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Abstract In many geoscientific applications, multiple noisy observations of dif-
ferent origin need to be combined to improve the reconstruction of a common
underlying quantity. This naturally leads to multi-parameter models for which ad-
equate strategies are required to choose a set of ’good’ parameters. In this study,
we present a fairly general method for choosing such a set of parameters, provided
that discrete direct, but maybe noisy, measurements of the underlying quantity
are included in the observation data, and the inner product of the reconstruction
space can be accurately estimated by the inner product of the discretization space.
Then the proposed parameter choice method gives an accuracy that only by an
absolute constant multiplier differs from the noise level and the accuracy of the
best approximant in the reconstruction and in the discretization spaces.

Keywords Parameter Choice, Multiple Observations, Spherical Approximation

1 Introduction

Satellite missions like CHAMP, GRACE, GOCE, or Swarm (e.g., [4,6,10,13]) pro-
vide highly accurate data of the Earth’s gravity and magnetic field, e.g., by giving
information on the first- or second-order radial derivative of the gravitational po-
tential or measurements of the vectorial geomagnetic field, which, once certain
iono- and magnetospheric contributions have been filtered out, can be expressed
as the gradient of a harmonic potential. Drawing conclusions from such satellite
measurements on the gravitational potential or the magnetic field at or near the
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Earth’s surface is a classical exponentially ill-posed problem (see, e.g., [9,19,22]).
Measurements at or near the Earth’s surface (which we simply denote as ground
measurements), on the other hand, do not suffer from this ill-posedness but are
typically only available in restricted regions (e.g., aeromagnetic surveying [23]).
Combining both data sets becomes necessary when aiming at local high resolu-
tion models that also take global trends into account. This is a classical setting for
multiparameter modeling (e.g., [3,17–19]) that involves the regularization of an ill-
posed inverse problem (downward continuation of satellite data) and the weighting
of the satellite data against the ground data. An exemplary situation that we also
use for later numerical illustrations is the following: We have measurements f1 of
a harmonic potential u on a spherical satellite orbit ΩR = {x ∈ R3 : |x| = R} and
measurements f2 of u in a subregion Γr ⊂ Ωr of the spherical Earth’s surface Ωr,
r < R, i.e.,

∆u = 0, in Ωextr , (1)

u = f2, on ΩR, (2)

u = f1, on Γr, (3)

where Ωextr = {x ∈ R3 : |x| > r}. The problem of approximating u in Γr is
clearly overdetermined and spherical splines (e.g., [8,24]) or other localized basis
functions (e.g., [14,25,26]) could be used to approximate u in Γr from knowledge
of f1 only (generally, we denote the restriction of u to Γr by u†). However, such
methods are not always well-suited to capture global trends of u and they do not
address situations where the noise level of f2 might be smaller than that of f1.
Therefore, it is advisable to incorporate satellite data f2 as well. Eventually, based
on different parameter settings or approximation methods, we assume to have a
set of candidates {uk}k=1,2,...,N available for the approximation of u in Γr.

In this paper, we aim at introducing a method that predicts a ’good’ candi-
date uk∗ among the available {uk}k=1,2,...,N without requiring knowledge of the
method by which each uk has been obtained or which sort of noise is contained
in the data. It is also not necessary to know the underlying models or the type of
data that has lead to the construction of uk. Apart from {uk}k=1,2,...,N , all that
is required is a reference measurement f (in the example (1)–(3), this would be
f1) of u† against which to compare the candidates uk. In this sense, we are not
dealing with a parameter choice strategy for an ill-posed problem (although the
underlying models that determine u may be ill-posed) but rather with a general
method of choosing a ’good’ approximant of u† among a set of available candidates
(an extensive comparison of parameter choice methods for ill-posed problems can
be found, e.g., in [1,2]). Opposed to aggregation methods (see, e.g., [5,20]), where
approximations from different data settings are superposed to obtain a final ap-
proximation, we assume in our method that this superposition has already taken
place in one way or another during the construction of each uk. An important
constraint for our method, in order to obtain a suitable error estimate, is that the
discrete reference measurements f of u† need to be given in points that allow the
definition of an inner product in the discretization space which coincides with the
L2-inner product in a desired finite-dimensional function space (e.g., the spherical
harmonics of degree smaller than some L). The numerical tests, however, show
that our method also supplies good results if this condition is slightly violated.
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The structure of the paper is as follows: In Section 2, we introduce and inves-
tigate the parameter choice strategy mentioned above in more detail and put it
into a mathematically rigorous context. In Section 3, we illustrate its performance
for the problem (1)–(3). The approximations for this problem are obtained by a
method described in [11]. Latter is also briefly recapitulated in Section 3.

