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ROBUST PRECONDITIONERS FOR MULTIPLE SADDLE POINT
PROBLEMS AND APPLICATIONS TO OPTIMAL CONTROL

PROBLEMS∗
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Abstract. In this paper we consider multiple saddle point problems with block tridiagonal
Hessian in a Hilbert space setting. Well-posedness and the related issue of preconditioning are
discussed. We give a characterization of all block structured norms which ensure well-posedness
of multiple saddle point problems as a helpful tool for constructing block diagonal preconditioners.
We subsequently apply our findings to a general class of PDE-constrained optimal control problems
containing a regularization parameter α and derive α-robust preconditioners for the corresponding
optimality systems. Finally, we demonstrate the generality of our approach with two optimal control
problems related to the heat and the wave equation, respectively. Preliminary numerical experiments
support the feasibility of our method.
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1. Introduction. In this paper we discuss the well-posedness of a particular
class of saddle point problems in function spaces and the related topic of robust
preconditioning. We consider linear operator equations

(1.1) Ax = b,

where A : X −→ X ′ is a self-adjoint operator mapping from the product space
X = X1 ×X2 × · · · ×Xn of Hilbert spaces Xi into its dual space X ′.

In particular, we are interested in the case where A : X −→X ′ is of n-by-n block
tridiagonal form

A =


A1 B′1

B1 −A2
. . .

. . .
. . . B′n−1

Bn−1 (−1)n−1An

 ,

where Ai : Xi −→ X ′i, Bi : Xi −→ X ′i+1 are bounded linear operators, B′i is the adjoint
of Bi, and, additionally, Ai are self-adjoint and positive semidefinite. Under these
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ROBUST PRECONDITIONING 1591

assumptions, the solutions to (1.1) are the multiple saddle points of the associated
Lagrangian functional

L(x) =
1

2
〈Ax,x〉 − 〈b,x〉 ,

where 〈·, ·〉 denotes the duality product; see [19] for more details of this interpretation.
The special case n = 2, where (1.1) is of the form

(1.2)

(
A B′

B −C

)(
x
p

)
=

(
f
g

)
,

is usually referred to as a classical saddle point problem.
Saddle point problems in infinite-dimensional Hilbert spaces arise as the optimal-

ity systems of optimization problems in function spaces with a quadratic objective
functional and constrained by a partial differential equation (PDE) or a system of
PDEs. Other sources for such problems are mixed formulations of elliptic boundary
value problems. For numerous applications of classical saddle point problems we refer
to the seminal survey article [4] and for applications of multiple saddle point problem
we refer to [19].

Classical saddle point problems (n = 2) are well-studied (see [6]). For C = 0,
the well-known Brezzi conditions are sufficient and necessary conditions for well-
posedness. This is generalized in [20], where sufficient and necessary conditions,
including the case C 6= 0, are provided. The conditions in [20] also provided con-
ditions for a robust preconditioner in the framework of operator preconditioning.

Multiple saddle point problems (n > 2) are less studied than classical saddle point
problems. In [19] a block diagonal preconditioner was introduced whose diagonal
blocks consist of a sequence of so-called Schur complements. The well-posedness of
(1.1) could be shown with respect to the associated norm with robust estimates.
However, Schur complements do not always exist. This already becomes apparent
in the well-studied case (1.2), where A needs to be invertible only on the kernel of
B. Then, of course, A might be not invertible and, consequently, the classical Schur
complement S = C + BA−1B′ would not exist. Therefore, a more general approach
is undertaken here, where we consider general block diagonal preconditioners rather
than the more restrictive class of preconditioners based on Schur complements.

An important field of applications are optimality systems of PDE-constrained
optimization problems. In particular, optimal control problems are considered with
objective functionals which contain a regularization term involving some regulariza-
tion parameter α. Suitable Krylov subspace methods, e.g., the minimum residual
method (MINRES), for solving the corresponding (discretized) optimality systems
deteriorate for small α when using standard preconditioners. For most practical ap-
plications we have 0 < α� 1, and thus finding α-robust preconditioners is essential.
For optimal control problems with an elliptic state equation α-robust preconditioners
are provided by [18, 17, 15, 19]. Some time-depending problems are addressed in
[16, 14]; however, the rigorous analysis of α-robust preconditioners always required
full observation (observation throughout the whole domain). A special case with a
hyperbolic state equation was studied in [2]. There a robust preconditioner was ob-
tained also for a problem with partial observation. Based on a new abstract theory we
will derive α-robust preconditioners without requiring full observation. The class of
problems covered by the new approach include optimal control problems with elliptic,
parabolic, or hyperbolic state equations. The work presented here can be seen as an
extension of ideas presented in [15].
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1592 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

The paper is organized as follows. In section 2 the well-posedness of (1.1) is
addressed in general Hilbert spaces. The main result is contained in Theorem 2.2,
which provides a characterization of robust block diagonal preconditioners for (1.1).
This result can be seen as an extension of corresponding results in [20] to multiple
saddle point problems. In section 3 the application of the abstract results to optimal
control problems are discussed in general. Section 4 contains particular examples
of optimal control problems with parabolic, respectively, hyperbolic state equations.
Preliminary numerical results are reported in section 5. Finally, an auxiliary result
needed for the abstract analysis is provided in Appendix A.

2. Abstract theory. We introduce some notation which will be used throughout
the paper.

Notation 1. For a real Hilbert space X with inner product (·, ·)X , the duality
pairing in its dual space X ′ will be denoted by 〈·, ·〉X , where we omit the subscript
when the space is clear from the context.

For a bounded linear operator B : X −→ Y ′, where X and Y are Hilbert spaces,
its adjoint B′ : Y −→ X ′ is given by

〈B′y, x〉 = 〈Bx, y〉 for all x ∈ X, y ∈ Y.

A bounded linear operator A : X −→ X ′ is said to be self-adjoint, respectively,
positive semidefinite, if

〈Ay, x〉 = 〈Ax, y〉 , resp. 〈Ax, x〉 ≥ 0, for all x, y ∈ X.

The operator A is positive definite (coercive) if

〈Ax, x〉 ≥ σ ‖x‖2X for all x ∈ X

for some positive constant σ.
Let X = X1 × X2 × · · · × Xn be the product space of Hilbert spaces Xi for

i = 1, 2, . . . , n, endowed with the canonical inner product

(x,y)X = (x1, y1)X1
+ (x2, y2)X2

+ · · ·+ (xn, yn)Xn
,

and let the linear operator A : X −→X ′ be of n-by-n block tridiagonal form

A =


A1 B′1

B1 −A2
. . .

. . .
. . . B′n−1

Bn−1 (−1)n−1An

 ,

where Ai : Xi −→ X ′i, Bi : Xi −→ X ′i+1 are bounded linear operators, and, addition-
ally, Ai are self-adjoint and positive semidefinite. Here, as usual, we identify the dual
space X ′ with X ′1 ×X ′2 × · · · ×X ′n.

For a given right-hand side b ∈X ′, we consider the linear operator equation

(2.1) Ax = b.
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We introduce two linear operators associated to A:

D =


A1

A2

. . .

An

 and B =


0 B′1

B1 0
. . .

. . .
. . . B′n−1

Bn−1 0

 .

Observe that D and B are self-adjoint, and, additionally, D is positive semidefinite.
Furthermore, let

x̃ =


x1

−x2

...
(−1)n−1 xn

 for x =


x1

x2

...
xn

 and D̃ =


A1

−A2

. . .

(−1)n−1An

 .

This notation is used in the following analysis.
We start with the analysis of the uniqueness of a solution to (2.1).

Lemma 2.1. kerA = kerD ∩ kerB.

Proof. With the notation introduced above we have for all x ∈X

〈Ax, x̃〉 = 〈(D̃ + B)x, x̃〉 = 〈Dx,x〉+ 〈Bx, x̃〉 = 〈Dx,x〉.

