinh

(
2
r(p)− r(p0)

γ

)]
,
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g0 =
r2(p0)

2λ∗

3g2 + λ2∗
g2 − λ2∗ − γ

√
λ∗
(
2g − γ

√
λ∗
) ,

g2 =
r2(p0)

2λ∗

3g2 − λ2∗
g2 − λ2∗ − γ

√
λ∗
(
2g − γ

√
λ∗
) .

Remark 1. The above BVP (3.19) reduces to (3.11) for γ = 0, i.e. the function f2(p)
vanishes when γ vanishes.

Applying separation of variables to (3.19), we obtain the following formulation of the
above BVP: Determine u(q, p) given by

u(q, p) = u0(p) +
∞∑
n=2

un(p) cos(nq), (3.20)

where the functions un(p) satisfy the following BVPs:

u′′n(p)− n2

r2(p)
un(p)− 3γ

r2(p)
u′n(p) = fn(p), p ∈ (p0, 0)

u′n(0)− g

λ
3/2
∗

un(0) = gn,

un(p0) = 0,

(3.21)

where f0(p), f2(p), g0 and g2 are defined above. Moreover, fn ≡ 0 and gn = 0, for n ≥ 3.
Now, we make the following change of variables

un(p) =
ûn(r(p))

r(p)
, with r(p) =

√
λ∗ + 2γp (3.22)

which transforms the above BVPs into the following:

d2

dr2
ûn(r)− n2

γ2
ûn(r) = f̂n(r), r ∈

(
r0,
√
λ∗

)
d

dr
ûn −

g + γ
√
λ∗

γλ∗
ûn = ĝn, r =

√
λ∗

ûn = 0, r = r0 := r(p0) =
√
λ∗ + 2γp0.

(3.23)

Here f̂n and ĝn are defined by

f̂n(r) = f̂n(r(p)) =
r3(p)

γ2
fn(p) and ĝn = −λ∗

γ
gn, n ∈ N.

The solution basis of the homogeneous differential equations appearing in BVP (3.23) is
given by

• {1, r} for n = 0 and

•
{

sinh

(
n
r − r0
γ

)
, cosh

(
n
r − r0
γ

)}
for n ≥ 1.
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Using the method of variation of parameters, we obtain the special solutions of the BVP
(3.23). In particular, we seek for special solutions of the inhomogeneous problems of the
form

• For n = 0:
û
(s)
0 (r) = α0(r) + β0(r)r,

under the constraint
α′0(r) + β′0(r)r = 0.

• For n ≥ 1:

û(s)n (r) = αn(r) sinh

(
n
r − r0
γ

)
+ βn(r) cosh

(
n
r − r0
γ

)
,

under the constraint

α′n(r) sinh

(
n
r − r0
γ

)
+ β′n(r) cosh

(
n
r − r0
γ

)
= 0.

The insertion of these forms in the inhomogeneous differential equations appearing in BVP
(3.23) yields {αn, βn}, n ∈ N. Consequently, the special solutions read

û
(s)
0 (r) = −γr20

1− cosh

(
2
r − r0
γ

)
8r2

− r20
sinh

(
2
r − r0
γ

)
4r

and

û
(s)
2 (r) = −γr20

1− cosh

(
2
r − r0
γ

)
8r2

− r20
sinh

(
2
r − r0
γ

)
4r

.

The next step is to apply the linear combination

ûn = û(s)n + Enû
(g)
n

to the Robin condition of (3.23) and obtain the specific value for En. One can readily see
that En = 0 for n ≥ 3.

