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Abstract

In this paper we propose an efficient algorithm for topology adapta-
tion of evolving surface meshes in 3D. This system has two novel features:
First, a spatial hashing technique is used to detect self-colliding trian-
gles of the evolving mesh. Secondly, for the topology adaptation itself,
we use formulas which are derived from homology. In view of this the
advantages of our algorithm are that it does not require global mesh re-
parameterizations and the topology adaptation can be performed in a
stable way via a rather coarse mesh.

We apply our algorithm to segmentation of three dimensional synthetic
and ultrasound data.

Keywords: deformable model, triangular mesh, topology adaptation, segmenta-
tion, homology

1 Introduction

Since the pioneering work [29] deformable contours have been used successfully
in various areas of applications, such as image processing, medical imaging, cloth
modeling and game development.

It is common to differ between explicit and implicit deformable contours
– that is, such are parametric and level set models respectively. The later
have been introduced in [21] and since then, a number of achievements have
been made both on the theoretical side [5] and on the numerical side, using
additive operator splitting schemes (which are surveyed in [28]) and narrow-
band methods (introduced in [2], for recent applications see also [8, 30, 10]).
One advantage of implicit methods is that topology adaptations are handled
automatically during the evolution process. Nevertheless explicit models are
often preferred since efficient narrow-band implementations require complicated
data structures and can lead to artifacts when discretizing with axes aligned
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bounding boxes. Having segmentation of medical images in mind, a major
problem with level set methods occurs with low-contrast images. In this case,
many different connected components are segmented, whereas the user only
wants to obtain the contour of one single connected object, which possibly
contains some enclosed objects.

In this work we develop an explicit method which allows for topological
adaptive segmentation, and we believe that it is superior to level set techniques
in the above mentioned medical context. Such methods have already been
subject to extensive research. To our knowledge, explicit contour models with
topological adaptiveness have been considered first in [16] and [24]. There, de-
formable contours are represented as tensorial spline products [16] and sets of
dynamic particles [24], respectively. The basic snake model, introduced in [18],
has been complemented with topology adaptivity in [19] utilizing a supplemen-
tal Freudenthal triangulation. This triangulation is obtained by subdividing the
d-dimensional image domain into a uniform cubic grid and further subdividing
each cube into d factorial simplices. With this additional simplicial structure a
re-parametrization is performed periodically after a fixed finite number of itera-
tions of the snake evolution. In each Freudenthal triangle mesh self-collisions are
checked for and topology is adapted where collisions have been detected. Simi-
lar ideas have been presented in [7]. Basically, the algorithms of [19, 7] consist
of three steps. First a grid is aligned on the two dimensional image domain con-
taining the object to be segmented. Secondly, intersections of the contour edges
with the grid edges are computed and stored as grid vertices. From the grid
vertices new contour edges are computed, which are edges connecting the grid
vertices. Thirdly, self-intersections of the re-parameterized contour are detected
and the topology of the contour is adapted in all simplices composed of the grid
edges. In [3] it is suggested to evolve a polygonal contour where the vertices are
restricted to lie on a supplemental rectangular grid of the image domain. An
advantage of this approach is that no re-parameterizations have to be performed
and topology adaptations are along the lines of [19]. On the other hand, if the
underlying grid is fine, small time stepping is required and thus the evolution
becomes numerically expensive. In [11] a mesh transformation algorithm is pro-
posed which discards overlapping mesh parts and performs a re-triangulation
afterwards. This method only works if the mesh satisfies geometrical proper-
ties, which are controlled by a distance field evolution. According to [27, Sec.
4] distance field computations are numerically very expensive. A speed up of
the algorithm of [11] has been obtained in [12, 13, 14] by relaxing the (global)
geometrical constraints by local conditions. A heuristic approach to topology
adaptive segmentation is chosen in [4], requiring a large number of parameters
and transformation rules.

Our proposed algorithm is designed for segmentation of multiple connected
surfaces in 3D and consists of the following steps:

Scheme 1 (Topology adaptive segmentation scheme).

1. An active contour model is used to evolve a mesh until self-intersections
are detected. Detection is performed by a spatial hashing algorithm de-
scribed in Section 2. This algorithm is motivated from [26].