Therefore, if x ∈ kerA, then

〈Dx,x〉 = 〈Ax, x̃〉 = 0,

which implies that x ∈ kerD, since D is self-adjoint and positive semidefinite. Fur-
thermore, since ker D̃ = kerD, it follows that Bx = Ax − D̃x = 0. This concludes
the proof of kerA ⊂ kerD ∩ kerB.

On the other hand, if x ∈ kerD ∩ kerB, then x ∈ ker D̃ and, consequently,
Ax = D̃x + Bx = 0, which shows that kerD ∩ kerB ⊂ kerA.

The next theorem deals with the well-posedness of (2.1).

Theorem 2.2. If there are positive constants c and c such that

(2.2) c ‖x‖X ≤ ‖Ax‖X′ ≤ c ‖x‖X for all x ∈X,

then

(2.3) γ ‖x‖2X ≤ 〈Dx,x〉+ ‖Bx‖2X′ ≤ γ ‖x‖2X for all x ∈X

with positive constants γ and γ which depend only on c and c. Vice versa, if there
are positive constants γ and γ such that (2.3) holds, then (2.2) holds with positive
constants c and c which depend only on γ and γ.

Proof. First we show that (2.2) implies (2.3). For the estimate from above in
(2.3) observe that

〈Dx,x〉 = 〈Ax, x̃〉 ≤ ‖Ax‖X′ ‖x̃‖X ≤ c ‖x‖X ‖x̃‖X = c ‖x‖2X .

In order to estimate ‖Bx‖X′ we use

‖Bx‖X′ = ‖(A− D̃)x‖X′ ≤ ‖Ax‖X′ + ‖D̃x‖X′ = ‖Ax‖X′ + ‖Dx‖X′ .
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1594 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

Since
〈Dx,y〉2 ≤ 〈Dx,x〉 〈Dy,y〉 ≤ c2 ‖x‖2X ‖y‖2X ,

it follows that

‖Dx‖X′ = sup
06=y∈X

〈Dx,y〉
‖y‖X

≤ c ‖x‖X ,

which allows one to complete the estimate of ‖Bx‖X′ :

‖Bx‖X′ ≤ ‖Ax‖X′ + ‖Dx‖X′ ≤ 2 c ‖x‖X .

The estimates of 〈Dx,x〉 and ‖Bx‖X′ lead directly to the estimate from above in
(2.3) with γ = c+ 4 c2.

For showing the estimate from below in (2.3) we start with the following argument,

〈Dx,y〉2 ≤ 〈Dx,x〉 〈Dy,y〉 ≤ 〈Dx,x〉 ‖Dy‖X′‖y‖X ≤ c 〈Dx,x〉 ‖y‖2X ,

which implies

‖Dx‖2 = sup
0 6=y∈X

〈Dx,y〉2

‖y‖2X
≤ c 〈Dx,x〉.

Therefore,

c ‖x‖X ≤ ‖Ax‖X′ = ‖(D̃ + B)x‖X′ ≤ ‖D̃x‖X′ + ‖Bx‖X′ = ‖Dx‖X′ + ‖Bx‖X′

≤ c1/2 〈Dx,x〉1/2 + ‖Bx‖X′ ≤ (c+ 1)1/2
(
〈Dx,x〉+ ‖Bx‖2X′

)1/2
,

from which the estimate from below in (2.3) follows for γ = c2/(c+ 1).
It remains to show that (2.3) implies (2.2). For the estimate from above in (2.2)

we again use the triangle inequality and obtain

‖Ax‖X′ ≤ ‖Dx‖X′ + ‖Bx‖X′

(see above). Since

〈Dx,y〉2 ≤ 〈Dx,x〉 〈Dy,y〉 ≤ γ 〈Dx,x〉 ‖y‖2X ,

it follows that

(2.4) ‖Dx‖2X′ = sup
06=y∈X

〈Dx,y〉2

‖y‖2X
≤ γ 〈Dx,x〉,

which allows one to complete the estimate of ‖Ax‖X′ :

‖Ax‖X′ ≤ γ1/2 〈Dx,x〉1/2 + ‖Bx‖X′ ≤ (γ + 1)1/2
(
〈Dx,x〉+ ‖Bx‖2X′

)1/2

≤ (γ + 1)1/2 γ1/2 ‖x‖X .

Then the estimate from above in (2.2) follows for c = [γ (γ + 1)]1/2.
For the estimate from below in (2.2), we start with the following two estimates:

(2.5) ‖Ax‖X′ ≥
∣∣‖Bx‖X′ − ‖Dx‖X′∣∣

and

(2.6) ‖Ax‖X′ ≥
〈Ax, x̃〉
‖x̃‖X

=
〈Dx,x〉
‖x‖X

≥ 1

γ

‖Dx‖2X′
‖x‖X

for x 6= 0.
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The first estimate follows from the triangle inequality. For the second estimate we
used (2.4). Next we need to estimate ‖x‖X from above in terms of ‖Dx‖X′ and
‖Bx‖X′ : From (2.3) and

〈Dx,x〉 ≤ 1

2 ε
‖Dx‖2X′ +

ε

2
‖x‖2X

it follows that

γ ‖x‖2X ≤ 〈Dx,x〉+ ‖Bx‖2X′ ≤
1

2 ε
‖Dx‖2X′ +

ε

2
‖x‖2X + ‖Bx‖2X′ .

For ε = γ we obtain

γ

2
‖x‖2X ≤

1

2γ
‖Dx‖2X′ + ‖Bx‖2X′ ≤ max

(
1

2γ
, 1

) (
‖Dx‖2X′ + ‖Bx‖2X′

)
,

which implies

δ ‖x‖2X ≤ ‖Dx‖2X′ + ‖Bx‖2X′ with δ = min
(
γ2, γ/2

)
.

With this estimate we obtain from the estimates (2.5) and (2.6) for x 6= 0

‖Ax‖X′ ≥
∣∣‖Bx‖X′ − ‖Dx‖X′ ∣∣ = |η − ξ| (‖Dx‖2X′ + ‖Bx‖2X′)1/2 ≥ δ1/2 |η − ξ| ‖x‖X

and

‖Ax‖X′ ≥
1

γ

‖Dx‖2X′
‖x‖X

=
1

γ
ξ2 ‖Dx‖2X′ + ‖Bx‖2X′

‖x‖X
≥ (δ/γ) ξ2 ‖x‖X

with

ξ =
‖Dx‖X′

(‖Dx‖2X′ + ‖Bx‖2X′)1/2
and η =

‖Bx‖X′
(‖Dx‖2X′ + ‖Bx‖2X′)1/2

.

Note that ξ and η are well-defined for x /∈ kerA by Lemma 2.1.
By combining these two estimates we obtain

‖Ax‖X′ ≥ (δ/γ) max
(
|η − ξ|, ξ2

)
‖x‖X ,

where we used that

δ/γ =

{
γ2/γ ≤ γ =

√
δ if γ ≤ 1/2,

γ/(2γ) ≤ 1/2 ≤
√
γ/2 =

√
δ if γ ≥ 1/2.

Observe that ξ2 + η2 = 1 and

ϕ(ξ, η) ≥ min{ϕ(x, y) : x, y ≥ 0, x2 + y2 = 1} ≥ 0.29

with ϕ(x, y) = max(|y − x|, x2). Therefore

‖Ax‖X′ ≥ c ‖x‖X with c = 0.29 (δ/γ) = 0.29 min
(
γ2, γ/2

)
/γ,

which concludes the proof.
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Assume that we have self-adjoint and positive definite bounded linear operators
Pi : Xi −→ X ′i inducing inner products on Xi via

(xi, yi)Pi
= 〈Pixi, yi〉 for all xi, yi ∈ Xi.

Then the block diagonal operator P : X −→X ′, given by

P =


P1

P2

. . .

Pn

 ,

defines an inner product on X, called the P-inner product, by virtue of

(x,y)P = 〈Px,y〉 for all x,y ∈X.

The associated equivalent norm on X, called the P-norm, will be denoted by ‖·‖P .
With this notation, we want to express (2.3) in a more convenient form. For the

Hilbert space X equipped with the P-norm it follows by Lemma A.1 that

‖Bx‖2X′ = sup
06=y∈X

〈Bx,y〉2

〈Py,y〉
=
〈
BP−1Bx,x

〉
for all x ∈X.