Finally, after determining E0 and E2, we use (3.22) and, by means of (3.20), we obtain
the following formula for the second order term of the expansion (3.17):

u(q, p) = r2(p0)

[
C0
H(p)

r(p)
− γ 1− cosh (2H(p))

8r3(p)
+

sinh (2H(p))

4r2(p)

]
+ r2(p0) cos(2q)

[
C2

sinh (2H(p))

r(p)
− γ 1− cosh (2H(p))

8r3(p)
+

sinh (2H(p))

4r2(p)

]
,

(3.24)

where

C0 =

√
λ∗
[
3g
(
g − γ

√
λ∗
)

+ λ∗
(
γ2 − λ∗

)] (
r(p0) +

√
λ∗
)

4
[(
g − γ

√
λ∗
)2 − λ2∗] [2gp0 + λ∗r(p0) +

√
λ∗r2(p0)

]
13



and

C2 =
3g
(
g − γ

√
λ∗
)

+ λ∗
(
γ2 − 3λ∗

)
8λ

5/2
∗

.

Therefore, the function h∗ given by (3.17) satisfies the system (3.18). We note that for
the value γ = 0, the expression (3.24) takes the form (3.12), meaning that we obtain the
irrotational case as a special case of the constant vorticity formulation.

4 Third Order

With a similar methodology as that used to derive approximations of second order, one can
derive approximation of third order. The results are provided below; the reader can easily
verify them with some Computer Algebra Software.

In particular, we use the formula

h̃(q, p; b) = H(p) + b m(q, p) + b2u(q, p) + b3w(q, p), (4.1)

with H, m and u given in the previous section and λ∗ given by (2.14). Then our aim is to
determine w so that h̃ satisfies the system (2.10) up to the third order, i.e.

H[h̃](q, p) = O(b4) , B0[h̃](q) = O(b4) and B1[h̃](q) = 0. (4.2)

However, there is no such h̃(q, p; b). Thus, instead, we introduce an auxiliary parameter B̃
(for the irrotational case we denote it by B) which allows the control of this additional error
estimate. Indeed, we construct the following estimates∥∥∥H[h(3)](q, p)

∥∥∥ ≤ ε1b3 and
∥∥∥B0[h(3)](q)∥∥∥ ≤ ε2b3,

for some small ε1 ≥ 0 and ε2 ≥ 0, which depend on this auxiliary parameter.

4.1 Irrotational case

Following the organisation of the previous section we first discuss the case that γ = 0.
Therefore, if we apply (4.1) to the system (2.10), we get a polynomial on b of finite order (in
particular of order b9). The requirement that the coefficient of the b3 term vanishes yields
the following BVP for the even and 2π-periodic (in the q variable) function w(q, p):

wpp +
1

λ∗
wqq = f1(p) cos q + f3(p) cos(3q), (q, p) ∈ R,

wp −
g

λ
3/2
∗

w = g1 cos q + g3 cos(3q), p = 0,

w = 0, p = p0,

(4.3)

where f1(p) and f3(p) are known functions (bilinear combinations of hyperbolic functions and
polynomials) and g1 and g3 are known constants, dependent on the parameters g, p0 and λ∗.
We use the fact that this problem has the same general solution (for the homogeneous case)
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with the problem (3.11) and we determine its special solutions by the method of variation
of parameters. Then the expansion

h̃(q, p; b) = H(p) + b m(q, p) + b2u(q, p) + b3w̃(q, p),

with w̃(q, p) given the following formula

w̃(q, p) =

[
B1 (p− p0) cosh

(
p− p0√
λ∗

)
+B2 sinh

(
3
p− p0√
λ∗

)]
cos q

+

[
D1 sinh

(
p− p0√
λ∗

)
+D2 sinh

(
3
p− p0√
λ∗

)]
cos(3q),

(4.4)

with

B1 =
λ∗
4

3g2 − λ2∗
g2 − λ2∗

1

gp0 + λ
3/2
∗

, B2 =
9g2

32λ2∗
,

D1 = −3g2 − λ2∗
32λ2∗

and D2 =
9g2

32λ2∗
+

3g2 − λ2∗
32λ2∗

,

satisfies the conditions
H[h̃](q, p) = O(b4) and B1[h̃](q) = 0. (4.5)

For the Robin boundary condition we take

B0[h̃](q) = −B0 cos q b3 +O(b4), (4.6)

with the constant B0 given explicitly by the expression

B0 =
1

2λ∗

1

(g2 − λ2∗)
3/2

[
λ∗p0

(
3g2 − λ2∗

)2
gp0 + λ

3/2
∗

−
g
(
3g2 + λ2∗

)2
2λ∗

]
.