2. Neighboring vertices of colliding parts of the mesh M are removed to get
an opened mesh Mb whose boundary consists of a number of simple closed
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Figure 1: Top Left: Opened mesh Mb. Top Right: Handle K. Bottom: Closed
mesh Mc.

polygons. Possible enclosed objects are taken into account. The algorithm
is described in Section 4.

3. The opened mesh Mb is completed by a handle, which consists of a mesh K,
that is topologically equivalent (i.e. homeomorphic) to a sphere with holes.
The completed mesh Mc consists of the union of Mb and K. The topology
adaption is illustrated in Figures 1. To make the completion algorithm
efficient we use a precomputed database of topologically equivalent meshes
for the handles. The database is structured by the number of connected
polygons and the numbers of faces, respectively.

4. Afterwards the active contour evolution is further continued.

In this paper we focus on algorithms for detection of self intersections and topol-
ogy adaptations. Active contour models are not discussed here further, we refer
to [6] for a standard reference on this topic.

The outline of this paper is as follows: Section 2 describes the self-collision de-
tection system. Section 3 introduces handles as the main tool to perform topo-
logical adaptations, using concepts from homology theory. Section 4 describes
the complete topology adaptation system. Section 5 provides some results from
segmentation of artificial and medical test images. Section 6 concludes the pa-
per, and proofs of some theorems are given in the Appendix.

2 (Self-)Collision Detection

For collision detection of the evolving surfaces we use a spatial hashing algorithm
which is motivated from [26]. However, in comparison, our proposed algorithm
has several additional features. For instance, for implementation it does not
require complicated data structures and the running time is linear with respect
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Figure 2: A 2D-projection of the hash function construction. In 2D, four systems
of axes aligned bounding boxes cover Ω. Two systems are shown on the left hand
side, and two systems are shown on the right hand side, respectively. Points
closer than l/2 to each other are contained in at least one common square. The
two marked points are detected by the dashed system on the right hand side.
In 3D, eight hash functions are used.

to the number of vertices and the chosen hash table size. We are given a
triangular mesh M = (V,E, F ) in a bounded region Ω ⊂ R3. The proposed
hashing algorithm consists of the following two steps:

Scheme 2 (Collision Detection Algorithm by Spatial Hashing).

1. For all mesh vertices v, eight hash functions hi1,i2,i3(v) (with i1, i2, i3 ∈
{0, 1}) are computed by a subdivision of Ω into axes aligned bounding
boxes.

2. Let i1, i2, i3 ∈ {0, 1}. For all hash values j let

V i1,i2,i3j = {vertices with hi1,i2,i3(v) = j} ,

the sets of vertices with hash value j. In this step it is checked whether
triangles containing vertices of V i1,i2,i3j intersect.

In the following we present some details of the spatial hashing algorithm. In the
first step, for a definition of the hash functions, we use large prime numbers pi,
i = 1, 2, 3, and choose a hash table size htblSize. Moreover, we denote by the
real parameter l the size of the axes aligned bounding boxes (see Figure 2). By
bac we denote the greatest integer smaller than a. For a > 0 and i ∈ {0, 1} let

r(a, i) =
{ ⌊

a
l

⌋
l if i = 0⌊

a
l + 1

2

⌋
l if i = 1 (1)

For i1, i2, i3 ∈ {0, 1} we define hash functions:

hi1,i2,i3(v) = r
(vx
l
, i1

)
p1 + r

(vy
l
, i2

)
p2 + r

(vz
l
, i3

)
p3 mod (htblSize + 1)

(2)
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Theorem 3. If ‖P−Q‖ ≤ l
2 , then at least for one of the eight tripels (i1, i2, i3) ∈

{0, 1}3, we have

hi1,i2,i3(P ) = hi1,i2,i3(Q) (3)

Proof. Since ‖P −Q‖ ≤ l
2 we have |Pj −Qj | ≤ l

2 for all j = 1, 2, 3. For each j,
one of the following two statements holds:

(1) there exists k ∈ N such that Pj , Qj ∈ [kl, (k + 1)l]

(2) there exists k ∈ N such that Pj , Qj ∈ [(k − l
2 ), (k + 1

2 )l]

If (1) holds, we choose ij = 0, otherwise we choose ij = 1. Then for every j,

we have r
(
Pj

l , ij

)
= r

(
Qj

l , ij

)
and therefore equation (3) holds. �

We use vertices with Euclidean distance smaller than l/2 as indicators for in-
tersecting triangles.