2 The Parameter Choice Strategy

Throughout this paper, we assume the following conditions to be satisfied:

(a) Let Γr ⊂ Ωr be a subdomain of the sphere Ωr, where discrete direct mea-
surements of the underlying quantity u are available. We assume to have M
measurement values and a corresponding discretization operator D : L2(Γr)→
RM , that maps a function u† ∈ L2(Γr) to the correponding measurements
Du† ∈ RM . Furthermore, let RM be equipped with some inner product 〈·, ·〉RM
and the corresponding norm ‖·‖RM .

(b) The measurements of u† may be blurred by additive noise ξ = (ξ1, . . . , ξM ) ∈
RM and we assume, without loss of generality, that there is u†ξ = f ∈ L2(Γr)
such that

Du†ξ = Du† + ξ,
∥∥∥Du† −Du†ξ

∥∥∥
RM
≤ ε

for some ε > 0.
(c) We assume that from somewhere, a set {uk}k=1,2,...,N of approximations of

u† on Γr is available sand that all these approximations belong to some finite
dimensional linear subspace V ⊂ L2(Γr).

(d) Finally, we assume that the discretization space RM is related to the recon-
struction space V through the discretization operator D such that

〈g, ḡ〉L2(Γr)
= 〈Dg,Dḡ〉RM , for all g, ḡ ∈ V. (4)

Example 1 Let V = VL be the space of spherical polynomials of the degree L. Un-
der rather general assumptions on Γr one can find a system of knots

{
xMi
}
i=1,...,M

and positive weights
{
wMi

}
i=1,...,M

such that

∫
Γr

g(x)dΓr(x) =
M∑
i=1

wMi g(xMi ), for all g ∈ V2L.

Consider a discretization operator

Dg = (g(xM1 ), g(xM2 ), . . . , g(xMM )) ∈ RM

and the inner product

〈y, ȳ〉RM :=
M∑
i=1

wMi yiȳi.

It is clear that for the just introduced reconstruction space V = VL, discretization
space RM , and discretization operator D the condition (4) is satisfied. It is also
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clear that the measurements described by the operator D are just pointwise eval-
uations at the knots

{
xMi
}
i=1,...,M

, and the noise level of these measurements is

controlled by the quantity∥∥∥Du† −Du†ξ

∥∥∥2
RM

=
M∑
i=1

wMi (u†(xMi )− u†ξ(x
M
i ))2 ≤ ε2.

Now we are ready to describe our choice of a good approximation from a given
family {uk}k=1,...,N . Let ukopt ∈ {uk}k=1,...,N be such that∥∥∥u† − ukopt∥∥∥

L2(Γr)
= min
k=1,2,...,N

∥∥∥u† − uk∥∥∥
L2(Γr)

.

Of course, ukopt cannot be found without knowledge of u†. Therefore, in practice
one cannot find the parameters corresponding to ukopt .

We motivate our procedure with the observation that for any uk, k = 1, 2, . . . , N ,
it holds ∥∥uk − ukopt∥∥L2(Γr)

= sup
a∈L2(Γr),‖a‖L2(Γr)

=1

〈
uk − ukopt , a

〉
L2(Γr)

= max
a∈AN

〈
uk − ukopt , a

〉
L2(Γr)

,

where the finite set AN is defined as follows

AN =

{
a = ak,l =

uk − ul
‖uk − ul‖L2(Γr)

, k, l = 1, 2, . . . , N

}
⊂ V.

Then for any k = 1, 2, . . . , N and a ∈ AN the quantity〈
uk − ukopt , a

〉
L2(Γr)

= 〈uk, a〉L2(Γr)
−
〈
ukopt , a

〉
L2(Γr)

has only a part
〈
ukopt , a

〉
L2(Γr)

that cannot be computed directly, because ukopt is

unknown. On the other hand, this part can be approximated with the use of the
available observations as follows〈

ukopt , a
〉
L2(Γr)

=
〈
Dukopt ,Da

〉
RM ≈

〈
Du†ξ,Da

〉
RM

.