Therefore, the condition (2.3) of Theorem 2.2 can be written in the short form

(2.7) P ∼ D + BP−1B,

using the following notation.

Notation 2. Let M,N : X −→ X ′ be two self-adjoint bounded linear operators.
Then the following hold:

1. M ≤ N if and only if

〈Mx, x〉 ≤ 〈Nx, x〉 for all x ∈ X.

2. M . N if and only if there is a constant c ≥ 0 such that M ≤ cN .
3. M ∼ N if and only if M . N and N . M . In this case we call M and N

spectrally equivalent.
If the operators M and N depend on some parameters (like a regularization parameter
α or a discretization parameter h), then we additionally assume that the involved
constants are independent of those parameters.

With this notation, Theorem 2.2 offers a result on robust preconditioning of (2.1):
For the Hilbert space X equipped with the P-norm, given by a block diagonal oper-
ator P : X −→ X ′ satisfying the relation (2.7), there exist parameter-independent
constants c, c such that (2.2) holds. Since

‖Ax‖2X′ =
〈
AP−1Ax,x

〉
=
〈
Ax,P−1Ax

〉
=
∥∥P−1Ax

∥∥2

P ,

well-posedness (2.2) can be written as

c ‖x‖P ≤ ‖P−1Ax‖P ≤ c ‖x‖P for all x ∈X.

D
ow

nl
oa

de
d 

10
/1

6/
20

 to
 1

40
.7

8.
10

7.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST PRECONDITIONING 1597

Consequently, it follows for the condition number

κ(P−1A) = ‖P−1A‖P‖(P−1A)−1‖P ≤
c

c
,

where here ‖ · ‖P indicates the operator norm associated to the P-norm.
Therefore, the task of finding a good preconditioner P : X −→X ′ for the system

(2.1) translates to choosing inner products (·, ·)Pi
on the Hilbert spaces Xi such that

the condition (2.7) is satisfied.
We now illustrate (2.7) for the three interesting cases n ∈ {2, 3, 4}.

2.1. The case n = 2. Let

A =

(
A1 B′1
B1 −A2

)
, D =

(
A1 0
0 A2

)
, B =

(
0 B′1
B1 0

)
, P =

(
P1 0
0 P2

)
.

Then

BP−1B =

(
B′1P

−1
2 B1 0
0 B1P

−1
1 B′1

)
and the spectral relation

P ∼ D + BP−1B

is equivalent to

P1 ∼ A1 +B′1P
−1
2 B1 and P2 ∼ A2 +B1P

−1
1 B′1.

Thus, we recover the result from [20].

2.2. The case n = 3. Let

A =

A1 B′1 0
B1 −A2 B′2
0 B2 A3

 ,

D =

A1 0 0
0 A2 0
0 0 A3

 , B =

 0 B′1 0
B1 0 B′2
0 B2 0

 , P =

P1 0 0
0 P2 0
0 0 P3

 .

Then

BP−1B =

B′1P−1
2 B1 0 B′1P

−1
2 B′2

0 B1P
−1
1 B′1 +B′2P

−1
3 B2 0

B2P
−1
2 B1 0 B2P

−1
2 B′2


and the spectral relation

P ∼ D + BP−1B

is equivalent to (
P1 0
0 P3

)
∼
(
A1 +B′1P

−1
2 B1 B′1P

−1
2 B′2

B2P
−1
2 B1 A3 +B2P

−1
2 B′2

)
and

P2 ∼ A2 +B1P
−1
1 B′1 +B′2P

−1
3 B2.
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1598 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

2.3. The case n = 4. Let

A =


A1 B′1 0 0
B1 −A2 B′2 0
0 B2 A3 B′3
0 0 B3 −A4

 ,

D =


A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4

 , B =


0 B′1 0 0
B1 0 B′2 0
0 B2 0 B′3
0 0 B3 0

 , P =


P1 0 0 0
0 P2 0 0
0 0 P3 0
0 0 0 P4

 .

Then

BP−1B

=


B′1P

−1
2 B1 0 B′1P

−1
2 B′2 0

0 B1P
−1
1 B′1 +B′2P

−1
3 B2 0 B′2P

−1
3 B′3

B2P
−1
2 B1 0 B2P

−1
2 B′2 +B′3P

−1
4 B3 0

0 B3P
−1
3 B2 0 B3P

−1
3 B′3


and the spectral relation

P ∼ D + BP−1B

is equivalent to

(2.8)

(
P1 0
0 P3

)
∼
(
A1 +B′1P

−1
2 B1 B′1P

−1
2 B′2

B2P
−1
2 B1 A3 +B2P

−1
2 B′2 +B′3P

−1
4 B3

)
and

(2.9)

(
P2 0
0 P4

)
∼
(
A2 +B1P

−1
1 B′1 +B′2P

−1
3 B2 B′2P

−1
3 B′3

B3P
−1
3 B2 A4 +B3P

−1
3 B′3

)
.

3. Application to optimal control problems. We are now going to apply
our theory to general abstract optimal control problems constrained by linear partial
differential equations:

For given data d and fixed α > 0, we consider the minimization problem of finding
a state y and control u which minimize the functional

(3.1) J : Y × U −→ R, J(y, u) =
1

2
‖Ty − d‖2O +

α

2
‖u‖2U ,

subject to the constraint

(3.2) Ky + Cu = g.

Here, Y denotes the state space, U is the control space, and O is the observation
space. The bounded linear observation operator T : Y −→ O in (3.1) maps the state
to the measurements.

The state equation (3.2) is given in terms of the bounded linear operators

K : Y −→M ′ (state operator) and C : U −→M ′ (control operator).
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ROBUST PRECONDITIONING 1599

Here, we assume that the test space M is a product space of Hilbert spaces where the
first space is the same function space as used for the control,

M = U ×R.

The components of K will be denoted by the bounded linear operators

KU : Y −→ U ′, KR : Y −→ R′,

such that Ky = (KUy,KRy)>. Typically, the components of the state operator
represent the differential expression and side conditions, such as boundary, and (or)
initial conditions, respectively. For illustrative examples we refer to section 4.

The crucial assumption on the control operator C is that it is of the form

C =

(
IU
0

)
.

Here, we used the following notation.

Notation 3. The inner product in a Hilbert space X induces a self-adjoint and
positive definite bounded linear operator IX : X −→ X ′, given by

〈IXx, y〉 = (x, y)X for all x, y ∈ X,

whose inverse is usually called the Riesz isomorphism associated to the Hilbert space
X.

Note that the control operator C acts only on the first line of the state equation,
which reads in detail

(3.3)

(
KU

KR

)
y +

(
IU
0

)
u =

(
gU
gR

)
.

Remark 3.1. We stress that the following treatment does not exclude the trivial
case R = {0}, which corresponds to full control distributed on M .

The optimality system for the constrained optimization problem (3.1) and (3.3)
reads as follows:

Find (y, u, pU , pR) ∈ Y × U × U ×R such that

(3.4)


T ′IOT 0 K ′U K ′R

0 αIU IU 0
KU IU 0 0
KR 0 0 0



y
u
pU
pR

 =


(d, T ·)O

0
gU
gR

 .

Remark 3.2. Note that T ′IOT : Y −→ Y ′ is given by y 7→ (Ty, T ·)O.

After a reordering, the optimality can equivalently be written in tridiagonal form:
Find (u, pU , y, pR) ∈ U × U × Y ×R such that

(3.5)


αIU IU 0 0
IU 0 KU 0
0 K ′U T ′IOT K ′R
0 0 KR 0



u
pU
y
pR

 =


0
gU

(d, T ·)O
gR

 .