For an optimal choice of the box size l we use Theorem 4, below. For a proof
of the theorem we refer to the Appendix.

Theorem 4. Assume that the length of every edge of a mesh M = (V,E, F )
is bounded by s. Moreover, we assume that the triangles T = (T1, T2, T3) and
S = (S1, S2, S3) of the mesh intersect. Then there exist i, j such that

‖Ti − Sj‖ <
√

2
3
s.

Here and in the following we identify the triangle with the triple of edge points.

According to the theorem we choose l > 2
√

2/3s, because this choice guarantees,
that at least two vertices of intersecting mesh triangles are mapped to the same
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hash key, and thus in the sequel an intersection test is performed. For our
applications we have chosen the hash table size to be twice the number of
mesh vertices. This choice is based on numerical experiments with meshes
of approximately 10k vertices and 20k triangles, respectively. The hash table
sizes have been varied (see Figure 2). From this table we see that the running
time for the collision detection is monotonously decreasing in hash table sizes
smaller than twice the number of mesh vertices, and remains nearly constant for
greater hash table sizes. Therefore, from a point of memory usage the suggested
choice appears to be optimal. In the second step we iterate through the hash
keys and check for each pair of non-neighboring vertices with the same hash
key if they are contained in triangles which intersect. This is done with a fast
triangle-triangle intersection test, see [20].

3 The Handle Database

In this section we show how to generate a data base of simplices which allows for
completion of an opened mesh Mb to a closed mesh Mc. A set of such simplices
will be called a handle. Here we make use of concepts from topology (see e.g. [9,
17, 23] for background material). We are mainly concerned with combinatorics
and use simplicial complexes and subcomplexes in a coordinate free abstract
sense as in [23, p.141]. We recall that abstract simplicial complexes are not
necessarily defined by coordinates in Euclidean space, but only by abstract data
like integers. Therefore the geometric realization |M | of an abstract simplicial
complex M (see [23, p.142]) is only defined up to homeomorphism.

To start with, we make a basic definition of handles:

Definition 5. We call an abstract simplicial complex C = (C0, C1, C2) a cap,
if there exist m ∈ N, a0, . . . , am ∈ Z, a0 < . . . < am such that:

C0 = {a0, . . . , am} ,
C1 = {{a0, a1} , . . . , {a0, am} , {a1, a2} , {a2, a3} , . . . , {am−1, am} , {am, a1}} ,
C2 = {{a0, a1, a2} , {a0, a2, a3} , . . . , {a0, am−1, am} , {a0, am, a1}} .

The orientation of the complex is given by (a0, a1, a2), (a0, a2, a3), . . .,
(a0, am−1, am), (a0, am, a1). a0 is called the vertex center.

Let C1, . . . , Ck be caps. An abstract simplicial complex K = (K0,K1,K2) is
called handle if the geometric realization

∣∣∣⋃ki=1 C
i ∪K

∣∣∣ of

k⋃
i=1

Ci ∪K :=

(
k⋃
i=1

Ci0 ∪K0,

k⋃
i=1

Ci1 ∪K1,

k⋃
i=1

Ci2 ∪K2

)
is homeomorphic to a 2-sphere (in signs

∣∣∣⋃ki=1 C
i ∪K

∣∣∣ ≈ S2) and for all j ∈
{1, . . . , k}, the inclusion

Cj ↪→
k⋃
i=1

Ci ∪K

is orientation preserving. We recall that homeomorphisms are defined to respect
topological properties. A cap is visualized in Figure 3.
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Figure 3: Left: A cap. Right: A simple closed boundary polygon of Mb.

The following theorem characterizes topological properties of a handle and
states that the a mesh M after opening at k locations and closing by a handle
(this is the mesh Mc) constitutes a surface which has k − 1 tunnels more than
M , that is the genus is increased by k − 1.

