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Abstract. Hybrid imaging techniques utilize couplings of physical modalities – they
are called hybrid, because, typically, the excitation and measurement quantities belong to
different modalities. Recently there has been an enormous research interest in this area
because these methods promise very high resolution. In this paper we give a review on
hybrid tomography methods for electrical conductivity imaging. The reviewed imaging
methods utilize couplings between electric, magnetic and ultrasound modalities. By this
it is possible to perform high-resolution electrical impedance imaging and to overcome
the low-resolution problem of electric impedance tomography.

1. Introduction

The spatially varying electrical conductivity, denoted by σ = σ(x) in the following, provides
important functional information for diagnostic imaging – it is an appropriate parameter
for distinguishing between malignant and healthy tissue [31, 38, 48, 49, 52, 65, 75, 91, 98, 113].
Although almost never stated explicitly, but very relevant for this work, the conductivity
is frequency dependent, that is, σ = σ(x, ω). The dependence on ω is typically neglected,
since the imaging devices operate at a fixed frequency. However, one should be aware that
different image devices record conductivities in different frequency regimes. In figures 1a
and 1b, respectively, the specific values for σ in healthy and malignant tissues are plotted,
and it can be observed that cancerous tissue reveals a higher conductivity, in general.

(a) Low frequency contrast of σ [38, 52,98] (b) Radio-frequency contrast of σ [48]

Figure 1: Contrast of conductivity in biological tissue

The standard approach for determining the electrical conductivity is Electrical
Impedance Tomography (EIT). This approach is based on the electrostatic equation:

∇ · (σ∇u) = 0 , (1.1)

which describe the relation between the conductivity σ and the electrostatic potential
u = u(x). For imaging, EIT is realized by injecting series of currents at a certain frequency
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ω on the surface ∂Ω of the probe and measuring the according series of voltages there.
In mathematical terms the EIT problem accounts for computing σ from the Dirichlet-to-
Neumann mapping Λσ : f 7→ g, which relates the components of all possible pairs (f = u|∂Ω,
g = σ ∂nu|∂Ω).

Precursors of EIT were for geological prospecting [45,95]. Current applications of EIT
are in geology [2, 85, 89], but the applications in non-destructive testing for industry are of
growing importance [106]. There has been considerable effort in adapting EIT for medical
applications [18,23].

In mathematical terms, the EIT problem has been formulated first in 1980 by Calderón
[21]. Uniqueness and stability have been studied extensively (see e.g. [1, 20, 101]).† The
recovery of the electrical conductivity from the Dirichlet-to-Neumann map is heavily ill-
conditioned, the modulus of continuity is at most logarithmic [3,74]. This result is consistent
with the abilities of classical EIT to differentiate between conductors and insulators in
geological prospecting (see table 1). On the other hand, the material differences in human
and biological tissues are smaller, and logarithmic stability in this case guarantees only very
low resolution.

tissue type/material conductivity σ
skin (wet) 3 · 10−3 S/m
blood 7 · 10−1 S/m
fat 2 · 10−2 S/m
liver 5 · 10−2 S/m
copper 6 · 107 S/m
granite (dry) 10−8 S/m

Table 1: Conductivities of different type of tissue or materials, respectively, at 1 kHz [31], [28, Tab.
9.11], [26]

Recently, coupled Physics imaging methods (this is another name for hybrid imaging,
which is more self explaining), have been developed, which can serve as alternatives for
estimating the electrical conductivity. Passive coupled Physics electrical impedance imaging
utilizes that electrical currents in the interior of a probe manifest themselves in different
modality. In contrast, active coupled Physics imaging is by local excitement of the tissue
sample. Mathematically, in most cases, coupled Physics imaging decouples into two inverse
problems, which, in total, are expected to better well conditioned than the EIT problem [4].
Coupled Physics imaging led to a series of new results in inverse problems theory (see [13,56]).

Coupled Physics imaging should not be confused with multi-modal imaging (actually
both are sometimes called hybrid imaging), which is based on co-registering or fusing images
of different modalities. In contrast to multi-modal imaging, the techniques described here, all
involve interaction of physical processes, and therefore they have to use the correct modeling
of the physics and chemistry involved.

In this paper we survey mathematical models for coupled Physics electrical impedance
imaging. We provide the principal mathematical modeling tools in section 2, which are
various electromagnetic equations in different frequency ranges, basic equations of acoustics,
and basics of magnetic resonance imaging (MRI). Based on this, we derive mathematical
models for multiphysics imaging models in section 4. Bibliographic references are provided,
covering experimental and mathematical research.

2. Background

In the following we provide basic background information on mathematical equations in
Electromagnetism, Acoustics, and Magnetic Resonance Imaging (MRI). This overview is

† The first step to prove unique recovery of σ from Λσ for smooth conductivities, was the result in [99].
Now, there exist results for less regular conductivities (see the references in [1, 14.2.1.7] and [101, 6.1]).
For planar domains, one even has uniqueness for L∞-conductivities [11].
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symbol name unit
ρ(x) electrical charge density As/m3

E(x, t) electrical field strength V/m
H(x, t) magnetic field strength A/m
D(x, t) electrical displacement field As/m2

B(x, t) magnetic flux density Vs/m2 = T
J(x, t) electrical current density A/m2

σ(x, ω) electrical conductivity A/Vm = 1/Ωm = S/m
ε(x, ω) electrical permittivity As/Vm=F/m
µ(x, ω) magnetic permeability Vs/Am=H/m

Table 2: Electromagnetic quantities

required to survey coupled Physics impedance imaging techniques in section 4.

2.1. Electromagnetic theory

We use as a starting point Maxwell’s equations, which couple the physical quantities
summarized in table 2.

Maxwell’s equations

are the basic formulas of electromagnetism, and read as follows (see for instance [47]):

∇ × E = −∂B

∂t
, ∇ · D = ρ ,

∇ × H = J +
∂D

∂t
, ∇ · B = 0.

(2.1)

For later reference, we recall two equations relating the fields E, B with the charge density
ρ and the current density J:

• First, the fields E and B act on free charges and electrical currents by the Lorentz force.
The force per unit volume is given by (see [47, (5.12)]):

f(x, t) = ρE + J × B. (2.2)

• Secondly, the work of the electromagnetic fields per unit volume and unit time is the
power density [47, (6.103)], which in formulas expresses as

H(x, t) = J · E. (2.3)

In electromagnetism, in many applications, it is observed that the vector fields in (2.1)
have the form

E(x, t) =
(

Ek
0 (x) cos(ωt+ ϕk

E)
)

k=1,2,3
,

B(x, t) =
(

Bk
0 (x) cos(ωt+ ϕk

B)
)

k=1,2,3
,

D(x, t) =
(

Dk
0 (x) cos(ωt+ ϕk

D)
)

k=1,2,3
,

H(x, t) =
(

Bk
0 (x) cos(ωt+ ϕk

H)
)

k=1,2,3
,

J(x, t) =
(

Jk
0 (x) cos(ωt+ ϕk

J)
)

k=1,2,3
.
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Often the complex phasors

Ẽ(x) =
(

Ek
0 (x) eiωϕk

E

)

k=1,2,3
,

B̃(x) =
(

Bk
0 (x) eiωϕk

B

)

k=1,2,3
,

D̃(x) =
(

Dk
0 (x) eiωϕk

D

)

k=1,2,3
,

H̃(x) =
(

Hk
0 (x) eiωϕk

H

)

k=1,2,3
,

J̃(x) =
(

Jk
0 (x) eiωϕk

J

)

k=1,2,3
,

are used to rewrite (2.1) into a system of equations for complex functions without time-
differentiation:

∇ × Ẽ = −iω B̃ , ∇ · D̃ = ρ ,

∇ × H̃ = J̃ + iωD̃ , ∇ · B̃ = 0.
(2.4)

The real physical fields, which are time-dependent, can be uniquely recovered from the
complex but time-independent phasors via the formula E(x, t) = Re

(

Ẽ(x) · eiωt
)

. We do

not distinguish between E(x, t) and Ẽ(x) in the following.
For a variety of materials, including biological tissue, the vector fields E, D, B and H

and J are connected by simple constitutive equations. In these linear media, the following
material relations obtain:

J = σE . D = εE , B = µH , (2.5)

through which the material parameters σ = σ(x, t), ε = ε(x, t) and µ = µ(x, t) are defined.
These are in general matrix-valued functions, depending on space and time.