Therefore, the values

hk(a) = 〈uk, a〉L2(Γr)
−
〈

Du†ξ,Da
〉
RM

and

Hk = max
a∈AN

|hk(a)|

can be seen as surrogates for the values of
〈
uk − ukopt , a

〉
L2(Γr)

and
∥∥uk − ukopt∥∥L2(Γr)

respectively.
In the view of this it is natural to expect that the approximation uk∗ ∈

{uk}k=1,...,N defined by

k∗ : Hk∗ = min {Hk, k = 1, 2, . . . , N} (5)
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is close to ukopt . Indeed,∥∥uk∗ − ukopt
∥∥
L2(Γr)

=
〈
uk∗ − ukopt , ak∗,kopt

〉
L2(Γr)

(6)

=
(〈
uk∗ , ak∗,kopt

〉
L2(Γr)

−
〈

Du†ξ, ak∗,kopt

〉
RM

)
−
(〈
ukopt , ak∗,kopt

〉
L2(Γr)

−
〈

Du†ξ, ak∗,kopt

〉
RM

)
= hk∗(ak∗,kopt)− hkopt(ak∗,kopt)

≤ Hk∗ +Hkopt ≤ 2Hkopt .

Furthermore,

Hkopt = max
a∈AN

∣∣∣〈ukopt , a〉L2(Γr)
−
〈

Du†ξ,Da
〉
RM

∣∣∣
= max
a∈AN

∣∣∣〈Dukopt −Du†,Da
〉
RM

+
〈

Du† −Du†ξ,Da
〉
RM

∣∣∣
≤ ε+

∥∥∥Du† −Dukopt

∥∥∥
RM

.

Then the previous analysis together with the triangle inequality gives us the
following statement.

Theorem 1 Let us assume that conditions (a)–(d) hold true, i.e., we are given a
finite family of approximations {uk}k=1,...,N from a finite dimensional reconstruc-

tion space V ⊂ L2(Γr). Moreover, noisy direct discrete measurements Du†ξ ∈ RM

of the approximated quantity u† are available, and the reconstruction space V is
related to the discretization space RM such that (4) is satisfied. Then for k∗ chosen
according to (5) we have∥∥∥u† − uk∗

∥∥∥
L2(Γr)

≤
∥∥∥u† − ukopt∥∥∥

L2(Γr)
+ 2

∥∥∥Du† −Dukopt

∥∥∥
RM

+ 2ε.

Remark 1 Note that in the context of Example 1 we can give also another bound
for
∥∥u† − uk∗

∥∥
L2(Γr)

. Let uLbest ∈ VL be the spherical polynomial of the best C(Γr)-

approximation, i.e., ∥∥∥u† − uLbest∥∥∥
C(Γr)

= min
v∈VL

∥∥∥u† − v∥∥∥
C(Γr)

.

Then

hkopt(a) =
〈
u†, a

〉
L2(Γr)

+
〈
ukopt − u

†, a
〉
L2(Γr)

−
〈

Du†,Da
〉
RM

+
〈

Du† −Du†ξ,Da
〉
RM

=
〈
u† − uLbest, a

〉
L2(Γr)

−
〈

Du† −DuLbest,Da
〉
RM

+
〈

Du† −Du†ξ,Da
〉
RM

+
〈
ukopt − u

†, a
〉
L2(Γr)

≤ ε+
∥∥∥u† − ukopt∥∥∥

L2(Γr)
+ cM,N

∥∥∥u† − uLbest∥∥∥
C(Γr)

,
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where

cM,N =
√

vol(Γr) +
M∑
i=1

wMi

∣∣∣a(xMi )
∣∣∣ .

Furthermore, we observe that

M∑
i=1

wMi

∣∣∣a(xMi )
∣∣∣ ≤ ( M∑

i=1

wMi a
2(xMi )

)1/2( M∑
i=1

wMi

)1/2

=
√

vol(Γr).

Thus,

Hkopt ≤ ε+
∥∥∥u† − ukopt∥∥∥

L2(Γr)
+ 2
√

vol(Γr)
∥∥∥u† − uLbest∥∥∥

C(Γr)
,

and from (6) we get the following alternative bound:∥∥u† − uk∗

∥∥ ≤ 3
∥∥u† − ukopt∥∥L2(Γr)

+ 4
√

vol(Γr)
∥∥u† − uLbest∥∥C(Γr)

+ 2ε. ut

Remark 2 For the estimates in Theorem 1 and Remark 1, the assumption (4) is
crucial. Incorporating the worst-case error for non-exact quadrature rules in the
reconstruction space V , estimates similar to those in Theorem 1 and Remark 1
could be derived even if (4) is violated (compare, e.g., [15] for an overview on
spherical quadrature rules). However, such estimates would show a stronger and
undesirable dependence on u† and uk and are therefore omitted. In the numerical
examples in the next section, we show that a ’slight’ violation of the condition 4
can still yield good results.