It is obvious that the spectral relations (2.8) and (2.9) strongly depend on the prop-
erties of the involved operators KU , KR (and T ). We are going to make the following
assumptions:
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1600 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

(K1) The operator K : Y −→M ′, defined by y 7→ (KUy,KRy)>, has closed range
and is injective, or, equivalently, there exists a positive constant cK such that

(3.6) ‖y‖Y ≤ cK ‖Ky‖M ′ = cK

√
‖KUy‖2U ′ + ‖KRy‖2R′ for all y ∈ Y.

(K2) The operator KR : Y −→ R′ is surjective, or, equivalently, there exists a
positive constant cR such that

sup
06=y∈Y

〈KRy, r〉
‖y‖Y

≥ cR ‖r‖R for all r ∈ R.

The assumption (K2) will also be considered in the stronger form:
(K2′) The operator KR|kerKU

: kerKU −→ R′ is surjective, or, equivalently, there
exists a positive constant cR such that

sup
06=y∈kerKU

〈KRy, r〉
‖y‖Y

≥ cR ‖r‖R for all r ∈ R.

Remark 3.3. Since we assumed that KU , KR are bounded linear operators, it
follows from (3.6) that ‖K·‖M ′ induces an equivalent norm on Y .

Remark 3.4. Equation (3.6) can be seen as a natural a priori estimate for a linear
partial differential equation of the form Ky = g , which states that if a unique solution
to Ky = g exists, then it needs to be bounded by the data g ∈M ′.

The next theorem deals with the well-posedness of (3.5) and offers a corresponding
robust preconditioner. The derivation of the preconditioner is constructive in the
following sense: Having a good guess for three out of four inner products on the
Hilbert spaces Xi ∈ {U,U, Y,R} leading to a robust preconditioner for the optimality
system (3.5), the remaining fourth inner product follows almost as a gift from the
spectral relation (2.7).

To be more precise, for the Hilbert spaces X1 = U , X2 = U , X4 = R, we choose
inner products corresponding to the operators

P1 = αIU , P2 = α−1IU , P4 = IR,

respectively.

Remark 3.5. The motivation for this choice is based on the relations

P1 ∼ A1 +B′1P
−1
1 B1 and P2 ∼ A2 +B1P

−1
1 B′1 +B′2P

−1
3 B2,

which follow from (2.8) and (2.9). Hence P1 & A1 and P2 & A2 + B1P
−1
1 B′1. These

necessary conditions inspired us to try out P1 = A1 = αIU and P2 = A2+B1P
−1
1 B′1 =

α−1IU . The choice of P4 is simply motivated by the standard inner product in R
represented by IR. We would like to stress that this is, of course, not a derivation but
just a motivation for the choice of P1, P2, P4, which will turn out to be successful for
the particular problem class discussed here.

With this choice the condition (2.8) reads(
α IU 0

0 P3

)
∼
(

2α IU αKU

αK ′U T ′IOT + αK ′UI
−1
U KU +K ′RI

−1
R KR

)
.
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Then, by Lemma 3.7, the only possible candidate for P3 is given by (up to spectral
equivalence)

(3.7) P3 = T ′IOT + αK ′UI−1
U KU +K ′RI−1

R KR.

The next theorem guarantees that (3.7) is not only necessary but also sufficient. The
proof relies on two auxiliary results, frequently used in the literature, which are listed
in the following. For the convenience of the reader we present the proof of the first
lemma and refer to [1] for the second lemma.

Lemma 3.6. Let A : V −→ V ′, B : V −→ Q′, and C : Q −→ Q′ be linear
operators, where V and Q are Hilbert spaces with dual spaces V ′ and Q′. Additionally
assume that A and C are self-adjoint and coercive. Then the condition〈

BA−1B′q, q
〉
≤ 〈Cq, q〉 for all q ∈ Q

is equivalent to the condition〈
B′C−1Bv, v

〉
≤ 〈Av, v〉 for all v ∈ V.

Proof. Using Lemma A.1 we have

〈
BA−1B′q, q

〉
= sup

06=v∈V

〈Bv, q〉2

〈Av, v〉
and

〈
B′C−1Bv, v

〉
= sup

06=q∈Q

〈B′q, v〉2

〈Cq, q〉
.

Then it immediately follows that the first condition is equivalent to the condition

〈Bv, q〉2 ≤ 〈Av, v〉 〈Cq, q〉 for all v ∈ V, q ∈ Q

and the second condition is equivalent to the condition

〈B′q, v〉2 ≤ 〈Av, v〉 〈Cq, q〉 for all v ∈ V, q ∈ Q.

These two new conditions are obviously equivalent.

Lemma 3.7. Let V and Q be Hilbert spaces with dual spaces V ′ and Q′.
Let M : V ×Q −→ V ′ ×Q′ be a self-adjoint and positive definite linear operator

of a 2-by-2 block form

M =

(
M11 M12

M21 M22

)
and D : V × Q −→ V ′ × Q′ be of 2-by-2 block diagonal form with self-adjoint and
positive definite diagonal blocks

D =

(
D11 0

0 D22

)
.

Then M∼ D is equivalent to

(3.8) M11 ∼ D11, M22 ∼ D22 and M11 .M11 −M12M
−1
22 M21

as well as to

(3.9) M11 ∼ D11, M22 ∼ D22 and M22 .M22 −M21M
−1
11 M12.

We will now prove the main result of this section.
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1602 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

Theorem 3.8. Let α > 0 and assume that assumptions (K1) and (K2) are sat-
isfied. Then the linear operator A : U × U × Y × R = X −→ X ′ defined in (3.5) is
a self-adjoint isomorphism. Furthermore, for the Hilbert space X endowed with the
inner product

(x,y)P = 〈Px,y〉 for all x,y ∈X,

where P : X −→X ′ is given by

P =


αIU

α−1IU
T ′IOT + αK ′UI

−1
U KU +K ′RI

−1
R KR

IR

 ,

there exist positive constants c and c, both independent of α ∈ (0, 1], such that

(3.10) c ‖x‖P ≤ ‖P−1Ax‖P ≤ c ‖x‖P for all x ∈X.

Under the stronger assumption (K2′), the constants in (3.10) are independent of
all α > 0.

Proof. Denoting

P3 = T ′IOT + αK ′UI−1
U KU +K ′RI−1

R KR,

by Theorem 2.2 and (2.8) and (2.9), it suffices to show(
α IU 0

0 P3

)
∼
(

2α IU αKU

αK ′U T ′IOT + αK ′UI
−1
U KU +K ′RI

−1
R KR

)
and (

α−1 IU 0
0 IR

)
∼
(
α−1 IU +KUP

−1
3 K ′U KUP

−1
3 K ′R

KRP
−1
3 K ′U KRP

−1
3 K ′R

)
.

The first condition follows from its equivalence to (3.9) in Lemma 3.7, since αIU ∼
2αIU , P3 = T ′IOT + αK ′UI

−1
U KU +K ′RI

−1
R KR and

T ′IOT + αK ′UI−1
U KU +K ′RI−1

R KR −
1

2
αK ′UI−1

U KU

= T ′IOT +
α

2
K ′UI−1

U KU +K ′RI−1
R KR ∼ P3.

Concerning the second condition, from αK ′UI
−1
U KU ≤ P3 and Lemma 3.6 it

follows that
KUP

−1
3 K ′U ≤ α−1 IU ,

which implies

(3.11) α−1 IU ∼ α−1 IU +KUP
−1
3 K ′U .

From K ′RI
−1
R KR ≤ P3 and Lemma 3.6 it also follows that

KRP
−1
3 K ′R ≤ IR.

So, in order to ensure

(3.12) IR ∼ KRP
−1
3 K ′R,
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it suffices to show IR . KRP
−1
3 K ′R, or, equivalently,

sup
06=y∈Y

〈KRy, r〉
〈P3y, y〉1/2

& ‖r‖R for all r ∈ R.

This easily follows from assumption (K2), since

〈P3y, y〉 . ‖y‖2Y for all y ∈ Y,

under the mild condition that α is uniformly bounded, e.g., α ≤ 1, and, therefore,

sup
0 6=y∈Y

〈KRy, r〉
〈P3y, y〉1/2

& sup
06=y∈Y

〈KRy, r〉
‖y‖Y

& ‖r‖R for all r ∈ R.