For biological tissue, the parameters conductivity and permittivity parameters have
been investigated thoroughly [31, 91]. These parameters are considered mostly as scalar,
although rarely also anisotropy is investigated. A salient feature of the electrical parameters
in tissue is their dispersion: That is, σ = σ(x, ω) and ε = ε(x, ω) are functions of the
frequency ω of the electrical field, respectively [31, 91]. However, as already stated above,
this feature is mostly neglected, since the experiments usually operate in a fixed frequency
regime.

In biological tissue the electrical conductivity σ varies from 10−4 to 102 S/m. The
permittivity ε and the permeability µ are always scalar multiples of the fundamental
constants ε0 ≈ 8, 9 · 10−12 F/m, µ0 ≈ 1, 3 · 10−6 H/m, respectively (see [47, Tab. A.3]).
Moreover, in biological tissue, the ratio ε/ε0 is between 10 and 108 [31]. Permeability is
usually regarded as a constant [107, p. 151]. In the rest of the article, we assume that
µ = µ0.

For the introduction of potential functions, we consider the following two equations of
Maxwell’s system (2.4):

∇ · B = 0 , ∇ × E = −iωB . (2.6)

Note, that we identified E, B and Ẽ, B̃, respectively. The first equation already guarantees
that there exist a vector potential A satisfying

B = ∇ × A . (2.7)

Consequently, by using (2.7) in the second equation of (2.6), it follows there also exists a
scalar potential u, such that

E = −iωA − ∇u. (2.8)
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Through (2.8), the scalar potential u is determined by the observable field E up to an additive
constant. Similarly, the vector potential A is not uniquely determined by the observable
field B in (2.7). In fact, one is free to choose ∇ · A (see [10, Thm. in 1.16]), e.g.

∇ · A = 0. (2.9)

By choosing a particular constant for u and requiring (2.9), the two equations in (2.6) are
equivalent to (2.7) and (2.8). – The requirement (2.9) is called Coulomb’s gauge [47, 6.3],
and we will use it in the rest of the article.

2.2. Approximations for lower frequencies

In the following we restrict attention to linear media, such as biological tissue. In
mathematical terms this means that (2.5) are satisfied.

Quasistatic approximation: We consider the third equation in (2.4), which is called the
Ampère-Maxwell law. For linear media, it reads

∇ ×
(

1

µ0
B

)

= σE + iωεE.

If ω satisfies
ω ≪ σ/ε, (2.10)

one can neglect the term iωεE (because it is small compared with σE). We replace it with
the classical version of Ampère’s law,

∇ ×
(

1

µ0
B

)

= J. (2.11)

Using (2.11) together with the other three equations in (2.4), we get the following quasistatic
approximation to Maxwell’s equations:

∇ × E = −iωµ0 H, ∇ · (εE) = ρ ,

∇ ×
(

1

µ0
B

)

= σE, ∇ · B = 0 .
(2.12)

The quantities J := σE and B appearing in (2.12) are related by the Biot-Savart law
of Magnetostatics [47, 5.3]:

B(x) =
µ0

4π

∫

R3

J(y) × x − y

|x − y|3 d
3y, x ∈ R3 . (2.13)

This law determines the magnetic field which is generated by a current density J. It is
derived from the third and forth equation in (2.12), i.e. Ampère’s law and ∇ · B = 0 (see
for example [68, 5.1]). – Similarly, one can determine the vector potential corresponding to
B (with Coulomb gauge) as

A(x) =
µ0

4π

∫

R3

J(y)

|x − y|d
3y. (2.14)

Certain dispersion models for σ and ε, like [31], suggest that the quasistatic condition
(2.10) holds for a wide range of tissue types even at frequencies about 1 − 2 MHz. Note,
however, that the available data on σ and ε have been obtained using in vitro measurements.

At present, condition (2.10) is often also assumed because it simplifies the subsequent
inverse problem of determining σ. Whether the displacement current should be taken into
the model or not depends on the specific application and the available data on σ and ε. For
frequencies about 1 kHz, simulation studies have been conducted using a head resp. spine
model [27, 102], in order to decide whether ωεE can be neglected. To the knowledge of
the authors, there are at present no studies for higher frequencies, though further empirical
and numerical research is necessary to determine the validity of the quasistatic regime in
conductivity imaging.
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Electrostatic approximation: We consider the first equation in (2.4), also called Faraday’s
law. In linear media, it reads

∇ × E = −iωB. (2.15)

It can be shown by a dimensional analysis (see [23, A.2]) that if

√
ωµ0σ ≪ R, (2.16)

where R denotes a reference length of x, then Faraday’s law can be replaced by the
electrostatic equation ∇ × E = 0. From the latter equation, in turn, it follows that the
electrical field can be represented as a gradient field, i.e.,

E = −∇u. (2.17)

The electrostatic representation (2.17) is inserted into the complex time harmonic
Ampère-Maxwell equation ∇ × H = σE + iωεE from (2.4). Taking the divergence, one
gets

∇ · (κ∇u) = 0. (2.18)

Here, the quantity
κ(x, ω) = σ(x, ω) + iω ε(x, ω) (2.19)

is called complex conductivity and is measured in S/m as well.

Often, though, one combines the quasistatic with the electrostatic approximation: If
we apply the divergence to J in the quasistatic version of Ampère’s law (2.11), this yields
the real-valued elliptical equation in (1.1),

∇ · J
(2.5)
= −∇ ·σE

(2.17)
= −∇ · (σ∇u) = 0. (2.20)

We use later that in the quasistatic case, the magnetic field generated by the current J = σE

is given by the law of Biot-Savart (2.13). Similarly, the vector potential generated by J can
be calculated by (2.14).

Experiments suggest that for ω larger than 1 MHz, the electrostatic simplifications are
not valid anymore and it is reasonable to use a more accurate model like the quasistatic
approximation or the whole set of Maxwell’s equations [96].

2.3. A reduced eddy current model

In this section we derive a simplified mathematical model of the full Maxwell equations
(2.4) resp. the quasistatic Maxwell equations (2.12). Such a model was developed in [34]
to describe eddy currents in biological tissues (see also [29]), with the prime goal for
improvement of induced current electrical impedance tomography (ICEIT).

Ω

F

Figure 2: The coil
domain
F ⊃ supp(Ji).
which is disjoint
from the domain
of the conducting
specimen, Ω

Here, we assume knowledge of a current distribution Ji with compact support in a set
F , where F is a bounded domain outside the conducting material in the domain Ω. For
instance in ICEIT, Ji is the excitation current, and F is the domain of the excitation coil.

We start from the time-harmonic Maxwell equations (2.4) in the source-free case ρ = 0.
These are simplified below. With an imposed current density Ji, the equations read as
follows

∇ × E = −iωµ0 H, ∇ · (εE) = 0 ,

∇ ×
(

1

µ0
B

)

= κE + Ji, ∇ · B = 0,
(2.21)

where we use the complex conductivity κ as in (2.19).
We separate the electrical field E into primary and secondary components, and describe

those via their potentials (cf. (2.8)):

E = Ep + Es with
Ep = −iωAp

Es = −iωAs − ∇u.
(2.22)
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Here, Ap is the vector potential generated by the imposed current Ji (see (2.14)). Ap is
assumed not to depend on the tissue conductivity. The secondary field As is the vector
potential generated by σE.