3 Numerical Illustrations

In this section, we illustrate the numerical performance of the previously described
parameter choice method on (1)–(3), i.e., we assume u to satisfy

∆u = 0, in Ωextr ,

u = f2, on ΩR,

u = f1, on Γr.

A set of approximations uk, k = 1, . . . , N , of u† on a spherical cap Γr = Γ ρr = {x ∈
Ωr : 1 − x

|x| · (0, 0, 1)T < ρ} of radius ρ ∈ (0, 2) around the North Pole (0, 0, r)T

can be obtained by

uk(x) =

∫
ΩR

Φk(x, y)f2(y)dΩR(y) +

∫
Γr

Ψ̃k(x, y)f1(y)dΓr(y), x ∈ Γr, (7)

where the kernels Φk, Ψk are given by

Φk(x, y) =

Nk∑
n=0

2n+1∑
j=1

Φ∧k (n)
1

r
Yn,j

(
x

|x|

)
1

R
Yn,j

(
y

|y|

)
,

Ψ̃k(x, y) =

Mk∑
n=0

2n+1∑
j=1

Ψ̃∧k (n)
1

r
Yn,j

(
x

|x|

)
1

r
Yn,j

(
y

|y|

)
,
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with coefficients Ψ̃∧k (n) of the form Ψ̃∧k (n) = Φ̃∧k (n)− Φ∧k (n)
(
r
R

)n
and Nk ≤Mk.

By {Yn,j}n=0,1,...;j=0,1,...,2n+1 we mean a set of orthonormal spherical harmonics
of degree n and order j. The coefficients Φ∧k (n), Φ̃∧k (n) are chosen by minimizing
the following functional:

F(Φk, Ψ̃k) =α̃k

Mk∑
n=0

∣∣1− Φ̃∧k (n)
∣∣2 + αk

Nk∑
n=0

∣∣∣1− Φ∧k (n)
( r
R

)n∣∣∣2
+ βk

Nk∑
n=0

∣∣Φ∧k (n)
∣∣2 +

∥∥Ψ̃k∥∥2L2(Ωr\Γr)
.

The first two terms of the functional F measure the approximation property of the
kernels Φk, Ψ̃k (i.e., they measure how close they are to the Dirichlet kernel). The
third term penalizes the error amplification due to the downward continuation of
the satellite data on ΩR while the fourth term penalizes the localization of Ψ̃k
outside the region Γr where ground data is available. The parameters αk, α̃k, βk
weigh these quantities against each other. For more details, on this approach of
approximating u on Γr, the reader is referred to [11]. Essentially, we are in the
setting of Example 1 where the reconstruction space V = VM is the space of all
spherical polynomials up to degree M = max {Mk, k = 1, . . . , N}.

The procedure for our numerical tests is as follows:

(a) From the EGM2008 gravity potential model (cf. [21]1), we generated two sets
of reference potentials u:
(1) one up to spherical harmonic degree n = 30 (in order to allow many test

runs in a short time) on a sphere ΩR, R = 12, 371km, and on a spherical
cap Γr = Γ ρr , r = 6, 371km, with ρ = 1 (corresponding to a spherical radius
of approximately 10, 000km at the Earth’s surface),

(2) another one up to spherical harmonic degree n = 130 (in order to have a
more realistic scenario) on a sphere ΩR, R = 7, 071km, and on a spherical
cap Γr = Γ ρr , r = 6, 371km, with ρ = 0.3 (corresponding to a spherical
radius of approximately 5, 000km at the Earth’s surface).

(b) For both cases of part (a), we generate corresponding noisy measurements f1,
f2, where the noise levels ε1 = ‖f1 − u‖L2(Γr)/‖u‖L2(Γr) of the ground data
and ε2 = ‖f2 − u‖L2(ΩR)/‖u‖L2(ΩR) of the satellite data are varied among
0.001, 0.1. The data on ΩR are in both cases computed on an equiangular
grid according to [7] while the data on the spherical cap Γr are computed on a
Gauss-Legendre grid according to [16] in order to guarantee polynomially exact
quadrature rules up to spherical polynomial degree Mk + n, where n = 30 in
case (1) and n = 130 in case (2), which yields condition (4).