Theorem 6. Let M = (V,E, F ) be an abstract 2-dimensional simplicial com-
plex, such that |M | is an orientable, connected surface without boundary. Fur-
thermore, let Mb be the simplicial subcomplex of M obtained by removing k con-
nected components from M such that |Mb| is a surface with boundary consisting
of k simple closed polygons (see also Figure 1, top left). Let C1, . . . , Ck be caps
such that its boundaries consist of the boundary polygons of Mb (see also Figure
3). Moreover, let K be a handle for C1, . . . , Ck, so that |

⋃k
i=1 C

i ∪ K| ≈ S2.
Then

|Mb ∪K| ≈ Tk−1+g(M), (4)

where Tk−1+g(M) is the closed, orientable surface of genus k − 1 + g(M) and
g(M) is the genus of M .

This theorem can be proven by standard methods of algebraic topology.
Topological equivalent 2-spheres can be characterized by simplicial homology

(see e.g. [23, p.144] for background on this topic).

Theorem 7. Let M = (V,E, F ) be an abstract 2-dimensional simplicial com-
plex such that every edge e ∈ E is a face of some f ∈ F . If the homology
conditions

• H0(M) ∼= Z

• H1(M) = 0

• H2(M) ∼= Z, generated by
∑
f∈F

εff with εf ∈ {−1, 1}

hold, then the geometric realization of M is homeomorphic to S2.

This theorem is similar to the well-known Whitehead Theorem (see [9, p.346])
which states that spaces with isomorphic homotopy groups are homotopy equiv-
alent. Theorem 7 can be proven again by standard methods of algebraic topol-
ogy.

Based on these basic definitions and Theorem 7 we can present an algo-
rithm for computation of handles which contain given simple closed polygons
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Figure 4: Different types of faces.

as boundary polygons. With each simple closed polygon we can associate a cap
by adding a center vertex and connecting the center with the vertices by edges.
Therefore, we concentrate now on computation of handles given disjoint caps.

Let us assume that we have given k disjoint caps Ci, i = 1, . . . , k with
numbers of vertices mi, i = 1, . . . , k, respectively.

We use the notation m =
k∑
i=1

mi and denote by vc, ec, fc the numbers of

vertices, edges, and faces of the mesh
⋃k
i=1 C

i ∪ K. Let us assume that the
geometric realization of

⋃k
i=1 C

i ∪K is homeomorphic to a sphere – that is the
case if K is a handle. Then, from the Euler formula (see [23, p.146]) we know
that vc − ec + fc = 2. Moreover, by induction on the number of triangles, we
can show that 2ec = 3fc, and therefore fc = 2vc − 4. If k caps are connected
by a handle, the number of vertices of the arising sphere is vc = m + k, and
therefore

fc = 2m+ 2k − 4.

Since the caps Ci contain m faces altogether, m+ 2k−4 faces have to be added
to the faces of the set

{
Ci : i = 1, . . . , k

}
to obtain a sphere. We differ between

two different kinds of faces to be added (see Figure 4):

• When a face to be added has two vertices in common with some Ci, i =
1, . . . , k, then it is called of Type 1.

• Else it is called of Type 2. That is the case if the face has at most one
vertex in common with every Ci.

There exist m faces of Type 1 and 2k − 4 faces of Type 2.
Based on these considerations we are able to generate the handle database,

which associates tuples consisting of the number of connected polygons k and the
numbers of vertices mi, i = 1, . . . , k, a set of handles, respectively. Without loss
of generality we always assume in the sequel that mi+1 ≥ mi, i = 1, . . . , k − 1.
For given k and mi, i = 1, . . . , k, a handle of the database is determined as
follows:

1. For each boundary edge of a cap choose a vertex in a different cap. The
face determined by the edge and the chosen vertex is one of the m triangles
of Type 1.

2. Locate two edges which share a common vertex such that all three vertices
are contained in different caps. This determines the 2k − 4 triangles of
Type 2.
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3. Check if the abstract simplicial complex made of the caps and the added
faces is a sphere, that is, it satisfies the conditions of Theorem 7. Compu-
tationally, one can check the homology criterion using the PARI software
[22].

Given caps Ci, i = 1, . . . , k with mi vertices, respectively, it is useful for our
purposes to associate a sequential enumeration to the vertices. To this end we
use the notation µl =

∑l
i=1mi. Vertices between µl−1 + 1 and µl (where we set

µ0 := 0) correspond to the vertices in the cap Cl.
For i ∈ {1, . . . , µk}, we set

i⊕ 1 =
{
µj−1 + 1 if i = µj for some j ∈ {1, . . . , k}
i+ 1 otherwise.