For the representation of Ep we do not need a scalar potential, whereas for Es we do.
Indeed, assume that Ep = −iωAp −∇up. Because the permittivity ε is constant in vacuum,
we have ∇ · (εEp) = ε∇ · Ep = 0 (second equation in (2.21)). We use Coulomb’s gauge (2.9)
for Ap, yielding

0 = ∇ · Ep = ∇ · (−iωAp − ∇up) = −iω∇ · Ap − ∇ · ∇up

(2.9)
= −∆up. (2.23)

In the source-free case ρ = 0, the only solutions making physical sense are constant, and
without loss of generality. we can take up ≡ 0 [47, 5.4,6.3]. In particular this means that
Ep is completely determined by the vector potential Ap.

Now for biological tissue, it was observed in [34] that κE ≈ −κ(iωAp +∇u). Therefore
we can work with

Enew := −iωAp − ∇u (2.24)

as an approximation for the electrical field. Using the third equation in (2.21), we have
∇ · (∇×B) = ∇ · J = 0. Consequently, the following condition holds for the scalar potential
u:

∇ · (κ∇u) = −iωAp · ∇κ (2.25)

At the boundary ∂Ω of the conducting region we have κEnew · n = 0, as there is no current
flux through the boundary. This yields the condition

∂nu = −iωAp · (2.26)

at the boundary. Note that in the later applications, the equation (2.3) will only be
considered on a bounded domain Ω. To ensure uniqueness for the problem (2.3), (2.26),
one usually requires a scaling condition for u, e.g.

∫

∂Ω
u dS = 0.

With Ap (calculated from the current Ji) and u, we find the electrical field Enew and
a magnetic field Bnew (from (2.14)), which approximately satisfy (2.21). This has been
checked in numerical simulations [34, A.C], [29] (see also [25]).

For practical simulation and reconstructions, one often restricts oneself to the quasistatic
version of the eddy current model. That is, one neglects the imaginary part in κ and can
therefore work with the real electrical conductivity σ instead. Then one replaces with the
model:

∇ · (σ∇u) = −iωAp · ∇σ (2.27)

As noted in the discussion of the quasistatic condition (2.10), which model is to be
used depends on the specific application and the available empirical data on the material
parameters σ and ε.

2.4. Acoustics

Equations for the acoustic pressure are obtained by linearization from the fundamental
equations of fluid dynamics, which relate the pressure p = p(x, t), the density ρ = ρ(x, t),
and the velocity v = v(x, t) of the fluid, respectively.

Because it is a linearized model the variations of these parameters relative to a ground
state (p0(x), ρ0(x), 0) [64, §64] have to be small to be consistent with reality.

In particular, the standard wave equation

� p :=
1

c2
∂ttp− ∆p = 0, (2.28)
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is derived from the linearized conservation principles for impulses, mass, and a relation
between pressure and density, which read as follows:

ρ0∂tv + ∇p = 0 , (2.29)

∂tρ+ ρ0∇ · v = 0 , (2.30)

p = c2ρ. (2.31)

Here, c = c(x) =
√

∂ρp(ρ0(x)) denotes the speed of sound in fluid dynamics (see [64, § 64]).
Applying the divergence to (2.29) and calculating the time derivative of (2.30), we eliminate
v to get ∆p = ∂ttρ. Substituting the time derivative of (2.31), we obtain the wave equation
(2.28).

In the following, we assume that the fluid is perturbed by electromagnetic fields, causing
the Lorentz force (2.2) and Joule heating (2.3). We incorporate these effects into the
equations for the ultrasound pressure p. We first observe that the Lorentz force density
f enters as a source term into the balance equation for the impulse (2.29), and we get

ρ0∂tv + ∇p− f = 0. (2.32)

Secondly, the linearized expansion equation, describes the relation between the energy
absorption, described by the power density function H, and the pressure

∂tp = ΓH + c2∂tρ . (2.33)

Here Γ is the dimensionless Grüneisen parameter. Very frequently it is assumed constant, but
in fact is material dependent, and thus Γ = Γ(x). (2.33) can be derived from thermodynamic
relations and the principle of energy conservation [40, 0.1]. We emphasize that (2.33) is a
generalization of (2.31).

The wave equation with outer force and energy absorption is now derived from (2.32),
(2.33) and the mass conservation principle (2.30). We arrive at the following inhomogeneous
wave equation

� p = −∇ · f(x, t) +
Γ

c2
∂tH(x, t) (2.34)

We will use this equation with f(x, t) = δ(t)φ(x) and H(x, t) = δ(t)ψ(x) in sections 4.2.1
and 4.2.3.

Remark 1. By Duhamel’s principle (see [30, p. 81]), the solution of

� p = δ(t)φ(x) + ∂tδ(t)ψ(x) , (2.35)

where δ is the δ-distribution, is the sum of the solutions of the inhomogeneous wave equations

�P1(x, t) = 0
P1(x, 0) = 0

∂t P1(x, 0) = φ(x) ,

�P2(x, t) = 0
P2(x, 0) = ψ(x)

∂t P2(x, 0) = 0 ,
(2.36)

respectively.

3. MRI imaging

General comments and modeling of MRI

Magnetic Resonance Imaging (MRI) is frequently used as the basis for coupled Physics
imaging.

Since the modeling of MRI is not so common in Inverse Problems, it is reviewed here:
MRI visualizes the nuclear magnetization M = M(x, t) resulting from selectively induced
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magnetic fields B = B(x, t). These two quantities are related by the simplified Bloch
equation‡

∂tM = γM × B. (3.1)

Here γ denotes the gyromagnetic ratio specific to a proton. For instance, for hydrogen one
has γ = 4.6 · 107 T−1s−1. (T ... Tesla)

For a stationary magnetic field in z-axis direction, B(x, t) = B(x) = (0, 0, B(x)),
the solution of the simplified Bloch equation with initial data M(x, 0) = M0(x) is given
by [37, 2.3.2]

M(x, t) =





Mx
0 cos(−γB(x)t) −My

0 sin(−γB(x)t)
Mx

0 sin(−γB(x)t) +My
0 cos(−γB(x)t)

Mz
0



 . (3.2)

This identity shows the rotation of the magnetization M around the z-axis when applying
the stationary magnetic field (0, 0, B(x)). The quantity

ω(x) = −γB(x) (3.3)

is called the Larmor frequency, and is an essential ingredient for MRI.
We explicitly introduce two particular magnetic fields and their Larmor frequency:

• For the static field
B0 := (0, 0, B0), (3.4)

the Larmor frequency is denoted by

ω0 := −γB0. (3.5)

For the case of hydrogen, and with |B0| = 1.5 T, one has |ω0| = 63.9 MHz.

• By a gradient field corresponding to the vector G we mean the field

BG(x) := (0, 0,G · x). (3.6)

If BG is applied along with B0, the Larmor frequency is ω(x) = ω0 − γG · x.

Let now B(x, t) = B(x) be a static magnetic field and M(x, t) the resulting
magnetization due to (3.1). The MRI signal is collected from voltage measurements of
a detector coil.

It is known that the voltage V (t) received in a detector coil satisfies

V (t) ∝
∫

M(x, t) · Brec(x)d3x,

where Brec is the Biot-Savart-field (2.13) corresponding to a unit current in the detection
coil [37, 7.2].

Let us assume that Brec = (r cos(θB), r sin(θB), 0). Then using (3.2) and trigonometric
identities, one finds that the voltage is

V (t) = K

∫

M0 sin(ω(x)t+ θB − φ0)d3x.

Here, M0(x) and φ0(x) are the polar coordinates of the transverse magnetization in the
complex representation

M0e
iφ0 = Mx

0 + iMy
0 .