Therefore, (3.12) holds and KRP
−1
3 K ′R is nonsingular. Then, by Lemma 3.6, it follows

that
K ′R[KRP

−1
3 K ′R]−1KR ≤ P3,

and as a consequence,

KUP
−1
3 K ′R[KRP

−1
3 K ′R]−1KRP

−1
3 K ′U ≤ KUP

−1
3 K ′U .

Therefore,

(3.13) α−1 IU ≤ α−1 IU +KUP
−1
3 K ′U −KUP

−1
3 K ′R[KRP

−1
3 K ′R]−1KRP

−1
3 K ′U .

The assertion then follows from (3.11) (3.12), (3.13) using (3.8) in Lemma 3.7.
Under no restrictions on α we have

〈P3y, y〉 . ‖y‖2Y for all y ∈ kerKU ,

and, therefore,

sup
06=y∈Y

〈KRy, r〉
〈P3y, y〉1/2

& sup
06=y∈kerKU

〈KRy, r〉
‖y‖Y

& ‖r‖R for all r ∈ R

under the stronger assumption assumption (K2′).

Remark 3.9. Theorem 3.8 also holds true under the relaxed condition that T :
Y −→ O is invertible on the kernel of K : Y −→ M ′, if kerK 6= {0}, as was done in
[15].

Remark 3.10. The optimality system (3.4) can be phrased as a classical saddle
point problem: Find x = (y, u) ∈ Y × U = X and p = (pU , pR) ∈ U × R = M such
that

(3.14)

(
A B′

B 0

)(
x
p

)
=

(
f
g

)
,

where A : X −→ X ′, B : X −→M ′ are given by

A =

(
T ′IOT 0

0 αIU

)
, B =

(
KU IU
KR 0

)
,

and f ∈ X ′, g ∈M ′ are given by

f(w) = (d, Tz)O , g(q) = gU (qU ) + gR(qR)

for all w = (z, v) ∈ X, q = (qU , qR) ∈M , respectively.
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If, in accordance with Theorem 3.8, the Hilbert spaces X, M are endowed with
the α-dependent norms

‖w‖2X = ‖Tz‖2O + α ‖KUz‖2U ′ + ‖KRz‖2R′ + α ‖v‖2U , w = (z, v) ∈ X,

‖q‖2M = α−1 ‖qU‖2U + ‖qR‖2R , q = (qU , qR) ∈M,

then one can show the following conditions under assumptions (K1) and (K2′):
1. The linear operator A is bounded:

〈Ax,w〉 ≤ cA ‖x‖X ‖w‖X for all x,w ∈ X with cA = 1.

2. The linear operator B is bounded:

〈Bw, q〉 ≤ cB ‖w‖X ‖q‖M for all w ∈ X, q ∈M with cB =
√

2.

3. The linear operator A is coercive on kerB:

〈Aw,w〉 ≥ γ0 ‖w‖2X for all w ∈ kerB with γ0 =
1

2
.

4. The linear operator B satisfies an inf-sup condition:

sup
0 6=w∈X

〈Bw, q〉
‖w‖X

≥ k0 ‖q‖M for all q ∈M with k0 =
1√

‖T‖2L(Y,O) c
2
K + 1

,

where ‖T‖L(Y,O) denotes the operator norm of T : Y −→ O and cK is the

positive constant from (3.6).
So, as expected, the conditions of Brezzi’s theorem, which are equivalent to the

well-posedness of the saddle point problem (see [6]), are satisfied with α-independent
constants cA, cB , γ0, k0. For details, see [3] (version v1).

4. Examples. Under the assumptions (K1) and (K2), respectively (K2′), The-
orem 3.8 guarantees well-posedness of the optimality system (3.5) and proposes a
robust preconditioner. The question arises for which particular applications, that is,
linear PDEs, these conditions are fulfilled.

Usually, the operators KU and KR represent the differential operator and the side
conditions of the PDE, respectively. Elliptic control problems of this form (with R =
{0}) have been considered in [15], where the space for the control and the test space
for the nonstandard variational formulation in the strong form of the state equation
coincide. In this sense the setting in [15] fits into our framework and, therefore, we
will focus here as an alternative on time-dependent problems in the following.

In the two examples to come we have a linear and bijective state operator K =
(KU ,KR)> : Y −→ M ′, where M is a product space of Hilbert spaces U , R, and
Y is a linear space. There is a natural way of introducing a canonical Hilbert space
structure on Y such that the assumptions (K1) and (K2′) are satisfied.

Lemma 4.1. Under the assumptions for Y , M , and K : Y −→M ′ from above, Y
is a Hilbert space endowed with the inner product

(y, z)Y =
〈
Ky, I−1

M Kz
〉

=
〈
KUy, I−1

U KUz
〉

+
〈
KRy, I−1

R KRz
〉

for all y, z ∈ Y,

where IM , IU , and IR represent the canonical inner products on M , U , and R,
respectively (see Notation 3).

Moreover, for Y equipped with the inner product (·, ·)Y , the state operator K
satisfies assumptions (K1) and (K2′).
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Proof. Observe that 〈·, I−1
M ·〉 defines an inner product on M ′ by the definition of

IM . Since K is linear and injective, it follows that (·, ·)Y = 〈K·, I−1
M K·〉 defines an

inner product on Y .
In order to show that Y is complete with respect to ‖·‖Y =

√
(·, ·)Y = ‖K·‖M ′

let (yk)k∈N be a Cauchy sequence in Y . Then (Kyk)k∈N is a Cauchy sequence in M ′

which possesses a limit in M ′ denoted by g. Since K is bijective, there exists a unique
y ∈ Y such that Ky = g. Consequently,

‖yk − y‖Y = ‖K(yk − y)‖M ′ = ‖Kyk − g‖M ′ → 0 as k →∞.

Thus the Cauchy sequence is converging and thus the space Y is complete.
Note that assumption (K1) is trivially satisfied by the definition of ‖·‖Y , that is,

‖y‖Y = ‖Ky‖M ′ =

√
‖KUy‖2U ′ + ‖KRy‖2R′ for all y ∈ Y.

Assumption (K2′) is fulfilled as well since for any gR ∈ R′ the system Ky = (0, gR)>

is uniquely solvable.

This lemma is needed for the following two examples of the heat equation and
the wave equation considered over a bounded domain Ω ⊂ RN , N ≥ 1, with Lipschitz
boundary ∂Ω, and over a finite time interval (0, T ). Throughout the remainder of the
paper we will introduce the space-time cylinder by QT = Ω × (0, T ) and its lateral
surface by ΓT = ∂Ω× [0, T ].

4.1. Heat equation. Consider the heat equation with homogeneous Dirichlet
boundary conditions on ΓT ,

∂ty −∆y = f in QT ,

y = 0 on ΓT ,

y(0) = y0 in Ω

for given data f , y0. For this problem we introduce the following function spaces.
L2(D) denotes the standard Lebesgue space of square-integrable functions on a do-
main D. H1

0 (Ω) is the subspace of the standard Sobolev space H1(Ω) of functions on
Ω with vanishing trace on ∂Ω. We use the inner product (v, w)H1

0 (Ω) = (∇v,∇w)L2(Ω)

for functions v, w ∈ H1
0 (Ω). Moreover, let

H(∆,Ω) = {v ∈ L2(Ω) : ∆v ∈ L2(Ω)}

with inner product (v, w)H(∆,Ω) = (v, w)L2(Ω) + (∆v,∆w)L2(Ω). Finally, for a Hilbert
space H, L2((0, T );H) denotes the Bochner space of square-integrable functions from
(0, T ) to H with inner product

(f, g)L2((0,T );H) =

∫ T

0

(f(t), g(t))H dt.

Then the well-known solution theory for this initial-boundary value problem can be
summarized in the spirit of Lemma 4.1.