Thus, we propose the following formulation

w(q, p) = w̃(q, p)−B (p− p0) cos q, (4.7)

for some constant B. Then the condition (4.2) changes accordingly. In particular, (4.5)
becomes

H[h̃](q, p) = B
p− p0
λ∗

cos q b3 +O(b4) (4.8)

and the Robin boundary condition takes the following form:

B0[h̃](q) =

[
2

λ∗

(
gp0 + λ

3/2
∗

)
B −B0

]
cos q b3 +O(b4). (4.9)

Therefore we can choose some appropriate value of B in order to minimize the errors observed
in the above conditions. For example,

• B = 0 ensures H[h̃] = O(b4).

• B = B0
λ∗
2

1

gp0 + λ
3/2
∗

ensures B0[h̃] = O(b4).
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We observe the magnitude of the error of the b3 term, for the operators H and B0, to be

Ed := B
−p0
λ∗
≥ 0 (4.10)

and

Ec := B0 −
2

λ∗

(
gp0 + λ

3/2
∗

)
B ≥ 0, (4.11)

respectively, with

0 ≤ B ≤ B0
λ∗
2

1

gp0 + λ
3/2
∗

.

4.2 Constant vorticity

While the situation is similar for this case, it is, however, much more complicated. Indeed,
we apply the expansion of the form (4.1), with H, m and u given by (3.13), (3.15) and (3.24),
respectively, to the system (4.2) and we get the following BVP on the rectangular R, for the
even and periodic function w(q, p):

wpp(q, p) +
1

r2(p)
wqq(q, p)−

3γ

r2(p)
wp(q, p) = f1(p) cos q + f3(p) cos(3q),

wp(q, 0)− g

λ
3/2
∗

w(q, 0) = g1 cos q + g3 cos(3q),

w(q, p0) = 0,

(4.12)

where

• f1(p) and f3(p) are known functions explicitly dependent on r(p),

• g1 and g3 are known constants explicitly dependent on the parameters γ, λ∗, p0 and
g,

for which we avoid to write the complete expressions for matters of brevity. Proceeding
as in Section 3.2, we reduce the solution of the above BVP to the following formulation:
Determine w(q, p), of the form

w(q, p) =

∞∑
n=0

wn(p) cos(nq), (4.13)

with wn(p) given by

wn(p) =
ŵn(r(p))

r(p)
with r(p) =

√
λ∗ − 2γp , (4.14)

and where ŵn(r) are the solutions of the BVPs

d2

dr2
ŵn(r)− n2

γ2
ŵn(r) = f̂n(r), r ∈

(
r0,
√
λ∗

)
d

dr
ŵn +

g − γ
√
λ∗

γλ∗
ŵn = ĝn, r =

√
λ∗

ŵn = 0, r = r0 =
√
λ∗ − 2γp0,

(4.15)

for some known functions f̂n(r) and constants ĝn.
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Remark 2. The functions f̂n(r) are bilinear combinations of hyperbolic functions and poly-
nomials in 1/r. The constants ĝn are dependent on γ, g, λ∗ and r0.

Eventually, using the arguments of the previous subsection we derive the following for-
mula for w(q, p):

w(q, p) = w̃(q, p)− B̃r2(p0)
H(p)

r(p)
cos q, (4.16)

for some constant B̃ and w̃(q, p) given by

w̃(q, p) =
[
Ã1(p) sinh

(
H(p)

)
+ Ã2(p) sinh

(
3H(p)

)
+B̃1(p) cosh

(
H(p)

)
+ B̃2(p) cosh

(
3H(p)

)]
cos q

+
[
Ã3(p) sinh

(
H(p)

)
+ Ã4(p) sinh

(
3H(p)

)
+B̃3(p) cosh

(
H(p)

)
+ B̃4(p) cosh

(
3H(p)

)]
cos(3q),

(4.17)

where {Ãj(p), B̃j(p)}4j=1 are functions of the form

1

r5(p)