‡ We restrict our discussion to the influence of B on the precessional motion of M. More adequately, the
motion of M depends on the material-specific relaxation paramters T1, T2 [37, 4.4]. For the discussion
of hybrid techniques, it suffices to study the simplified Bloch equation, and subsequently, the simplified
MRI signal in (3.7).
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B0

B1

BGz

BGy

BGx

Figure 3: Time shape of a pulse sequence with three different gradient fields BGx , BGy , BGz . The signal
is measured during application of BGx .

Here, the terms on the right hand side are the x- and y-components of the magnetization
vector M0 = (Mx

0 ,M
y
0 ,M

z
0 ).

In a signal analyzing step, one multiplies this voltage with the reference fields sin(ω0 t)
and cos(ω0 t) respectively. After filtering, ond finds the real and complex part of the following
quantity (up to a fixed complex proportionality factor K):

S(t) =

∫

R3

M0(x)eiφ0(x)eiω(x)td3x. (3.7)

S(t) will be referred to as the MRI signal [37, 23.7].
For MRI imaging, we need only the expression for the signal for the case of a a static

field B(x) as in (3.7), because the signal is only measured while a static field is applied (see
figure 3).

The signal S(t) depends both on ω(x) as well as on M. In actual experiments in MRI,
both quantities are varied to collect data.

Experiment:

In magnetic resonance imaging experiments one applies different fields B in order to vary
ω(x) and M, such that sufficient data of S(t) can be collected to image the interior of the
specimen. In a general pulse sequence of MRI is a superposition of three magnetic fields,
B0, B1, BG,

B(x, t) = B0(x) + B1(x, t) + BG(x, t) . (3.8)

B0 and BG are as in (3.5) and (3.6), respectively. Moreover, B1 =
(B1(t) cos(ω1t), B1(t) sin(ω1t), 0) is a radio-frequency field. The time-shapes of the applied
fields are depicted in figure 3.

The field B1 is responsible for creating a nontrivial M0 as initial data: At every point
where the resonance condition

ω1 = ω(x) (3.9)

holds, the magnetization vector is flipped away from the z-axis about a certain angle, and
inconsequence, a non-zero transverse magnetization M0e

iφ0 results.
Gradient fields with different vectors G are induced at different time (see figure 3).

Applying BGz with Gz = (0, 0, Gz) during the radio-frequency field, the resonance condition
(3.9) is restricted to a small slice around the plane z = 0 (and only there M0 6= 0). Every
signal (3.7) recorded subsequently can be approximated by a 2D integral (cf. [37, (10.34)]).

One applies BGy with Gy = (0, Gy, 0) between the radio-frequency pulse and the
measurement for a certain time t′. At this time, the Larmor frequency changes to



Hybrid tomography for conductivity imaging 11

ω(x) = ω0 + Gyy. Afterwards, the phase of the transverse magnetization has changed
from φ0 to φ0 + t′Gyy.

Now after making these preparations, measurements are taken and the signal (3.7) is
recorded. During the measurements, though, a gradient field BGz with Gx = (Gx, 0, 0) is
applied, which changes the Larmor frequency in (3.7) to ω(x) = ω0 +Gxx.

The upshot of applying these three types of gradient fields is that one can modify φ0

and ω(x) in (3.7), such that one has access to the data

D(tGx, t
′Gy) =

∫

R2

M0(x, y, 0)eiφ0eiγ(tGxx+t′Gyy)d(x, y). (3.10)

Introducing the 2D vector k = (tGx, t
′Gy), (3.10) is just the 2D-Fourier transform with

respect to k of the transverse magnetization M0(x, y, 0)eiφ0 , sampled at the frequency vector
k. By repeating the pulse sequence and varying (Gx, Gy), and thus k, one collects data in
the frequency regime from the Fourier transform of M0(x, y, 0)eiφ0 ,

∫

R2

M0(x, y, 0)eiφ0eik · xd(x, y). (3.11)

The Fourier transform allows to recover M0(x, y, 0)eiφ0 .

Remark 2. The modeling assumes that the magnetic fields in (3.8) have an ideal shape,
and are not affected by the body tissue, in particular.

In fact, the radio-frequency field B1 is affected by electrical properties of the tissue. This
effect can be utilized to reconstruct the conductivity σ(x, ω0) using the Larmor frequency
ω0 [50, 51, 111]. – This is one of several examples of imaging the electrical conductivity, or
the current density at the Larmor frequency, using the measurement setup of MRI (for other
approaches see [83,103]).

4. Coupled Physics models for conductivity imaging

In this section we review coupled Physics techniques for imaging the scalar conductivity σ
from (2.5).

4.1. Magnetic coupling

Here, we discuss two sorts of methods for conductivity imaging based on magnetic coupling.
One set of methods uses coupling of magnetic and electrical phenomena described by
Maxwell’s equations. The other set of methods uses MRI and exploits the influence of
electrical currents on the MRI signal. Both kinds of methods have either contactless
excitation or contactless measurement (or both). The latter is a practical advantage in
clinical experiments.

4.1.1. Magnetic resonance-EIT (MREIT) / Current density impedance imaging (CDII):
In MREIT and CDII, respectively, one perturbs the MRI signals by injecting an electrical
current.

Experiment: The measurement setup consists of an MRI machine and, additionally,
electrodes on the surface of the specimen (within the MR machine). The MRI pulse
sequences are performed, and an electrical current is injected for a short period, before
the induction measurement. The injection perturbs the Larmor frequency and leads to a
change in the nuclear magnetization, which alters the MRI signal. In CDII, in addition, the
experiment is repeated with the probe rotated relative to the MRI machine.



Hybrid tomography for conductivity imaging 12

Mathematical modeling: The mathematical modeling of these two imaging techniques is
very similar to the modeling of MRI in section 3. The difference is that the injected electrical
currents manifest themselves in an additional magnetic field, namely, the Biot-Savart field
BJ = (Bx

J , B
y
J, B

z
J) from (2.13). This field has to be taken into account in (3.8), in the

mathematical model of MRI. Thus the total magnetic field in MREIT/CDII is given by

B(x, t) = B0 + B1(x, t) + BG(x, t) + BJ(x, t) .

The current J is injected before the induction measurement. As J is a direct current or
has very low frequency, the Biot-Savart field BJ acts like an additional gradient field BGy . As
discussed in section 3, this results in a change of the Larmor frequency, ∆ω = −γ|BJ|, at the
time TJ when the current J is applied. The transverse magnetization therefore accumulates
an additional phase difference ∆φ = γ|BJ|TJ, which in this situation is approximately
γBz

JTJ (see [37, 27.3.6]).
Compared with the signals (3.11) recorded in MRI, the signals in MREIT/CDII reveal a

phase shift. Because in the experiments two currents of opposite sign are applied [93,94,108],
one collects the following data:

S±(kx, ky) =

∫

R2

M0(x, y, 0) eiϕ0 e±iγBz
J

(x,y,0) TJ eik · xd(x, y), (4.1)

Here, ± indicates two currents of opposite signs. Using the inverse Fourier transforms of
(4.1), and denoting

m± = M(x, y, z0) e±iγBz
J

(x,y,z0) TJ , (4.2)

one finds that:

Bz
J(x, y, z0) =

1

2γTJ

Im

(

log

(

m+(x, y, z0)

m−(x, y, z0)

))

, (4.3)

which is the component of BJ in direction of the main magnetic field B0.
Other components of BJ can be obtained by rotating the sample relative to the MRI

machine. Then one determines the current density by Ampère’s law (2.11) applied to
B = BJ, that is, J = 1

µ0

∇ × BJ.

Imaging: BJ and J depend non-linearly on the conductivity σ. Depending on the acquired
MRI data it is common to differ between MREIT, that uses values of Bz, and CDII, where
knowledge of the current density J is assumed. CDII, in order to obtain the three dimensional
vector BJ, requires rotating the probe relative to the MRI-machine three times.