Theorem 4.2 (see [12, Chapter 3, Theorem 2.1]). Let Ω ⊂ RN be a bounded
domain with Lipschitz boundary ∂Ω and T > 0 finite. Define

Y = {y ∈ L2((0, T );H1
0 (Ω) ∩H(∆,Ω)) : ∂tu ∈ L2(QT )},(4.1)

M = L2(QT )×H1
0 (Ω).
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1606 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

Then the operator

K : Y −→M ′, y 7→

(
(∂ty −∆y, ·)L2(QT )

(y(0), ·)H1
0 (Ω)

)
is linear and bijective.

Combining Theorem 3.8 and Lemma 4.1 we obtain the following result.

Corollary 4.3. Let Y , M , and K : Y −→ M ′ be as in Theorem 4.2. Then Y
is a complete space with respect to the norm ‖ · ‖Y , given by

‖y‖2Y = ‖∂ty −∆y‖2L2(QT ) + ‖y(0)‖2H1
0 (Ω) for all y ∈ Y.

Moreover, for any decomposition of M as a product space of Hilbert spaces U and R
and any bounded linear observation operator T : Y −→ O, there exists a unique min-
imizer of the constrained optimization problem (3.1) and (3.3) which is characterized
by the solution of the optimality system (3.4).

Optimal control problem for the heat equation. Let ω be a nonempty
open subset of Ω and denote qT = ω × (0, T ) ⊂ QT . We consider an optimal control
problem of minimizing a tracking-type quadratic cost functional with (possibly) lim-
ited observation plus a regularization term, where the constraint is the heat equation.
More precisely, for Y given by (4.1), we want to minimize the functional

J : Y × L2(QT ) −→ R, J(y, u) =
1

2
‖y − d‖2L2(qT ) +

α

2
‖u‖2L2(QT ) ,

subject to

(∂ty −∆y, qU )L2(QT ) + (u, qU )L2(QT ) = 0 for all qU ∈ L2(QT ),

(y(0), qR)H1
0 (Ω) = (y0, qR)H1

0 (Ω) for all qR ∈ H1
0 (Ω)

for given initial value y0 ∈ H1
0 (Ω) and data d ∈ L2(qT ).

The optimality system then reads as follows:
Find (y, u, pU , pR) ∈ Y × U × U ×R such that

(4.2)


T ′IOT 0 K ′U K ′R

0 αIU IU 0
KU IU 0 0
KR 0 0 0



y
u
pU
pR

 =


(d, T ·)L2(qT )

0
0

(y0, ·)H1
0 (Ω)


with the spaces Y given by (4.1),

U = L2(QT ), R = H1
0 (Ω), O = L2(qT )

and the operators

(4.3)

T : Y −→ O, y 7→ y|qT ,
KU : Y −→ U ′, y 7→ (∂ty −∆y, ·)L2(QT ) ,

KR : Y −→ R′, y 7→ (y(0), ·)H1
0 (Ω) .

It follows from Corollary 4.3 that the system (4.2) is well-posed. Additionally, by
Theorem 3.8, the P-norm leading to an α-robust preconditioner is given by

‖(z, v, qU , qR)‖2P = ‖z‖2L2(qT ) + α ‖∂tz −∆z‖2L2(QT ) + ‖∇z(0)‖2L2(Ω)

+ α ‖v‖2L2(QT ) +
1

α
‖qU‖2L2(QT ) + ‖∇qR‖2L2(Ω) .

D
ow

nl
oa

de
d 

10
/1

6/
20

 to
 1

40
.7

8.
10

7.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST PRECONDITIONING 1607

4.2. Wave equation. Consider the wave equation with homogeneous Dirichlet
boundary conditions on ΓT ,

∂tty −∆y = f in QT ,

y = 0 on ΓT ,

y(0) = y0 in Ω,

∂ty(0) = y1 in Ω

for given data f , y0, y1. For this problem we need one further function space.
C([0, T ];H) denotes the space of continuous functions from [0, T ] to a Hilbert space
H. Then the well-known solution theory for this initial-boundary value problem can
be summarized in the spirit of Lemma 4.1.

Theorem 4.4 (see [13, Chapter 3, Theorem 8.2]). Let Ω ⊂ RN be a bounded
domain with Lipschitz boundary ∂Ω and T > 0 finite. Define

Y = {y ∈ C([0, T ];H1
0 (Ω)) : ∂ty ∈ C([0, T ];L2(Ω)), ∂tty −∆y ∈ L2(QT )},(4.4)

M = L2(QT )×H1
0 (Ω)× L2(Ω).

Then the operator

(4.5) K : Y −→M ′, y 7→

(∂tty −∆y, ·)L2(QT )

(y(0), ·)H1
0 (Ω)

(∂ty(0), ·)L2(Ω)


is linear and bijective.

Combining Theorem 3.8 and Lemma 4.1 we obtain the following result.

Corollary 4.5. Let Y , M , and K : Y −→ M ′ be as in Theorem 4.4. Then Y
is a complete space with respect to

‖y‖2Y = ‖∂tty −∆y‖2L2(QT ) + ‖y(0)‖2H1
0 (Ω) + ‖∂ty(0)‖2L2(Ω) for all y ∈ Y.

Moreover, for any decomposition of M as a product space of Hilbert spaces U and R
and any bounded linear observation operator T : Y −→ O there exists a unique mini-
mizer of the constrained optimization problem (3.1) and (3.3) which is characterized
by the solution of the optimality system (3.4).

In a previous work we considered the problem of controlling the initial condition
of the wave equation,

y(0) = u, u ∈ U = H1
0 (Ω);

see [2] for further details. This particular study was the starting point for our current
work. Here, we want to demonstrate the flexibility of our approach and consider in the
following a constrained optimization problem for the wave equation where we control
the differential expression

∂tty −∆y + u = 0, u ∈ U = L2(QT ).

Optimal control problem for the wave equation. Let ω be a nonempty
open subset of Ω and denote qT = ω × (0, T ) ⊂ QT . We consider an optimal control
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1608 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

problem of minimizing a tracking-type quadratic cost functional with (possibly) lim-
ited observation plus a regularization term where the constraint is the wave equation.
More precisely, for Y given by (4.4), we want to minimize the functional

J : Y × L2(QT ) −→ R, J(y, u) =
1

2
‖y − d‖2L2(qT ) +

α

2
‖u‖2L2(QT ) ,

subject to

(∂tty −∆y, qU )L2(QT ) + (u, qU )L2(QT ) = 0 for all qU ∈ L2(QT ),

(y(0), qR1
)H1

0 (Ω) = (y0, qR1
)H1

0 (Ω) for all qR1
∈ H1

0 (Ω),

(∂ty(0), qR2)L2(Ω) = (y1, qR2)L2(Ω) for all qR2 ∈ L2(Ω)

for given initial values (y0, y1) ∈ H1
0 (Ω)× L2(Ω) and data d ∈ L2(qT ).

The optimality system then reads as follows:
Find (y, u, pU , pR1

, pR2
) ∈ Y × U × U ×R1 ×R2 such that

(4.6)


T ′IOT 0 K ′U K ′R1

K ′R2

0 αIU IU 0 0
KU IU 0 0 0
KR1

0 0 0 0
KR2

0 0 0 0




y
u
pU
pR1

pR2

 =


(d, T ·)L2(qT )

0
0

(y0, ·)H1
0 (Ω)

(y1, ·)L2(Ω)


with the spaces Y given by (4.4),

U = L2(QT ), R1 = H1
0 (Ω), R2 = L2(Ω), O = L2(qT )

and the operators

(4.7)

T : Y −→ O, y 7→ y|qT ,
KU : Y −→ U ′, y 7→ (∂tty −∆y, ·)L2(QT ) ,

KR1
: Y −→ R′1, y 7→ (y(0), ·)H1

0 (Ω) ,

KR2 : Y −→ R′2, y 7→ (∂ty(0), ·)L2(Ω) .