(c) For the different input data from part (b), we compute approximations uk,
k = 1, . . . , N , of u† on Γr via the expression (7). The index k of uk indicates
different choices of the parameters αk, α̃k, βk in the functional F from (3).
αk, α̃k are varied in the interval [101, 108] and βk is varied in the interval
[10−2, 103]. The truncation degrees of the series expansions of Φk, Ψ̃k are fixed
to Nk = Mk = 80 in case (1) while Nk = Mk = 150 in case (2). This way, we
obtain N = 100 different approximations uk for each of the two cases.

1 data accessed via http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08 wgs84.html
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Fig. 1 Relative Errors for the low spherical harmonic degree tests (Situation (a)(1)) for ε1 =
ε2 = 0.001 (left) and ε1 = 0.1, ε2 = 0.001 (right; the dotted black line marks the noise level
ε1 = 0.1).
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Fig. 2 Relative Errors for the high spherical harmonic degree tests (Situation (a)(2)) for
ε1 = ε2 = 0.001 (left) and ε1 = 0.1, ε2 = 0.001 (right; the dotted black line marks the noise
level ε1 = 0.1).

(d) Among the approximations uk, we use the procedure from Section 2 to choose a
’good’ approximation uk∗ . Afterwards, we compare the relative approximation
errors errk∗ = ‖uk∗ − u‖L2(Γr)/‖u‖L2(Γr) of the parameter choice with the
relative errors erropt = mink=1,...,N ‖uk − u‖L2(Γr)/‖u‖L2(Γr) of the actually
best ukopt .

The results of the tests are shown in Figures 1 and 2. Each figure shows the
relative errors errk∗ and erropt for every test run. Additionally, we plotted the
maximum errors errmax = maxk=1,...,N ‖uk − u‖L2(Γr)/‖u‖L2(Γr) and the average

errors errav = 1
N

∑
k=1,...,N ‖uk − u‖L2(Γr)/‖u‖L2(Γr) in order to illustrate the

performance. It can be seen that the algorithm works particularly well for the
setting ε1 = ε2 and that the oracle error errk∗ is nearly identical with the minimum
error erropt. The situation is different when ε1 � ε2. The minimum error erropt
is smaller than the noise level ε1. Thus, since our parameter choice strategy is
based on comparing uk to f1, we cannot expect that errk∗ is as good as erropt.
Yet, astonishingly enough, it seems that errk∗ is still slightly smaller than ε1 for
our test setting.
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In addition, we repeated the tests above with a reduced accuracy of the quadra-
ture rule in order to illustrate the consequences if condition (4) is not satisfied.
More precisely, we did test runs for the following setting:

(a’) We generated two sets of reference potentials u:
(1) one up to spherical harmonic degree n = 30 on a sphere ΩR, R = 12, 371km,

and on a spherical cap Γr = Γ ρr , r = 6, 371km, with ρ = 1 (opposed to the
previous tests, the potential is not based on the EGM2008 model but the
Foruier coefficients are chosen randomly),

(2) another one up to spherical harmonic degree n = 130 on a sphere ΩR,
R = 7, 071km, and on a spherical cap Γr = Γ ρr , r = 6, 371km, with ρ = 0.3
(here, the potential is again based on the EGM2008 model).

(b’) For both cases of part (a’), we generate corresponding noisy measurements
f1, f2 with noise levels ε1 = ε2 = 0.001. Again, the data on ΩR are in both
cases computed on an equiangular grid according to [7] while the data on the
spherical cap Γr are computed on a Gauss-Legendre grid according to [16]. For
case (1), we chose grids of two different sizes: one such that the polynomial
exactness of the quadrature rule is of degree 100 and one such that polynomial
exactness is of degree 90 (remember that polynomial exactness up to degree
Mk + n = 80 + 30 = 110 is required in order to satisfy condition (4)). For case
(2), we chose the size of the grids such that the polynomial exactness of the
quadrature rule is of degree 130 and of degree 80, respectively (remember that
polynomial exactness up to degree Mk + n = 150 + 130 = 280 is required in
order to satisfy condition (4)).