Problem 1 (CDII). For a given domain Ω, representing the domain of the probe to
be imaged, let boundary data f , g be given. Moreover assume that on the whole of Ω,
1

µ0

∇ × BJ = J = −σ∇u, or |J|, respectively, are given, where u and σ are related by

∇ · (σ∇u) = 0 in Ω ⊂ R3

u = f on ∂Ω

σ ∂nu = g on ∂Ω.

(4.4)

The imaging problem consists in determining σ.

Problem 2 (MREIT). Let boundary data f , g be given. Let σ and u be related by (4.4).
The imaging problem consists in determining σ from BJ, which is related to σ and u via the
Biot-Savart relation (2.13),

BJ(x) = −µ0

4π

∫

R3

σ(y)∇u(y) × x − y

|x − y|3 d
3y .

MREIT/CDII have been suggested in the late 1980ies [92]. Since then, efficient
algorithms have been developed for solving the two problems. There also exist a variety
of experimental biomedical studies [94, 108]. In practice, the experiments are repeated at
least two times with different boundary data, which provides more independent information
on σ.
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Mathematics of MREIT and CDII:

For CDII, many uniqueness and stability results have been obtained:

• Let |J1|, |J2| and corresponding Neumann data σ ∂nu = gi, i = 1, 2 be given,
where the currents satisfy J1 ∦ J2 everywhere in Ω. Then, σ can be recovered
uniquely [53,54,63].

• For two given vector-valued current densities, there exists an analytical
reconstruction formula, which determines σ up to a multiplicative constant [41,67].

• With one current density vector J and Dirichlet data u|∂Ω given, unique recovery
of σ for the two-dimensional version of problem 1 is guaranteed [62].

• Recently, it was observed that the absolute value of one current, |J|, and Dirichlet
data [79,80] are sufficient for recovering σ. These uniqueness results for CDII have
been proven by interpreting level sets of u as minimal surfaces or by exploiting an
energy-minizing property of u [78–81]. They require u to be free of singularities.
Stability results of the |J| based reconstruction have been given by [78,82].

For MREIT:

• Uniqueness and stability results for MREIT are given in special cases by [71,72].
• Various numerical algorithms have been developed, which reconstruct σ using Bz

Ji

and Neumann data gi, i ≥ 2. For an overview, see [94, Sec. 3].

4.1.2. Magnetic detection impedance tomography (MDEIT): MDEIT uses magnetic
boundary detection to recover currents and conductivity inside the tissue.

Experiment: The equipment are electrodes to inject currents and several coils to record
the magnetic field. A current is injected into the probe and the strength of the magnetic
field is measured by detector coils at different positions of the boundary. This technique is
discussed in [46,55] and for practical applications see [73].

Mathematical modeling: The mathematical model is the electrostatic model, ∇ · (σ∇u) = 0
from (2.20), which relates the electrical potential u and the conductivity σ. Neumann
boundary conditions are given by the injected currents. The Biot-Savart law (2.13) provides
the relation between J = −σ∇u and the magnetic field B measured by the detector coils.

Imaging: The imaging problem can be decomposed into two subproblems. In the first part,
one reconstructs the current density J inside Ω from measurements of B at the boundary ∂Ω.
In the second part, one faces exactly the same problem as in CDII, namely to reconstruct σ
from interior data of J (problem 2).

The inverse problem in the first step is a linear one: to recover J given the Biot-Savart
law. We can restrict ourselves to current densities satisfying ∇ · J = 0, see (2.20).

Problem 3 (Inverse problem MDEIT, first step). Determine J|Ω from B|∂Ω using the Biot-
Savart relation

B(x) =
µ0

4π

∫

R3

J(y) × x − y

|x − y|3 d
3y, x ∈ R3, (4.5)

taking into account that ∇ · J = 0.

The second problem is analogous to CDII (problem 2):

Problem 4 (Inverse problem MDEIT, second step). Let be given data f and g on ∂Ω.
Determine σ from J = −σ∇u, which are related by (4.4).

Mathematical analysis: The mathematical investigations relating to the linear problem 3
concern uniqueness issues and development of numerical algorithms. The kernel of the Biot-
Savart operator, has been investigated in [42,55]. Uniqueness in the reconstruction problem
has been shown for particular cases, such as directed currents in layered media [42, 55, 87].
Different regularization methods have been applied to solve problem 3, and tested using real
and simulated data [43,46].
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4.1.3. EIT with induced currents (ICEIT) ICEIT excites currents by magnetic induction
and generates a voltage, which is measurable at the boundary of the probe.

Experiment: For the experiments, one uses coils and electrodes. A time harmonic current
is produced in the excitation coil and eddy currents are induced in the tissue. The voltages
are detected at the boundary of the probe [34,112].

Modeling: We recall the setting of the reduced eddy current model in section 2.3, referring
to figure 2. The excitation coil lies in a domain F where the excitation current Ji is
supported. The conducting tissue is in the domain Ω, disjoint from F .

In (2.24), we have introduced a reduced version of the electrical field as

E = −iωAp − ∇u,

where Ap is the primary vector potential generated by the excitation current Ji (see (2.14)).
The scalar potential is governed by (2.27) with boundary condition E · n = 0 on ∂Ω. To
ensure a unique solution, we require that

∫

∂Ω
udS = 0. This gives the description of the

eddy currents inside the tissue.
The measurement data consist of (finitely many) line integrals

∫ x2

x1

E · dl. Because the

determinatino of Ap via (2.14) does not depend on inhomogeneities of σ, one obtains line
integrals of ∇u, which are potential differences. As in classical EIT, these correspond
approximately to knowledge of Dirichlet data u|∂Ω, if one chooses a voltage reference. For
this, we assume

∫

∂Ω
u dS = 0.

Imaging: The imaging problem in ICEIT is an inverse boundary value problem:

Problem 5 (Inverse problem ICEIT). Let (σ, u) satisfy

∇ · (σ∇u) = −iωAp · ∇σ in Ω

∂nu = −iωAp · n on ∂Ω
∫

∂Ω

u dS = 0.

(4.6)

Given are boundary data u|∂Ω and the primary potential Ap|Ω in Ω, which is related to the
excitation current Ji on R2 by

Ap(x) =
µ0

4π

∫

R2

Ji(y)

|x − y|d
3y. (4.7)

Determine σ.

Mathematics and Numerics: ICEIT has been investigated numerically: Different
regularization procedures have been applied, e.g., in [34,112].

4.1.4. Magnetic induction tomography (MIT): In MIT, eddy currents are induced, and the
resulting magnetic fields are measured at the boundary.

Experiment: The measurement equipment consists of coils placed at the boundary of the
conducting tissue. Electrical currents in the coils induces eddy currents in the tissue. These
currents generate a secondary magnetic field, which is measured by detection coils [36, 97],
outside of the probe.
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Modelling: The mathematical model is based on the reduced eddy current model (2.21) in
section 2.3, as in the previous section.

By (2.24), the electrical field is represented as E = −iωAp − ∇u, where Ap is the
primary vector potential, generated by the excitation current Ji (see (2.14)). The scalar
potential u is determined by (2.27).

The signal recorded in a detection coil is the electrical voltage induced by E|Ω. Special
types of detectors can be constructed, which are not influenced by the primary excitation
field Ep = −iωAp, but only by the reaction field [36]. As in (2.22), the electrical reaction
field is Es = −iωAs − ∇u, where As is the vector potential generated by the current σE

(see also [29, (25)]).
The measured voltage in a coil with surface C is then

v =

∮

∂C

Es · dl =

∫

C

n · (∇ × Es) = −iω
∫

C

n · Bs .

In the last equation, we have applied Faraday’s law (2.15) to E = Es and B = Bs. Bs is
the magnetic field generated by the current current

σE|Ω = −iσωAp − σ∇u ,

see (2.13).