4∑
n=0

aj,nr
n(p) and

1

r5(p)

4∑
n=0

bj,nr
n(p),

respectively. Here

a1,0 = − 9

32
γ2r30, a1,1 = 0 ,

a1,2 = −
{
r30

(
3g
(
g − γ

√
λ∗ − λ∗

)√
λ∗
(
g − γ

√
λ∗ + λ∗

)
,

+r0

(
− 3g3 − 15g2γ

√
λ∗ − 5γ

(
γ2 − λ∗

)
λ
3/2
∗ + 3gλ∗

(
5γ2 + λ∗

) ))}/{
32
(
−r0

(
g − γ

√
λ∗
)

+ g
√
λ∗
) (
g2 − 2gγ

√
λ∗ +

(
γ2 − λ∗

)
λ∗
)}

,

a1,3 = −
r30
(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

, a1,4 = 0 ,

b1,0 = 0, b1,1 = −9γr30
32

, b1,2 = −
γr30

(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

,

b1,3 =
r40
√
λ∗
(
−3g2 + 3gγ

√
λ∗ + λ∗

(
−γ2 + λ∗

))
4
(
gr0 − (g + γr0)

√
λ∗
) (
g2 − 2gγ

√
λ∗ + (γ2 − λ∗)λ∗

) ,
b1,4 =

r30
√
λ∗
(
3g2 − 3gγ

√
λ∗ +

(
γ2 − λ∗

)
λ∗
)

4
(
gr0 − (g + γr0)

√
λ∗
) (
g − γ

√
λ∗ − λ∗

) (
g − γ

√
λ∗ + λ∗

) ,
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a2,0 =
3

32
γ2r30, a2,1 = 0, a2,2 =

9r30
32

,

a2,3 =
3r30
(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

, a2,4 = 0 ,

b2,0 = 0, b2,1 =
9

32
γr30 ,

b2,2 =
γr30

(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

, b2,3 = b2,4 = 0 ,

a3,0 = − 3

32
γ2r30, a3,1 = 0, a3,2 = − r

3
0

32
,

a3,3 = −
r30
(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

, a3,4 = 0 ,

b3,0 = 0, b3,1 = −3γr30
32

,

b3,2 = −
γr30

(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

, b3,3 = b3,4 = 0 ,

a4,0 =
1

32
γ2r30, a4,1 = 0, a4,2 =

3r30
32

,

a4,3 =
3r30
(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

,

a4,4 =
{
r30

(
9g5 − 27g4γ

√
λ∗ + 11g3

(
3γ2 − 2λ∗

)
λ∗ − g2γ

(
21γ2 − 50λ∗

)
λ
3/2
∗

+gλ2∗
(
7γ4 − 35γ2λ∗ + 13λ2∗

)
− γλ5/2∗

(
γ4 − 9γ2λ∗ + 15λ2∗

) )}/
{

64
(
g − γ

√
λ∗
)
λ5∗

}
,

b4,0 = 0, b4,1 =
3

32
γr30 ,

b4,2 =
γr30

(
3g2 − 3gγ

√
λ∗ +

(
γ2 − 3λ∗

)
λ∗
)

32λ
5/2
∗

, b4,3 = b4,4 = 0 ,

where we used the abbreviation r(p0) = r0. Consequently, the conditions (4.2) take on the
following form:

H[h̃](q, p) = B̃r2(p0)
H(p)

r3(p)
cos q b3 +O(b4) (4.18)

and

B0[h̃](q) =

[
2r2(p0)

2gp0 + r(p0)
√
λ∗
(
r(p0) +

√
λ∗
)