It follows from Corollary 4.5 that the system (4.6) is well-posed. Additionally, by
Theorem 3.8, the P-norm leading to an α-robust preconditioner is given by

(4.8) ‖(z, v, qU , qR1
, qR2

)‖2P
= ‖z‖2L2(qT ) + α ‖∂ttz −∆z‖2L2(QT ) + ‖∇z(0)‖2L2(Ω) + ‖∂tz(0)‖2L2(Ω)

+ α ‖v‖2L2(QT ) +
1

α
‖qU‖2L2(QT ) + ‖∇qR1

‖2L2(Ω) + ‖qR2
‖2L2(Ω) .

Remark 4.6. The examples in this section could be modified to either include
final time observations or to have final time observations only instead of observations
distributed in time, since final time observations (in appropriate norms) constitute
linear bounded observation operators in the respective state spaces.
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Remark 4.7. So far we have only discussed space-time problems, where the con-
trol u acted on the whole domain QT . Problems where the control acts only on a
subdomain fit also in the general framework presented at the beginning of section 3.
Consider, e.g., an elliptic optimal control problem with the state equation

(4.9)
−∆y + u = f in Ω,

y = 0 on Γ,

where the control u is supported on a subset Ωc with Ωc ⊂ Ω. We assume that the
boundaries of Ω and Ωc are sufficiently smooth; more precisely, Ω and Ωc are of class
C 1,1 (see [9]). Then, for u ∈ L2(Ωc), we have y ∈ H2(Ω) ∩H1

0 (Ω). In this case (4.9)
can be equivalently reformulated as

−∆y + u = f in Ωc,

−∆y = f in Ω \ Ωc

JyK = J∂nyK = 0 on Γc,

y = 0 on Γ,

where JyK and J∂nyK denote the jump of y and the normal derivative of y across Γc,
respectively. The associated state operator K : Y −→M ′ with M = U ×R, given by
its components

KUy = −(∆y, ·)L2(Ωc),

KRy =
(
− (∆y, ·)L2(Ω\Ωc), (JyK, ·)H3/2(Γc), (J∂nyK, ·)H1/2(Γc)

)>
and the spaces Y = H2(Ω) ∩ H1

0 (Ω), U = L2(Ωc), R = L2(Ω \ Ωc) × H3/2(Γc) ×
H1/2(Γc), satisfies assumptions (K1) and (K2′), since K is linear, bounded, and bi-
jective.

This approach extends naturally to the heat equation and the wave equation.

5. Discretization and numerical experiments. In order to illustrate the
theoretical results we shortly discuss in this section (as one selected example) the
discretization of the optimality system (4.6) of the optimal control problem for the
wave equation and present some first numerical results.

5.1. Discretization. We consider conforming discretization spaces, that is,

(5.1) Yh ⊂ Y, Uh ⊂ L2(QT ), R1,h ⊂ H1
0 (Ω), and R2,h ⊂ L2(Ω).

Let KUh
, KR1,h

, KR2,h
be the matrix representations of the linear operators KU ,

KR1 , KR2 defined in (4.7), on Yh, Uh, Rh,1, Rh,2 relative to the chosen bases in
these spaces, respectively. Let MQT ,h and MqT ,h be the matrix representations of the
linear operators IU and T ′IOT on Uh and Yh, respectively. These matrices are mass
matrices; they represent the inner products (·, ·)L2(QT ) and (·, ·)L2(qT ) on Uh and Yh,
respectively.

Applying Galerkin’s principle to (4.6) leads to the following linear problem:
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1610 ALEXANDER BEIGL, JARLE SOGN, AND WALTER ZULEHNER

Find (yh, uh, pUh
, pR1,h

, pR2,h
) ∈ Yh × Uh × Uh ×R1,h ×R2,h such that

(5.2)


MqT ,h 0 KT

Uh
KT

R1,h
KT

R2,h

0 αMQT ,h MQT ,h 0 0
KUh

MQT ,h 0 0 0
KR1,h

0 0 0 0
KR2,h

0 0 0 0


︸ ︷︷ ︸

= Ah


y
h
uh
p
Uh

p
R1,h

p
R2,h

 =


dh
0
0
y

1,h

y
2,h

 ,

where dh, y2,h are L2 projections of d, y2 on Yh, R2,h, respectively, y1,h is the H1
0

projection of y1 on R1,h, and underlined quantities denote the vector representations
of the corresponding functions from Yh, Uh, R1,h, R2,h relative to the chosen bases in
these spaces.

Motivated by the analysis of the continuous problem we propose the following
block diagonal preconditioner, which is the matrix representation of the P-inner prod-
uct on the discretization spaces:

(5.3) Ph =


PYh

0 0 0 0
0 αPUh

0 0 0
0 0 α−1 PUh

0 0
0 0 0 PR1,h

0
0 0 0 0 PR2,h


with 〈

PYh
y
h
, zh

〉
= (yh, zh)L2(qT ) + α (∂ttyh −∆yh, ∂ttzh −∆zh)L2(QT )

+ (∇yh(0),∇zh(0))L2(Ω) + (∂tyh(0), ∂tzh(0))L2(Ω) ,

〈PUh
uh, vh〉 = (uh, vh)L2(QT ) ,〈

PR1,h
p
R1,h

, q
R1,h

〉
=
(
∇pR1,h

,∇qR1,h

)
L2(Ω)

,〈
PR2,h

p
R2,h

, q
R2,h

〉
=
(
pR2,h

, qR2,h

)
L2(Ω)

.

The preconditioner Ph is a symmetric and positive definite block diagonal matrix.
This matrix is also sparse provided basis functions with local support are chosen.

Observe that the α-robust preconditioner which results from applying Theo-
rem 3.8 directly to the discrete problem is similar to (5.3), but with PYh

replaced
by 〈

P̃Yh
y
h
, zh

〉
= (yh, zh)L2(qT ) + α

〈
K ′Uh
I−1
Uh
KUh

y
h
, zh

〉
+ 〈K ′R1,h

I−1
R1,h

KR1,h
y
h
, zh〉+ 〈K ′R2,h

I−1
R2,h

KR2,h
y
h
, zh〉.

(5.4)

In general, P̃Yh
is not sparse. Therefore, the application of the corresponding

block diagonal preconditioner P̃h is rather costly. On the other hand, the choice P̃Yh

would ensure α-robustness of P̃h by Theorem 3.8 provided assumptions (K1) and (K2)
hold. In the next lemma we present sufficient conditions on the discretization spaces,
Yh, Uh, Rh, which ensure that PYh

= P̃Yh
as well as assumption (K1).
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Lemma 5.1. Assume the discretization space Yh is of the following form:

(5.5) Yh = Y t
h ⊗ Y x

h ,

where Y t
h is the time discretization and Y x

h space discretization. If the following con-
ditions hold,

(5.6) (∂tt −∆)Yh ⊂ Uh, Y x
h ⊂ R1,h, Y x

h ⊂ R2,h,

then P̃Yh
= PYh

and assumption (K1) holds for the discretized state equation with the
same constant cK as for the continuous state equation.

Proof. Let yh ∈ Yh be arbitrary but fixed. Using Lemma A.1 we get

〈
K ′Uh
I−1
Uh
KUh

y
h
, y

h

〉
= sup

uh∈Uh

〈
KUh

y
h
, uh

〉2

(uh, uh)L2(QT )

= sup
uh∈Uh

((∂tt −∆)yh, uh)
2
L2(QT )

(uh, uh)L2(QT )

.

Since (∂tt−∆)Yh ⊂ Uh, the supremum is attained for uh = (∂tt−∆)yh, and we have

sup
uh∈Uh

((∂tt −∆)yh, uh)
2
L2(QT )

(uh, uh)L2(QT )

= ‖(∂tt −∆)yh‖2L2(QT ).

Therefore, 〈
K ′Uh
I−1
Uh
KUh

y
h
, y

h

〉
= ‖(∂tt −∆)yh‖2L2(QT ).

Similarly it follows that

〈K ′R1,h
I−1
R1,h

KR1,h
y
h
, y

h
〉 = ‖yh(0)‖2H1

0 (Ω)

and
〈K ′R2,h

I−1
R2,h

KR2,h
y
h
, y

h
〉 = ‖∂tyh(0)‖2L2(Ω).