Imaging: The reconstruction problem of MIT is as follows:

Problem 6 (Inverse problem MIT). Let Ap be the vector potential generated by the
excitation current Ji, given by (4.7). Let u satisfy the Poisson equation (4.6) with parameter
σ.

The given data are different voltage measurements

Vk =

∫

Ck

n · Bs

acquired with detector coils on the surface Ck. Here, Bs is function of σ, u and Ap as

Bs(x) = −µ0

4π

∫

Ω

σ (iωAp(y) + ∇u(y)) × x − y

|x − y|3 d
3y, x ∈ R3. (4.8)

The imaging problem consists in determining σ.

Eddy current imaging techniques play an important role for non-destructive evaluation
in industry [100]. Actually, magnetic induction tomography has been developed for industrial
non destructive evaluation and geological surveying [19, 77, 86]. For these application the
reduced model of magnetic induction is not valid. However, also biomedical applications
of MIT have been proposed later and the reduced model is now in general use. But MIT
does not provide high resolution [36]. The primary importance of biomedical MIT is for
contactless monitoring of physiological processes such as respiration [97]. However, it was
observed recently that coupling MIT with ICEIT (sect. 4.1.3 and classical EIT leads to
better resolution of the corresponding linearized inverse problem [35].

4.1.5. MREIT with magnetic induction (ICMREIT) / Current density impedance imaging
with magnetic induction (CDII-MI): In ICMREIT and CDII-MI, one perturbs the MRI
signals by an electrical current, which is produced by magnetic induction.

Experiment: The measurement apparatus is an MRI machine with one or more coils for
inducing eddy currents in the probe. MRI pulse sequences are performed. Additionally,
eddy currents are produced before the induction measurement, and the perturbation of the
MRI signal is recorded.

The technique has been first proposed in [84].
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Modeling: The modeling of these techniques is similar to MREIT/CDII discussed in section
4.1.1, except that we use the reduced eddy current model (2.27) from section 2.3 to model
the electric field.

By (2.24), the eddy current inside the tissue is J = −σ(iωAp+∇u), with Ap determined
as vector potential generated by the impressed current density Ji. This (low frequency) eddy
current generates a magnetic field component BJ as in (4.8).

As discussed in the section 4.1.1 on MREIT/CDII, the signal measured has information
of one component of the magnetic field, as in (4.3); this information is used in ICMREIT.
By rotating the probe, one can obtain the full vector field BJ, which is used in CDII-MI.

Problem 7 (Inverse problem CDII-MI). Let Ap be the vector potential generated by the
excitation current Ji, given by (4.7). Let u satisfy the Poisson equation (4.6) with parameter
σ.

Given are data J = −σ(iωAp + ∇u). Determine σ.

Problem 8 (Inverse problem ICMREIT). Let Ap be the vector potential generated by the
excitation current Ji, given by (4.7). Let u satisfy the Poisson equation (4.6) with parameter
σ.

Given are data Bz
J with BJ, as in (4.8). Determine σ.

Mathematics and Numerics: Algorithms for MREIT/CDII have been adapted for the
numerical solution of these problems. Thereby using measurements involving Bz

J [33,84], or
measurements involving J [72].

4.2. Coupling involving acoustic modalities

Up to now, we have discussed how the conductivity distribution behaves under influence of
electric and magnetic fields. In the last ten years, there have been several proposals to utilize
couplings between electrical and acoustical properties. Ultrasound propagation translates
well from outer measurements to inner quantities of the probe. It has long been used well
for other hybrid techniques such as photo-acoustic imaging. Therefore high resolution can
be expected. We explain the proposals in the following, and draw especially on background
in section 2.4.

4.2.1. Impedance-acoustic tomography (IAT): Impedance-acoustic tomography exploits
Joule heating due to electric currents to produce an ultrasound wave.

Experiments: The measurement equipment are electrodes and ultrasound transducers. The
electrodes are attached to the surface of the tissue, and an electric current is injected into
the tissue. Joule heating results, and the tissue emits an ultrasound wave due to thermal
expansion. Ultrasound transducers record this pressure wave at the surface of the probe or
in a contact medium, e.g. water. The method has been proposed in [32].

Modeling: We use the quantitative description of the ultrasound wave incorporating electric
effects from section 2.4. Since there is no additional outer force f , the relevant wave equation
is

1

c2
∂ttp(x, t) − ∆p(x, t) =

Γ

c2
∂tH,

The model has to be supplied with the initial data p(x, t) = 0 and ∂
∂t
p(x, t) = 0. The

equation can be considered in Rn × (0,∞), if one notes that H has its support in Ω.
We assume that H(x, t) = H̄(x)g(t), and that g(t) can be assumed as delta pulse. This

is because the time of the electrical pulse multiplied with the sound speed in the tissue is
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negligible. We therefore obtain an inhomogeneous wave equation as outlined in remark 1 in
section 2.4:

1

c2
∂ttp− ∆p = 0 , (x, t) ∈ Rn × (0,∞) ,

p =
β

Cp

σ|E|2 , (x, t) ∈ Rn × {0} ,

∂tp = 0 , (x, t) ∈ Rn × {0} ,

(4.9)

where σ vanishes outside the domain Ω.
The power density H can be related to the conductivity with Joule’s law (2.3), that is,

H = J · E = σ|E|2, (4.10)

with unit W/m3, quantifying the energy converted per unit volume and unit time. The
power density H is the intermediate link between the electrical excitation and the acoustical
detection, and it appears in the wave equation as a source term.

Imaging: Recovery of the initial pressure from boundary data is a long-established
technique. Reconstruction is possible with different measurement geometries, and it has
been mainly developed for photo-acoustic tomography, a hybrid technique combining laser
excitation and ultrasound detection [59,69].

If we assume that the quantities β and Cp are constants, then this gives knowledge of
the power density σ|E|2.

The second step is the reconstruction of conductivity from the interior data σ|E|2 = J · E

throughout Ω. Obviously, we have to indicate how the electrical field entering this problem
as initial source state is to be described. Here it makes a difference which kind of frequency
is employed.

In the electrostatic case of impedance-acoustic tomography [32], we can use the
approximation (1.1) known from classical impedance tomography, including Dirichlet data.
Then we end up with the following inverse problem with interior data:

Problem 9 (IAT, conductivity reconstruction). Let

∇ · (σ∇u) = 0 in Ω ,

u|∂Ω = f on ∂Ω ,

σ ∂nu = g on ∂Ω .

Given are f , g, as well as interior data H = σ|∇u|2. Determine the conductivity σ from
these.

Mathematical analysis: Unique recovery of σ was shown in [22] for the two-dimensional
version of problem 9, using H11, H12, H22 for Hij = σ∇u1 · ∇u2. (The term H12 can
be obtained using σ|∇u1|2, σ|∇u1|2, σ|∇(u1 + u2)|2 by polarization.) This result was
generalized in [14] to three dimensions, using multiple measurement data to guarantee unique
global reconstruction. Reconstruction of σ using one power density H = σ|∇u|2, based on

the nonlinear PDE ∇ · (H ∇u

|∇u|2
) = 0 was investigated in [12]. Numerical reconstruction

procedures have been applied to simulated data in [22,32,58]. The stability result from [60]
applies to reconstructions of σ from two or more power densities.

4.2.2. Quantitative thermo-acoustic tomography (qTAT): In thermo-acoustic tomography,
one exploits Joule heating due to microwave excitation to produce an ultrasound wave.
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Experiment: The measurement equipment consists of a microwave generator and
ultrasound transducers. Microwaves pulses are generated with a frequency in the GHz range.
They propagate within the tissue sample and energy absorption causes Joule heating. The
tissue reacts with a short expansion wave which is recorded outside the tissue, either on
its surface or in a contact medium such as water. Measurement setups are described, e.g.,
in [69].