λ
3/2
∗
(
r(p0) +

√
λ∗
) B̃ − B̃0

]
cos q b3 +O(b4), (4.19)

with

B̃0 = D

∑5
n=0 cnγ

n

g2 − λ2∗ − γ
√
λ∗
(
2g − γ

√
λ∗
) ,
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where

D = − 1

4λ
7/2
∗

r(p0) +
√
λ∗

2gp0 + r(p0)
√
λ∗
(
r(p0) +

√
λ∗
)

and
c0 = 3g

√
λ∗
(
9g4 − 14g2λ2∗ + 5λ4∗

)
− 4g

√
λ∗r0

(
9g4 − 9g2λ2∗ + 4λ4∗

)
− 2p0√

λ∗ + r0

(
9g6 − 12g4λ2∗ + 13g2λ4∗ − 2λ6∗

)
,

c1 = −λ3/2∗
(
33g4 − 39g2λ2∗ + 4λ4∗

)
− r0

(
−60g4λ∗ + 45g2λ3∗ − 7λ5∗

)
,

c2 = −3
(
−7g3λ2∗ + 5gλ4∗ + 2gr0λ

3/2
∗
(
9g2 − 4λ2∗

))
,

c3 = −λ5/2∗
(
7g2 − 2λ2∗

)
− r0

(
−28g2λ2∗ + 5λ4∗

)
,

c4 = −8gr0λ
5/2
∗ + gλ3∗, c5 = r0λ

3
∗ .

Similarly to the previous section we observe that the magnitude of the error of the b3 term,
for the operators H and B0, to be

Ed := B̃
H(p0)

r(p0)
≥ 0 (4.20)

and

Ec := B̃0 − 2r2(p0)
2gp0 + r(p0)

√
λ∗
(
r(p0) +

√
λ∗
)

λ
3/2
∗
(
r(p0) +

√
λ∗
) B̃ ≥ 0, (4.21)

respectively, with

0 ≤ B̃ ≤ B̃0
λ
3/2
∗

2r2(p0)

r(p0) +
√
λ∗

2gp0 + r(p0)
√
λ∗
(
r(p0) +

√
λ∗
) .

Remark 3. One can see that the case γ = 0, equivalent to r(p) =
√
λ∗ for all p ∈ [p0, 0], in

the above expressions yields the formulae of the previous subsection.

5 Illustration of the solutions

Considering the figures depicted in this section, we recall that the value of the gravitational
constant of acceleration is g = 9.8 and we fix the relative mass flux p0 = −2. This section
is organised as follows. In the first subsection we illustrate the results for the second order
asymptotic expansion. In the second subsection we present the analogue results for the third
order expansions. In the third subsection we present some figures that compare the obtained
second order approximation results against existing results i.e. first order asymptotic expan-
sions. Finally, in the fourth subsection we compare the results between the second and the
third order approximations.

The illustrations below are given for several values of the vorticity γ, as indicated in each
figure. Moreover, each streamline is defined by [p = constant], for constants ranging from p0
to 0. We note that for the wave height h and the velocity field v, we have that:
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• p = p0 gives h = 0 and v = 0.

• h is an increasing function with respect to p.

• v is an increasing function with respect to p, for q > 0, and a decreasing function with
respect to p, for q < 0.

whereas, for the pressure P :

• P (q, 0) = Patm(q) = Patm.

• P is a decreasing function with respect to p.

Let us recall the definition of the wave height as the maximal oscillation of the free
boundary, h(0, 0) − h(π, 0), with the understanding the the wave crest is located at q = 0.
Moreover, we recall from [13] that:

• The velocity field is given by (c− u, v) =

(
1

hp
,−hq

hp

)
.

• The water pressure is given by

P = Patm −
1 + h2q

2h2p
− gh− γp+

Q

2
,

for some constant Q.

5.1 Second order

In this subsection we depict the results that we obtain from the second order asymptotic
expansion of the solution h(q, p), given in (3.17). Concerning the other parameters, we
remind that λ∗ varies with the vorticity according to the dispersion relation (2.14).

Firstly, for each value of the constant vorticity γ, we have to fix the value of b by allowing
a small error on condition (3.18), i.e.

max
b
{‖H‖2 , ‖B0‖2} = ε for some small ε > 0.