(c’) For the different input data from part (b), we compute approximations uk,
k = 1, . . . , N , of u† on Γr via the expression (7). The parameters αk, α̃k are
again varied in the interval [101, 108] and βk is varied in the interval [10−2, 103].
The truncation degrees of the series expansions of Φk, Ψ̃k are fixed to Nk =
Mk = 80 in case (1) while Nk = Mk = 150 in case (2).

The results are shown in Figures 3 and 4. In the right plot of Figure 3 it be-
comes clear that a too large deviation of the required polynomial exactness can
severely influence the parameter choice rule and render it essentially useless (the
simple average of all approximation errors is better than the error errk∗ of our
algorithm). The left plot, on the other hand, shows that small deviations have
hardly any influence. However, in order to illustrate this sensitive dependence on
the polynomial exactness of the quadrature rule, we switched from the EGM2008
gravity potential model to potentials with Fourier coefficients that are generated
randomly (i.e., in the mean, the Fourier coefficients are equally large at all spher-
ical harmonic degrees). Figure 4 shows that for a more realistic scenario like the
EGM2008 model, the influence of the polynomial exactness of the quadrature rule
is significantly smaller. In order to detect a severe failure of our algorithm, we had
to decrease the polynomial exactness to degree 80 (opposed to degree 280, which
would guarantee the required condition (4)). This stability of the algorithm is due
to the fact the the Fourier coefficients of the EGM2008 gravity potential show a
fast decay for growing spherical harmonic degrees. The generally higher optimal
errors erropt in Figures 3, 4 compared to Figures 1, 2 have to be accounted to the
influence of the decreased accuracy of the quadrature rule on the approximations
uk via (7) but not to the parameter choice method presented in this paper.
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Fig. 3 Relative Errors for the low spherical harmonic degree tests (Situation (a’)(1)) for
ε1 = ε2 = 0.001 and a quadrature rule with polynomial exactness of degree 100 (left) and of
degree 90 (right).
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Fig. 4 Relative Errors for the high spherical harmonic degree tests (Situation (a’)(2)) for
ε1 = ε2 = 0.001 and a quadrature rule with polynomial exactness of degree 130 (left) and of
degree 80 (right).

4 Conclusion

We introduced a simple method to choose a ’good’ candidate uk∗ among a set
of approximations {uk}k=1,...,N of u† and supplied some error estimates for uk∗

in relation to ukopt . The numerical illustrations show its good performance and
stability for applications, e.g., to the Earth’s gravity potential.

Acknowledgements Pavlo Tkachenko gratefully acknowledges the support of the Austrian
Science Fund (FWF): project P25424.

References

1. F. Bauer, M. Gutting, and M.A. Lukas. Evaluation of parameter choice methods for
regularization of ill-posed problems in geomathematics. In W. Freeden, M.Z. Nashed, and
T Sonar, editors, Handbook of Geomathematics. Springer, 2nd edition, 2015.

2. F. Bauer and M.A. Lukas. Comparing parameter choice methods for regularization of
ill-posed problems. Math. Comp., 81:1795–1841, 2011.



A Parameter Choice Strategy for the Inversion of Multiple Observations 11

3. C. Brezinski, M. Redivo-Zaglia, G. Rodriguez, and S. Seatzu. Multi-parameter regulariza-
tion techniques for ill-conditioned linear systems. Num. Math., 94:203–228, 2003.

4. CHAMP. http://www.gfz-potsdam.de/champ/.
5. J. Chen, S. Pereverzyev Jr., and Y. Xu. Aggregation of regularized solutions from multiple

observation models. Inverse Problems, 31:075005, 2015.
6. M.R. Drinkwater, R. Floberghagen, R. Haagmans, D. Muzi, and A. Popescu. GOCE:

ESA’s first Earth explorer core mission. In G.B. Beutler, M.R. Drinkwater, R. Rummel,
and R. von Steiger, editors, Earth Gravity Field from Space - from Sensors to Earth
Sciences. Kluwer Academic Publishers, 2003.

7. J.R. Driscoll and M.H. Healy Jr. Computing fourier transforms and convolutions on the
2-sphere. Adv. Appl. Math., 15:202–250, 1994.

8. W. Freeden. On approximation by harmonic splines. Manuscr. Geod., 6:193–244, 1981.
9. W. Freeden. Multiscale Modelling of Spaceborne Geodata. Teubner, 1999.
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