Modeling: The general principles of the technique are the same as for impedance-acoustic
tomography, described in section 4.2.1. We use again the inhomogeneous wave equation
(2.36) with f = 0. Assuming that the power density is of the form H(x, t) = H̄(x)g(t) with
g(t) = δ(t) a delta pulse. Therefore, we arrive at the same wave equation (4.9) with initial
pressure H̄(x) = J(x) · E(x) = σ(x)|E(x)|2.

A high-frequency description is necessary for modelling the oscillating field E evoked by
microwaves. Here one starts from the time derivative of the Ampère-Maxwell law in (2.1),

∇ × ∂tB = µ0∂tJ + µ0∂ttD − S,

and couples it with Faraday’s law ∂tB = −∇ × E to get the radiation equation

εµ0∂ttE + σµ0∂tE + ∇ × ∇ × E = S, (4.11)

Here, S is a known term, representing the induced electromagnetic field of the excitation. –
By vector analysis identities, (4.12) is equivalent with

εµ0∂ttE + σµ0∂tE + ∇(∇ · E) − ∆E = S, (4.12)

where ∆ is the Laplace operator applied component-wise.

Imaging: The initial pressure distribution can be obtained by acoustic reconstruction
formulas. To calculate the conductivity σ, we have now the quantitative aspect of thermo-
acoustic tomography:

Problem 10 (qTAT). Let

εµ0∂ttE + σµ0∂tE + ∇(∇ · E) − ∆E = S

with known S and constant ε, µ0.
Determine the conductivity σ from knowledge of S and σ|E|2.

In [15], unique recovery of σ from H = σ(x)|E(x)|2 is shown for a class of bounded
conductivity distributions (assuming that ε ≡ const., such that ∇ · E = 0 by the second
eqn. in (2.1)). Also, the following scalar model is investigated

εµ0∂ttu+ σµ0∂tu− ∆u = S,

which is converted by the Fourier transform into

∆u+ k2u+ ikqu = S.

Here, k = 1√
εµ0ω

is the wave number, and q = −σ
√

µ0

ε
. An exact reconstruction formula

for q in this equation is developed in [8] (also assuming ε is constant).

4.2.3. Magneto-acoustic tomography with magnetic induction (MAT-MI): Magneto-
acoustic tomography exploits the Lorentz force effect to create a pressure wave.
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Experiment: The measurement equipment consists of an excitation coil, a static magnet
and ultrasound transducers. While the tissue is kept in the static magnetic field, electrical
pulses in the excitation coil induce a eddy currents in the tissue. These, in turn, are affected
by the Lorentz force due to the static field. The force causes the tissue to displace locally,
and a pressure wave results. This wave reaches the boundary, where ultrasound transducers
record the signal, either at the surface of the body or in a contact medium, such as water.

Experimental setups with different arrangements of induction coils are documented
in [44,109].

Mathematical modeling: We model the ultrasound wave motion with the wave equation
with outer force f . Applying (2.2) with vanishing charge density ρ = 0 to the static field
B = B0, we obtain the expression for the Lorentz force density f = J × B0 (see also [88]).
Following the discussion in section 2.4, the quantitative description of the acoustic wave is
governed by

1

c2
∂ttp(x, t) − ∆p(x, t) = −∇ · (J × B0) +

Γ

c2
∂tH,

where H quantifies the absorbed energy due to eddy currents. Notwithstanding, the energy
absorption effect can be ignored in the experiments of [109]. There, magnetic induction is
used for excitation of electrical currents, and this entails smaller field strengths. Considering
the usual scale of conductivity in biological tissue, the pressure due to the thermo-acoustic
effect can be neglected compared with pressure due to Lorentz force§ (see also [109, p. 5179]).

Therefore the model is

1

c2
∂ttp(x, t) − ∆p(x, t) = −∇ · (J × B0), (4.13)

together with the initial and boundary conditions

p(0) = 0, ∂tp(0) = 0. (4.14)

We assume that the time- and space variables can be separated. The inhomogeneity f

is therefore ∇ · f(x)g(t), where f is the force density −J × B0 = −σ(x)E(x) × B0(x). Due
to the different frequency ranges of the electrical and the acoustical pulse, we assume again
that g is a delta distribution. According to Duhamel’s principle (2.36), the inhomogeneous
problem (4.13) and (4.14) can be converted to a Cauchy problem for the homogeneous wave
equation [7, 9]:

1

c2
∂ttp− ∆p = 0 (x, t) ∈ Ω × (0,∞)

p = 0 x ∈ ∂Ω

∂tp = −∇ · (σE × B0) t = 0

p = 0 t = 0.

(4.15)

Imaging: The first step of the reconstruction of the source term ∇ · (σE×B0). In contrast
to the techniques of impedance-acoustic tomography and thermo-acoustic tomography, we
now look for the initial velocity of the pressure, which can be recovered as well.

As quantitative problem, it remains to recover the distribution of the conductivity σ
over Ω. For this purpose, one has to describe the electrical field E. For this, we use the
eddy current model (2.27) discussed in section 2.3, adapted here for the pulsed excitation
current (see also [70]). Therefore, the hybrid imaging problem is

§ Y. Xu, personal communication
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Problem 11 (Inverse problem MAT-MI). Let

∇ · (σ∇u) = −∂tAp · ∇σ in Ω

∂nu = −∂tAp · n on ∂Ω
∫

∂Ω

u dS = 0.

The vector potential Ap|Ω on R3 is determined from the excitation current current Ji|F by

Ap(x, t) =
µ0

4π

∫

R2

Ji(y, t)

|x − y| d
3y.

Given are B0 and ∇ · (σ(∂tAp + ∇u) × B0), from which to determine σ.

4.2.4. Magneto-acoustic-electrical tomography (MAET): In MAET, pressure waves excite
the tissue, and a voltage is produced due to the Lorentz force effect.

Experiment: The measurement equipment in MAET consists of a permanent magnet, a
waveform generator, and of electrodes to measure the voltage at the boundary. The sample
is put into the static magnetic field, and expopsed to different ultrasound waves. Due to
frictional forces, the ions in the tissue move. As there is a magnetic field present, the electrical
charges separate by the Lorentz force mechanism. A voltage results, which is detected on
the surface of the probe. – The experiment is repeated with different arrangements of the
static field.

The physical effect underlying this technique has been studied in [76, 104], further
imaging experiments have been reported in [39].

Modeling: To model MAET, we follow the approach in [61]. We assume that the static
magnetic field B in the experiments is homogeneous, that is, B(x) = B. The Lorentz force
exerted upon the moving particles gives rise to an impressed current density JL which is
approximately [61,76]

JL(x, t) = σ(x)B × v(x, t),

where v is the velocity field of the fluid.
For each time t the electrical field inside the domain Ω is described by an electrical

potential, E(x, t) = −∇u(x, t). In absence of any other free charges, the potentials can be
described by the conditions ∇ · J = 0 and J · n = 0 for the total current J = −σ∇u + JL,
that is

∇ · (σ∇u) = −∇ · (σB × v), x in Ω

∂nu = −(B × v) · n, x on ∂Ω
(4.16)

The voltage measured at the boundary gives knowledge of u(x, t)|∂Ω. One can also
assume that only a weighted average of u is known, that is

M(t) =

∫

∂Ω

I(x)u(x, t)dS(x). (4.17)

Mathematical analysis: Using identities from vector analysis, it can be shown that the
measurements in (4.17) are

M(t) = −B ·
∫

Ω

JI × v d3x , (4.18)

with the current density JI(x) = −σ∇uI(x) satisfying the electrostatic equation

∇ · (σ∇uI) = 0, x in Ω

σ∂nuI = I(x), x on ∂Ω.
(4.19)

The inverse problem is



Hybrid tomography for conductivity imaging 21

Problem 12 (MAET). Let uI satisfy (4.19). Determine σ from knowledge of M(t) in
(4.18), by possibly varying B, I, and v.