In Figure 3 we show how b varies for different values of vorticity. The value b is increasing
when γ ∈ [−4.5,−1.5], with ‖H‖2 dominant in the above definition. On the contrary, the
value of b is decreasing when γ ∈ [−1.5, 3], with ‖B0‖2 dominant in the above definition.
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Figure 3: The value of b for different values of vorticity, varying from γ = −4.5 to γ = 3.

5.1.1 Wave profiles

Figure 4: The free surface for different values of vorticity, varying from γ = −4.5 to γ = 3.
Here the wave profile η(x) is illustrated, which is oscillating around y = 0.
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Figure 5: The mean depth for different values of vorticity, varying from γ = −4.5 to γ = 3.

Figure 6: The height of the water along streamlines for γ = −1.5, over two wavelengths.

Figure 7: The wave height for different values of vorticity, varying from γ = −4.5 to γ = 3.
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5.1.2 Velocities

Figure 8: The vertical velocity v on free surface for different values of vorticity, varying from
γ = −4.5 to γ = 3.

Figure 9: The vertical velocity v of the flow along streamlines for γ = −1.5.
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Figure 10: The horizontal velocity c− u on the straight line below the crest, i.e. q = 0 and
p ∈ [p0, 0], for different values of vorticity, varying from γ = −4.5 to γ = 3.

5.1.3 Pressure

Figure 11: The water pressure on the bottom, p = p0, for different values of vorticity, varying
from γ = −4.5 to γ = 3.
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Figure 12: The water pressure of the flow for γ = −1.5: (P − Patm) vanishes on the free
boundary p = 0 and takes the maximal value on the bottom p = p0.

5.2 Third order

Here, we proceed as follows: ‖H‖2 and ‖B0‖2 for the third order asymptotic expansion are,
in general, functions of γ, b and B̃, see (4.1) and (4.17). So, for each value of γ, we pick the
specific value of b that we have obtained in the previous subsection, as illustrated in Figure
3. Then, for each pair (γ, b), we determine the value of B̃ that minimizes the quantity

‖H‖22 + ‖B0‖22 .

Figure 13: The value of B̃ for different values of vorticity, varying from γ = −4.5 to γ = 3.

In Figure 13 we show how B̃ varies for different values of vorticity. In what follows we
will display the analogue of the figures of the previous subsection, but now for the third
order asymptotic expansion (4.1).
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5.2.1 Wave profiles

Figure 14: The free boundary for different values of vorticity, varying from γ = −4.5 to
γ = 3.

Figure 15: The mean depth for different values of vorticity, varying from γ = −4.5 to γ = 3.
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Figure 16: Each of the disjoint curves displays the wave profile η(x), for different values of
vorticity, varying from γ = −4.5 to γ = 3.

Figure 17: Each of the disjoint curves displays the free boundary h(q, 0) = η(x) + d, for
different values of vorticity, varying from γ = −4.5 to γ = 3. This illustration, compared to
Fig. (16), takes into account the mean depth d, which varies with the vorticity γ, see Fig.
15.
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Figure 18: The height of the water along streamlines for γ = −1.5, over two wavelengths.

Figure 19: The wave height for different values of the vorticity, varying from γ = −4.5 to
γ = 3.
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5.2.2 Velocities

Figure 20: The vertical velocity v on free surface for different values of vorticity, varying
from γ = −4.5 to γ = 3.

Figure 21: The vertical velocity v of the flow along streamlines for γ = −1.5.
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Figure 22: The horizontal velocity c− u on the straight line below the crest, i.e. q = 0 and
p ∈ [p0, 0], for different values of vorticity, varying from γ = −4.5 to γ = 3.

5.2.3 Pressure

Figure 23: The water pressure on the bottom, p = p0, for different values of vorticity, varying
from γ = −4.5 to γ = 3.

Figure 24: The water pressure of the flow for γ = −1.5: (P − Patm) vanishes on the free
boundary p = 0 and takes the maximal value on the bottom p = p0.
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5.3 Comparison with existing results

Here we compare the results that we obtained from the second order asymptotic expansion
with the ones already existing in the literature, i.e. the first order asymptotic expansion. In
order to choose the value of b for the depiction of the first order asymptotic expansion, we
proceed as in Section 5.1 and we obtain qualitative results similar to Figure 3, but now b is
in general smaller, as depicted in Figure 25.