This shows that the PYh
-norm and the P̃Yh

-norm coincide and, therefore, the associ-

ated inner products coincide. This implies PYh
= P̃Yh

.
The three identities from above can be rewritten as

‖KUh
yh‖U ′h = ‖KUyh‖U ′

and
‖KR1,h

yh‖R′1,h = ‖KR1
yh‖R′1 , ‖KR2,h

yh‖R′2,h = ‖KR2
yh‖R′2 ,

from which it immediately follows that assumption (K1) for the continuous state op-
erator K implies assumption (K1) for the state operator Kh = (KUh

,KR1,h
,KR2,h

)>

of the discretized problem.

So, under the assumptions of Lemma 5.1, the preconditioner Ph = P̃h is sparse
and assumption (K1) holds for the discretized problem with a constant independent
of the discretization spaces.

In order to apply Theorem 3.8 and ensure α-robustness of the preconditioner,
assumption (K2) is additionally required. It is easy to see that the condition

(5.7) R1,h + tR2,h ⊂ Yh
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implies the surjectivity of KRh
= (KR1,h

,KR2,h
)>. Here R1,h + tR2,h denotes the

space of all functions qRh
on QT of the form qRh

(x, t) = qR1,h
(x) + t qR2,h

(x) with
qR1,h

∈ R1,h, qR2,h
∈ R2,h. Consequently, assumption (K2) holds and the precondi-

tioner is robust for all positive values of α below some threshold, which was set to
1 in Theorem 3.8 for simplicity. But it is not clear how the constant cR in assump-
tion (K2) depends on this threshold and the discretization spaces. An analysis of this
dependency remains an unresolved problem. Instead we present in the next section
numerical experiments for a particular choice of the discretization spaces and report
on promising preliminary numerical results.

5.2. Numerical results. We consider the optimal control problem from sub-
section 4.2 with Ω = (0, 1)2, ω = (1/4, 3/4)2, T = 1, and homogeneous data. The
following discretization spaces are used:

Yh = Sp,`(0, T )⊗
[
Sp,`(Ω) ∩H1

0 (Ω)
]
,

Uh = Sp,`,p−3(0, T )⊗ Sp,`,p−3(Ω),

R1,h = Sp,`(Ω) ∩H1
0 (Ω),

R2,h = Sp,`(Ω) ∩H1
0 (Ω).

Here, Sp,`,k(a, b) denotes the space of splines of degree p on an equidistant knot span
of the interval (a, b) of mesh size h = (b − a)/2` which are k-times continuously
differentiable. Spline spaces of maximal continuity, i.e., k = p − 1, are denoted
Sp,`(a, b). Spline spaces on Ω are defined as tensor products of univariate splines
spaces. It is easy to see that the chosen discretization spaces satisfy (5.1), (5.5), (5.6),
and (5.7) for spline degree p ≥ 2.

We use the sparse preconditioner Ph from (5.3). The application of the precondi-
tioner Ph requires the multiplication of the inverses of its diagonal blocks with vectors.
The action of the inverse of PUh

and PR1,h
is efficiently computed by exploiting the

tensor product structure and computing the inverse of univariate mass matrices. For
PYh

and PR2,h
sparse direct solvers are used.

The system (5.2) is solved using the preconditioned MINRES method with ran-
dom initial guess. The performance of MINRES depends subtly on the distribution of
the eigenvalues of the preconditioned matrix. A well-known estimate for the residual
rk of the kth iterate with k = 2l in terms of the condition number is given by

‖P−1
h r2l‖Ph

≤ 2 ql ‖P−1
h r0‖Ph

with q =
κ
(
P−1
h Ah

)
− 1

κ
(
P−1
h Ah

)
+ 1

(see, e.g., [10]), which also motivates our stopping criteria. MINRES is terminated if
‖P−1

h rk‖Ph
is reduced by a factor of 108 from its initial value ‖P−1

h r0‖Ph
.

Table 1 for p = 2 and Table 2 for p = 3 show the degrees of freedom (DoFs) of
the systems for several levels ` of refinements and the iteration numbers of MINRES
for different values of α.

Reasonably small iteration numbers were observed for 0 < α� 1. For α = 1, the
iteration numbers are significantly larger. As expected the performance of MINRES
does not deteriorate for small values of α. The dependence on the mesh size h is
moderate.

Remark 5.2. The iteration numbers in Tables 1 and 2 indicate that the constant
cR in assumption (K2) might depend moderately on the refinement level, while the
stronger assumption (K2′) might not hold. Then the observed large iteration numbers
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Table 1
Iteration numbers using p = 2.

`\α 100 10−3 10−6 10−9 DoFs

2 92 39 42 13 3 584
3 174 45 43 22 28 416
4 250 46 43 34 226 304
5 367 52 41 41 1 806 336

Table 2
Iteration numbers using p = 3.

`\α 100 10−3 10−6 10−9 DoFs

2 132 41 43 38 4 619
3 192 43 43 42 32 303
4 304 45 43 43 241 367
5 388 48 43 43 1 865 639

for α = 1 are consistent with Theorem 3.8, which ensures bounded condition numbers
for increasing values of α only under the stronger assumption (K2′). The precise
influence of the combination of values for α of the order 1 and high refinement levels
` remains unclear.

However, a value of α of the order 1 does not pose any difficulty for the construc-
tion of an alternative preconditioner based on the standard norms of the spaces Y ,
U , and R.

Remark 5.3. For more complex domains, isogeometric analysis (cf. [7, 11]) can be
used to obtain smooth conforming discretization subspaces, and multipatch domains
can be dealt with by methods described in [5] and the references within. For large-
scale problems sparse direct solvers eventually fail due to memory limitations. The
methods described in [8] can then be considered.

6. Concluding remarks. The main theoretical result of this paper, Theo-
rem 2.2 is the characterization of all robust block diagonal preconditioners for a class
of multiple saddle point problems by the relation (2.7). This characterization does
not provide an explicit formula for robust preconditioners but it can serve as a tool
for constructing them, as was demonstrated in Theorem 3.8 for a quite general class
of optimal control problems. Examples of elliptic, parabolic, and hyperbolic control
problems were discussed. The hyperbolic optimal control problem was studied in
more detail, for which a preconditioner was proposed which performs robustly with
respect to the regularization parameter α, if α lies below some threshold, and which
shows only a mild dependency on the mesh size h. The robustness with respect to α
is shown; the dependency on the threshold for α and on h is not yet covered by the
theoretical results.

Appendix A. An auxiliary result. Throughout the paper we have used the
following well-known result, for which we present a short proof, for convenience of the
reader.

Lemma A.1. Let A : V −→ V ′ and B : V −→ Q′ be linear operators, where V
and Q are Hilbert spaces with dual spaces V ′ and Q′. Additionally assume that A is
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self-adjoint and coercive. Then we have

〈
BA−1B′q, q

〉
= sup

0 6=v∈V

〈Bv, q〉2

〈Av, v〉
for all q ∈ Q.

Proof. Observe that〈
BA−1B′q, q

〉
=
〈
B′q, A−1B′q

〉
= ‖B′q‖2A−1

with the norm ‖f‖A−1 = (f, f)
1/2
A−1 on V ′, given by the inner product (f, g)A−1 =

〈f,A−1g〉 on V ′. By Cauchy’s inequality it easily follows for any inner product and
associated norm

‖f‖ = sup
06=g

(f, g)

‖g‖
.

In particular, we have

‖B′q‖2A−1 = sup
06=g∈V ′

(g,B′q)
2
A−1

‖g‖2A−1

= sup
06=g∈V ′

〈
g,A−1B′q

〉2
〈g,A−1g〉

.

By substituting g by Av it follows that

sup
06=g∈V ′

〈
g,A−1B′q

〉2
〈g,A−1g〉

= sup
06=v∈V

〈
Av,A−1B′q

〉2
〈Av, v〉

= sup
06=v∈V

〈B′q, v〉2

〈Av, v〉
= sup

0 6=v∈V

〈Bv, q〉2

〈Av, v〉
.
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