Reconstructions for the case of general acoustic waves have been given in [61]. The
procedure leads to knowledge of several vector valued current densities JI , which in the last
step are converted to σ. This is a problem of current density impedance imaging (CDII),
discussed in section 4.1.1. Reconstructions for the case of focused ultrasound excitation are
given in [7].

4.2.5. Acousto-electrical tomography (AET): An EIT experiment is performed and, in
addition, the conductivity values are perturbed via ultrasound excitation in parallel.

Experiment: For the measurements, one needs the typical EIT electrode setup and a device
to produce ultrasound waves to excite the probe. The standard EIT measurement protocol
is performed. For the perturbation of the conductivity, a set of various ultrasound waves
is applied. The boundary voltages due to the perturbation are then compared with the
standard voltages.

The method was proposed in [110]. The underlying physical effect is treated in [66].

Modeling: The standard electrostatic equation from (2.20) is used to model the electrical
potential u,

∇ · (σ∇u) = 0 in Ω

σ ∂nu = g on ∂Ω.

We now assume that the probe is excited by focused ultrasound beams. Therefore, the
conductivity (which depends on the pressure), is perturbed in a domain D = z + δB, where
B is the unit disc and z is the center of focus. The perturbed conductivity is denoted σδ

z;
the new potential uδ is therefore described by

∇ · (σδ
z∇uδ

z) = 0 in Ω

σδ
z ∂nu

δ
z = g on ∂Ω.

As measurement data, we have the difference of the measured voltages at the boundary, i.e.
uδ − u|∂Ω.

Mathematical analysis: It is shown in [5], that for δ → 0, one has the asymptotic formula

∫

∂Ω

(uδ − u) g dS = |∇u(z)|2
∫

D

σ(y)
(η(y) − 1)2

η(y) + 1
d3y + o(vol(D)).

Here, η is a known function in Ω.
From this formulation, one notices that the measurement data give knowledge of the

power density at z, σ(z)|∇u(z)|2, up to a small error.

Imaging: The inverse problem is to recover the conductivity σ from the interior information
σ|∇u|. This problem is identical with problem 9 of impedance-acoustic tomography.

Problem 13 (AET, conductivity determination). Let

∇ · (σ∇u) = 0 in Ω

u|∂Ω = f on ∂Ω

σ ∂nu = g on ∂Ω.

Given are f , g, as well as interior data H = σ|∇u|2. Determine σ.
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Mathematical analysis: In the modeling of AET, we have assumed that σδ
z − σ are

approximately delta-distributions. But this restriction can be overcome and other more
practical forms of ultrasound perturbation (such as plane waves, e.g.) can be used [57], [58,
Section 2].

For this we consider

Lσ(f)(y) =

∫

Ω

k(x,y)f(x) d3x

where Lσ maps an increment f = dσ of conductivity to the corresponding perturbation
Lσf in the boundary voltage. As perfect focusing of ultrasound waves correspond to δ-
distributions f , and this would correspond to simple evaluation of the kernel k(x, y). It
is more realistic that ultrasound waves of other, unfocused type, trigger the corresponding
conductivity changes, proportional to the pressure. So, the intermediate step (synthetic
focusing) corresponds to finding the values of the kernel k(x, y) by measurements of

∫

Ω

k(x,y)wα(x)d3x

for a particular class of waves wα. Synthetic focusing for spherical waves, plane waves has
been discussed in [57, Section 2]; numerical calculations are performed in [58].

5. Summary

The hybrid imaging techniques and mathematical models discussed above are summarized
in the following tables 4, 5. Those, consist of four columns, summarizing the imaging data,
the overspecified data of the quantitative inverse problem, and the equations of the forward
problems. In mathematical terms, in general, these are inverse problems with interior data.
The table, however, does not summarize unique identifability and unique reconstructability
of the quantitative imaging data. Hybrid models coupling magnetic resonance effects
with current densities are listed in table 4. Some of these, like MREIT/CDII, rely on
the low-frequency description ∇ · (σ∇u) = 0, others use radiofrequency currents, where
the electrostatic approximation is not available and quasistatic approximations are used.
Coupling hybrid techniques with ultrasound modalities are summarized in table 5. They
also range from low-frequency or quasistatic to high-frequency ranges.¶

In addition to coupled Physics (hybrid) techniques with interior information, we also
summarize the standard EIT problem (the Calderón problem) together with techniques
using electromagnetic coupling in several frequency ranges (see tables 3). The corresponding
reconstruction cannot be separated into two imaging problems with interior data.
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¶ Shortly, we also mention some hybrid imaging techniques using other physical parameters, which
nevertheless are formally related to the models using the electrostatic regime, ∇ · (σ∇u) = 0:

In quantitative photoacoustic tomography (qPAT) in the diffusion regime, the diffusivity κ is
reconstructed, while the absorption µ in the elliptic equation ∇ · (κ∇u) + µu = 0 is known.
The imaging data are H = µI [17, 24].

In microwave tomography, the generalization of AET, one recovers the parameters a and q in
∇ · (a∇u) + k2 q u = 0, with a|∇u|2 and q|u| given [6, 9].

In pptoacoustic tomography one also recovers σ in ∇ · (σ∇u) = 0 with σ|∇u|2 given, where σ is the
optical absorption [16].
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Table 3: Electromagnetic variants of the Calderón problem in different frequency ranges.

Technique equation in Ω boundary data remarks

EIT
eqn. (1.1)

∇ ·σ∇u = 0
u
σ ∂nu

IC-EIT
section 4.1.3

∇ · (σ∇u) = −iωA · ∇σ
u
σ ∂nu = −iωA · n

excitation A known

MIT
section 4.1.4

∇ · (σ∇u) = −iωA · ∇σ

∫

C
n · B

σ ∂nu = −iωA · n excitation A known.
B = B(σ, u,A),
C is a coil surface
outside Ω.

MD-EIT
section 4.1.2

B =
∫

J×R
|R|3 B recover J, not σ

Table 4: Coupled Physics models with interioir data, based on MRI.

Technique interior data equation in Ω boundary data remarks
CDII

section 4.1.1
σ∇u or
σ|∇u| ∇ · (σ∇u) = 0 u

MREIT
section 4.1.1

Bz
∇ · (σ∇u) = 0 σ ∂nu Bz = F (σ∇u, σ)

CDII-MI
section 4.1.5

σE ∇ · (σ∇u) = −iωA · ∇σ σ ∂nu = iωA · n excitation A

known
E = −iωA − ∇u

ICMREIT
section 4.1.5

Bz
∇ · (σ∇u) = −iωA · ∇σ σ ∂nu = iωA · n excitation A

known
Bz = F (σ∇u, σ)

Table 5: Coupled Physics models with interior data, based on Ultrasound.

Technique interior data equation in Ω boundary data remarks

IAT
section 4.2.1

σ|∇u|2 ∇ · (σ∇u) = 0 u
σ∂nu

qTAT
section 4.2.2

σ|∇u|2 εµ0∂ttE + σµ0∂tE+
∇ × ∇ × E = S

S|F F ∩ Ω = ∅

MAT-MI
section 4.2.3

∇ · (σE × B0) ∇ · (σ∇u) = −∂tA · ∇σ σ ∂nu = −∂tA · n excitation A

known,
E = −∂tA − ∇u

MAET
section 4.2.4

B ·
∫

σ∇uI ×v ∇ · (σ∇uI) = 0 uI

σ∂nuI = I
B ·

∫

Ω
σ∇uI ×

v =
∫

∂Ω
I u dS

AET
section 4.2.5

σ|∇u|2 ∇ · (σ∇u) = 0 u
σ∂nu
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