Therefore, i⊕ 1 is the subsequent vertex of i in the cap Ci.

Example 8. In this example we calculate the number of different elements of
the handle database for some test cases of small k.

k = 2: Because we have 2k− 4 = 0, only faces of Type 1 occur. For a function

f : {1, . . . ,m1} → {m1 + 1, . . . ,m1 +m2} ,

which we assume to be monotonously decreasing and surjective we define

g : {m1 + 1, . . . ,m1 +m2} → {1, . . . ,m1} .
j 7→ max {i : f(i) = j}

Note that f maps vertices of the first cap onto vertices of the second and
g is a right inverse. These two functions define a handle with the face set

{(1, 2, f(1)), . . . , (m1 − 1,m1, f(m1 − 1)), (m1, 1, f(m1)),
(m1 + 1,m1 + 2, g(m1 + 1)), . . . ,
(m1 +m2 − 1,m1 +m2, g(m1 +m2 − 1)),

(m1 +m2,m1 + 1, g(m1 +m2))} .

For k = 3, 4 and some tuples of edge numbers the numbers of possible handles
have been summarized in Table 1.

We consider symmetric group actions on the set of handlesK = K(k;m1, . . . ,mk)
for k caps of sizes m1, . . . ,mk, respectively. For the theory of group actions, see
[15, p.25]. By a group action on a set S, the set S is partitioned into disjoint
orbits S1, . . . , Sn (see [15, p.28]), and a set of generators of S is a choice of
elements si ∈ Si, i = 1 . . . , n. We identify generators of K which completely
determine K modulo group actions.

Rotations: The topology of the caps remains unchanged if a rotation of the
vertex numbers of a cap is performed. More precisely, let

ωR,i(l) =
{
l ⊕ 1 µi < l ≤ µi+1

l otherwise, ,

ΩR = ΩR,1 × . . .× ΩR,k ,
ΩR,i = subgroup of Σµk

generated by ωR,i ,
Σµk

denotes the symmetric group on the set {1, . . . , µk} .
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k = 3:

m1 m2 m3 m4 handles generators

3 3 4 - 72 1

3 4 5 - 120 2

4 4 6 - 192 2

k = 4:

3 3 4 4 576 1

Table 1: The numbers of possible handles in the database, and the number of

generators taking into account group actions.

Figure 5: A rotation.

We obtain a group action of ΩR on K by applying ΩR to every vertex of
every simplex of a handle K. A representant is Rotations are illustrated
in Figure 5.

Exchanges: The order of two caps, consisting of the same number of vertices,
can be exchanged. If

ωE,i,j(l) =

 l − µj + µi µj < l < µj+1

l + µj − µi µi < l < µi+1

l otherwise

and ΩE,i,j = {id, ωE,i,j} the group of exchanges of cap i and cap j, then

ΩE =
∏

i<j,mi=mj

ΩE,i,j

operates on K. Exchanges are illustrated in Figure 6.

An easy computation shows that the two operations commute, i.e.

ωτ(K) = τω(K) for ω ∈ ΩR, τ ∈ ΩE and K ∈ K.

As a consequence, we can apply rotations and exchanges in an arbitrary order
to a handle. With these operations, only very few elements are required to
generate elements of K. This is illustrated by comparing the last two columns
of Table 1.
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Figure 6: An exchange

4 Implementation of the Topology Adaptation

For implementation of the topology adaptation algorithm (compare Scheme 1),
we use the handle database as main tool. Moreover, further routines for mesh
opening and splitting into components are implemented, which we describe be-
low.
We are given an initial triangular mesh M0 = (V0, E0, F0). The initial mesh
is assumed to be free of self-intersections and without boundary, but several
components of arbitrary genus are allowed. An iterative evolution is performed
on the mesh. (Self-)intersections of the evolving contour are detected by the
spatial hashing algorithm of Section 2. This algorithm computes vertices with
the same hash index which belong to intersecting triangles.