Figure 25: The value of b for different values of vorticity, varying from γ = −4.5 to γ = 3.

This choice of b indicates the comparison on the wave height for different values of
vorticity, depicted in Figure 26. There we observe that for large values of the absolute value
of vorticity, |γ|, the wave height is relatively small and the first order approximation shows
similar results with the second order one. However, the shape of the water profile differs
significantly, see Fig. 32 and 36. Moreover, for the rest values of vorticity, we observe a
discrepancy in the wave height between the two approximations.
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Figure 26: The height of wave for different values of vorticity, varying from γ = −4.5 to
γ = 3.

5.3.1 Negative vorticity γ = −1.5

In what follows we fix our vorticity to γ = −1.5 in order to illustrate the improvement
provided by higher-order asymptotics.

Figure 27: The free surface for vorticity γ = −1.5. The mean depth is 0.80072 and 0.79222
for the first and the second order approximation, respectively.

(a) First order asymptotic. (b) Second order asymptotic.

Figure 28: The height of the water along streamlines for γ = −1.5, over two wavelengths.

32



Figure 29: The vertical velocity v on the free surface, for vorticity γ = −1.5.

Figure 30: The water pressure: P −Patm on the bottom, for the choice of vorticity γ = −1.5.

5.3.2 Positive vorticity γ = 1.5

In what follows we fix our vorticity to γ = 1.5 in order to illustrate the effect of higher-order
asymptotics.

Figure 31: The free surface for vorticity γ = 1.5. The mean depth is 0.758042 and 0.752228
for the first and the second order approximation, respectively.
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(a) First order asymptotic. (b) Second order asymptotic.

Figure 32: The height of the water along streamlines for γ = 1.5, over two wavelengths.

Figure 33: The vertical velocity v on the free surface, for vorticity γ = 1.5.

Figure 34: The water pressure: (P − Patm) on the bottom, for vorticity γ = 1.5.

5.4 Comparison of second and third order asymptotics

In what follows we fix our vorticity to γ = 1.5 and we compare the difference between the
second and third order expansion.

In Figure 36 we depict, for different values of vorticity, the curves hqq = 0 for p ∈ [p0, 0],
thus indicating where the curvature changes. Indeed, let us fix the value of vorticity γ. If
for instance p = p̃ is fixed, then the equation

∂2h(q; p̃)

∂q2
= 0

has a unique solution q = q̃, where q̃ ∈ (0, π/2). Allowing p varying from p0 to 0, we get the
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Figure 35: The wave height for different values of vorticity, varying from γ = −4.5 to γ = 3.

curve p 7→ q̃(p). For different values of the vorticity we get the different curves depicted in
Figure 36, observing where the wave profile changes from convex to concave.

(a) Second order asymptotic. (b) Third order asymptotic.

Figure 36: The curve tracking the change of curvature, for values of the vorticity varying
from γ = −4.5 to γ = 3.

6 Conclusions

Among the conclusions that we can extract from our asymptotic expansions and the associ-
ated figures, the most important are the following:

• We observe a considerable improvement from the first to the second asymptotic ex-
pansion, noticeable in the depictions of the wave height in Fig. 26 as well as in the
depictions of the profile of the wave in Fig. 28 and 32.
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• We observe a small difference in wave height from the second to the third asymptotic
expansion, cf. Fig. 35. However, there is a considerable difference in the change of
the curvature, see Fig. 36. This is due to the choice of the parameters b and B̃. In
the particular examples we did choose to keep the same values for b and to minimize
the errors ‖H‖2 and ‖B0‖2, meaning that we kept approximately the same wave height
and improved the accuracy of the wave profile.

• Fig. 14 shows that an opposing current has a steepening effect on the wave profile. As
already pointed out in the Introduction, first-order linear theory does not capture this
important feature of wave-current interactions.

Asymptotic expansions beyond those obtained here will be presented in upcoming pub-
lications.
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