Mesh Opening.
The opening of the mesh is performed in such a way that the boundary of the
opened mesh Mb consists of simple closed polygons. For this purpose vertices
of colliding mesh parts are grouped into disjoint connected sets Λ1, . . . ,Λk such
that for i 6= j, two arbitrary vertices v ∈ Λi, w ∈ Λj have no common neighbor.
The set Ni of all neighboring vertices of vertices in Λi without Λi is a neighbor-
hood of Λi, which consists of connected components N0

i , . . . , N
li
i . We assume

that the neighborhoods N j
i are pairwise disjoint and that its edges form a sim-

ple, closed polygon, otherwise the following neighborhood refinement routine is
used: We insert new vertices on the bisectors of edges between vertices of Λi

and of N j
i , and connect these vertices by edges as shown in Figure 7. Arising

quadrilaterals are triangulated. As a result, the edges connecting the bisectors
form a simple closed polygon around Λi, and their neighborhoods are pairwise
disjoint. The routine is illustrated in Figure 7(a)-(d).

Splitting.
In general, the neighborhood Ni consists of several components N0

i , . . . , N
li
i .

One component, say N0
i , encloses Λi, and the other components are enclosed

by Λi, see Figure 8. The outside component N0
i can be computed from the

orientation of the mesh. Components N1
i , . . . , N

li
i belong to enclosed parts
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Figure 7: In (a), Λ1 consists of two and Λ2 of three vertices connected by a bold

line. N1 and N2 have three common neighbor vertices, and N2 forms no simple closed

polygon because of edge e. The iterative refinement algorithm is demonstrated in

(b) and (c). Bisector vertices vj are inserted as well as edges between them (dashed

line), and the arising quadrilaterals are triangulated (dotted line). The result of the

refinement algorithm is shown in (d).

of the mesh. There are two different kinds of enclosed object neighborhood
components N j

i for j ≥ 1 and we propose two different procedures:

• If N j
i contains a triangle, i.e. there exist v1 ∈ N j

i , v2, v3 ∈ V \Λi neighbors
of v1, s.t. (v1, v2, v3) ∈ F . Then the neighborhood refinement routine is
applied such that the boundary of Λi towards N j

i as well as the boundary
of N j

i towards Λi are Jordan polygons. The connections between the two
polygons are discarded. For each polygon, the barycenter of the vertices
is inserted, and connected to the polygon. Thus, the mesh is split into
two separate components.

• If N j
i contains no triangle, no real enclosed object has been detected, and

N j
i is added to Λi.

Deleting components.
After discussing possible splittings, we can assume that the neighborhood Ni
of a set Ci is connected and a simple, closed polygon. In case that Ci does not
collide with another set Cj , we consider the following possible procedures:

• The mesh component containing Ci and Ni consists of no more vertices
than Ci ∪Ni. Then this component is deleted.

• Otherwise Ci is rather coarse and smoothed by Taubin’s method [25].
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(a)

N0

N1

Λ

(b)

Figure 8: In (a), the neighborhood of Λ consists of two components. N0 is the

component outside C, N1 is an enclosed component. In (b), the edges connecting Λ

and N1 are deleted, barycenters and connecting edges inserted, and two components

arise.

Note that every decrease in genus is obtained by vanishing components.

Inserting handles from the database.
From now on, assume that C1, . . . , Ck are overlapping, with k ≥ 2. In this situ-
ation, we discard the vertices of C1, . . . , Ck and its adjacent mesh elements. The
neighborhoods N1, . . . , Nk have to be reconnected by inserting edges and faces
between them. In this situation, we use the handle database. Every handle gives
a possible connection of the neighborhood polygons. The only thing to check is
if the triangles given by the formulas self-intersect. This test is performed by
the triangle-triangle intersection test of [20]. Then among the possible handles
the one with shortest edge length is taken. We believe that this choice is the
most natural one and gives suitable meshes for further evolution.

We implemented the topology adaption system for an active contour evolution,
where only outward movement of the vertices is possible. Therefore, the volume
bounded by the mesh is monotonously increasing, and no infinite loops (con-
sisting of handle attachment and splitting) are possible. Furthermore, mesh
splittings only arise, when an enclosed object has been detected. On the other
hand, if mesh shrinking is also allowed, the topology adaptation system works
as well, but infinite loops are possible. This arises naturally in the simple
case where the object to segment consists of two pieces with small overlap, like
[−1, ε]3 ∪ [−ε, 1]3 for some small ε > 0 or also ε = 0. In such a case with noisy
data, the user has to choose the parameters of his active contour model (like
edge length bounds) appropriately to ensure convergence of the segmentation
algorithm.

5 Results and Discussion

We tested our algorithm for topology adaptation in connection with the active
contour algorithm published in [1] on artificial and medical test images. In both
cases the dark part is regarded as the object to be segmented. To initialize the
segmentation algorithm a small sphere is manually placed inside the dark part
of the voxel image. The evolving surface moves towards the boundary of the
object.
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Figure 9: The upper left image shows the original ultrasound data. The upper right

image shows the biopsy needle in greater detail, using a contrast enhancing colormap.

The final segmenting mesh is shown at lower left. A projection on the y-z plane is

presented at lower right.

As far as possible we compare the numerical results to those given in [12].

Object Voxel size Iterations Vertices Sec.
Cyst 199× 99× 171 133 8687 9
Cube 100× 100× 100 709 13576 65

Genus 3 100× 100× 100 677 9680 28
Torus 100× 100× 100 215 5454 8

Table 2: For each test example, the number of iterations and vertices and the running

time of the segmentation algorithm is given. Tests were performed on a 3.5 GHz

computer with 2 GB RAM.

• An ultrasound image of a cyst is segmented. The white part inside the
cyst, running from front to back, stems from a biopsy needle, see Figure
9. The segmentation is used to determine the shape of the cyst and the
position of the biopsy needle. As the projection to the y-z plane shows the
cyst and the needle are accurately segmented, also in regions where the
topology of the mesh has been adapted during the evolution of contour.
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Figure 10: A cube with a spherical cavity and some Gaussian noise added is shown
at upper right. As a segmentation result we obtain the mesh shown in the remaining
images. At lower left, only the edges are visualized.

• The next example concerns a computer generated voxel image of a cube
with a spherical cavity (see Figure 10). Different from the example in [12],
every side of the cube contains a hole such that the segmenting contour
of the object has genus 5.

• The next example shows an object of genus 3, the starting ball chosen
on one crossing of the four parts. Therefore, a topology change with four
parts hitting at the same iteration step is performed. The result is shown
in the top part of Figure 11.

• The last example shows a torus with 4 enclosed objects. As segmentation
result a torus enclosing 4 spheres is obtained, see the bottom part of Figure
11.

The performance of our topology change algorithm tested on the four exam-
ples is summarized in Table 2.

The numerical experiments demonstrate the robustness and efficiency of the
topology completion algorithm. Its basic components, consisting of the handle
database and triangle-triangle intersection tests, do not assume global mesh re-
strictions. On the other hand, the collision detection system requires globally
bounded edge lengths, since otherwise there is no efficient choice of the box
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Figure 11: Voxel images for the last two examples and the segmentation results.

sizes. However, this is no substantial drawback, since mesh regularity assump-
tions are usually inferred for a reliable computation of the force terms directing
the evolution. As expected, the running times of the segmentation algorithm
roughly depend linearly on the number of iterations, respectively vertices. The
running time for segmentation of the object of genus 3 is a bit shorter than ex-
pected, because many vertices reach the object boundary rather early, and only
a comparably small number of vertices is actually updated during an evolution
step. As a consequence, we obtain a speedup versus previous 3D topology adap-
tive segmentation routines. The cube with spherical cavity can be compared to
the first example in [12]. There, only one face of the cube is penetrated by the
ball, such that their object to recover has genus 0. Due to possibly different
computing modalities, it is hardly possible to compare pure computation times
to [12], but our result seems to be very promising.

6 Conclusion and Outlook

We introduce a very efficient novel topology completion system which runs inde-
pendently of the evolution, does not require any reparameterizations and runs
stable, even if the mesh is not regularly sampled. We introduce a novel and
efficient collision and self-collision detection algorithm for triangular meshes,
which runs in linear time and does not require complex data structures or huge
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memory resources. The system is designed for interactive applications.
Due to the topological completion formulas obtained by the homology cri-

terion, we were able to develop a very robust topological completion system,
working with arbitrary mesh deformation algorithms. Since our (self-)collision
detection algorithm works in linear expected time, the system is also very ef-
ficient resulting in significantly reduced computation times. For numerical ex-
periments, we used a standard balloon model, thus losing overall efficiency for
segmentation a bit. As a future work, it seems to be interesting to combine
the presented topological completion algorithm with a locally adaptive mesh
evolution as presented in [12, 14].
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Appendix

For a triangle T in R3 given by its vertices T1, T2, T3 and a point P in R3 let

d(P, T ) := min {‖P − T1‖ , ‖P − T2‖ , ‖P − T3‖} .

We use the notation T = (T1, T2, T3) and denote by prT (P ) the orthogonal
projection of P in the plane spanned by T - which is of course only well-defined
if the triangle does not degenerate.

Lemma 9. Assume that T = (T1, T2, T3) is a triangle in R3, and P ∈ R3. Then

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2.

Proof. The situation is illustrated in Figure 12(a). Looking at the Voronoi di-
agram of the three points T1, T2, T3 ∈ R3, we deduce that for some i = 1, 2, 3,
‖P − Ti‖ ≤ ‖P − Tj‖ for all j = 1, 2, 3 if and only if

‖prT (P )− Ti‖ ≤ ‖prT (P )− Tj‖ for all j = 1, 2, 3. (5)

Therefore, if d(P, T ) = ‖P − Ti‖ for some i, we have

d(P, T ) = ‖P − Ti‖ =
√
‖P − prT (P )‖2 + ‖prT (P )− Ti‖2

=
(5)

√
‖P − prT (P )‖2 + d(prT (P ), T )2

�
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(a) (b)

Figure 12: In (a), edge PR intersects triangle (T1, T2, T3) in Q. In (b), the projection

prT (P ) of P onto the plane spanned by T lies outside the three circles.

Now we can give a proof of Theorem 4:

Proof of Theorem 4.
Without loss of generality we can assume that every edge of both triangles S
and T has maximal edge length s, i.e. both triangles are equilateral. Moreover,
we assume that an edge e of S intersects T (otherwise we interchange the role
of S and T ), and we denote the intersection point by Q.

Let P be an endpoint of e which fulfils ‖P −Q‖ ≤ 1
2s. Denote by barT

the barycenter of T . (see Figure 12(a)). We consider two cases concerning the
position of prT (P ):

• d(prT (P ), T ) ≤ d(barT , T ): In this case, we have that

‖P − prT (P )‖ ≤ ‖P −Q‖ ≤ s

2

and
d(prT (P ), T ) ≤ d(barT , T ) =

1
3

√
3s.

Therefore, using Lemma 9 we deduce that

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2 ≤

√
1
4

+
1
3
s ≤

√
2
3
s.

• d(prT (P ), T ) > d(barT , T ): In this case, prT (P ) lies in the complement
of the discs around the points Ti with radius ‖barT − Ti‖, as illustrated
in Figure 12(b). Since P is projected to prT (P ) outside T , there exists a
point B contained in an edge (Ti, Tj) of T , such that

‖P −B‖ ≤ ‖P −Q‖
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(namely the intersection point of the line (prT (P ), Q) with one of the
triangle edges). Since ‖P −Q‖ ≤ s

2 , we can deduce that

‖P −B‖ ≤ s

2
(6)

From (6) it also follows that ‖prT (P )−B‖ ≤ s
2 , and moreover one of the

norms ‖Ti −B‖, ‖Tj −B‖ is smaller than s
2 . Therefore, we obtain

d(prT (P ), T ) ≤
√

min{‖Ti −B‖2 , ‖Tj −B‖2}+ ‖prT (P )−B‖2

≤ 1
2

√
2s .

(7)

Let A be the image of barT under reflection along the edge (Ti, Tj). Since
prT (P ) lies in the complement of the discs around the points Ti with radius
‖barT − Ti‖, we have

‖B − prT (P )‖ ≥
∥∥∥∥A− 1

2
(Ti + Tj)

∥∥∥∥ =
∥∥∥∥barT −

1
2

(Ti + Tj)
∥∥∥∥ =

1
6

√
3s (8)

Altogether, using Lemma 9, we obtain

d(P, T ) =
√
‖P − prT (P )‖2 + d(prT (P ), T )2

=
√
‖P −B‖2 − ‖B − prT (P )‖2 + d(prT (P ), T )2

≤︸︷︷︸
(6)(8)(7)

√
( 1
2s)

2 − ( 1
6

√
3s)2 + ( 1

2

√
2s)2

=
√

2
3s.

Altogether, we have found a point P of triangle S which is closer to T than√
2
3s, and the assertion follows. �
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