Otmar Scherzer

Otmar Scherzer

Head of Research Group


Phone: +43 1 4277 55770

Published Papers

2023

F. Faucher and O. Scherzer Quantitative inverse problem in visco-acoustic media under attenuation model uncertainty Journal of Computational Physics, 472:111685, January, 2023 BibTeX | funding | PDF )

2022

R. Boţ, G. Dong, P. Elbau and O. Scherzer Convergence Rates of First and Higher Order Dynamics for Solving Linear Ill-posed Problems Foundations of Computational Mathematics, 1567–1629, 2022 BibTeX | funding | PDF )
F. Faucher, C. Kirisits, M. Quellmalz, O. Scherzer and E. Setterqvist Diffraction Tomography, Fourier Reconstruction, and Full Waveform InversionIn Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, 2022 BibTeX | funding | PDF )
L. Frischauf, M. Melching and O. Scherzer Diffusion tensor regularization with metric double integrals Journal of Inverse and Ill-Posed Problems, 30(2):163–190, 2022 BibTeX | funding | PDF )
O. Scherzer, C. Kirisits and E. Sherina Optical Flow On Manifolds and For ElastographyIn M. Ben-Chen, A. Chambolle, M. Rumpf and P. Schröder, editors, Mathematical Imaging and Surface Processing, (2022/38)17–19. Oberwolfach Reports, 2022 BibTeX | PDF )
A. Kittenberger, L. Mindrinos and O. Scherzer Computed Origami Tomography SIAM Review, 64(2):469–484, 2022 BibTeX | funding | PDF )
L. Krainz, E. Sherina, S. Hubmer, M. Liu, W. Drexler and O. Scherzer Quantitative Optical Coherence Elastography: A Novel Intensity-Based Inversion Method Versus Strain-Based Reconstructions IEEE Journal of Selected Topics in Quantum Electronics, 1–16, 2022 BibTeX | funding | PDF )
F. Parzer and O. Scherzer On convergence rates of adaptive ensemble Kalman inversion for linear ill-posed problems Numerische Mathematik, 2022 BibTeX | funding | PDF )

2021

A. Aspri, L. Frischauf, Y. Korolev and O. Scherzer Data Driven Reconstruction Using Frames and Riesz BasesIn B. Jadamba, A. A. Khan, S. Migórski and M. Sama, editors, Deterministic and Stochastic Optimal Control and Inverse Problems, 303–318. CRC Press, 2021 BibTeX | funding | PDF )
F. Faucher, M. V. de Hoop and O. Scherzer Reciprocity-gap misfit functional for Distributed Acoustic Sensing, combining data from passive and active sources Geophysics, 86(2):R211–R220, 2021 BibTeX | funding | PDF )
P. Kritzer, P. Grohs, K. Kunisch, R. Ramlau and O. Scherzer RICAM, the Johann Radon Institute for Computational and Applied Mathematics European Mathematical Society Magazine, (122)46–51, December, 2021 BibTeX | PDF )
B. Kaltenbacher, T. T. N. Nguyen and O. Scherzer The Tangential Cone Condition for Some Coefficient Identification Model Problems in Parabolic PDEsIn B. Kaltenbacher, T. Schuster and A. Wald, editors, Time-dependent Problems in Imaging and Parameter Identification, 121–163. Springer, Cham, 2021 BibTeX | funding | PDF )
C. Kirisits, M. Quellmalz, M. Ritsch-Marte, O. Scherzer, E. Setterqvist and G. Steidl Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations Inverse Problems, 37(11):115002, 2021 BibTeX | funding | PDF )
M. López-Martínez, G. Mercier, K. Sadiq, O. Scherzer, M. Schneider, J. C. Schotland, G. J. Schütz and R. Telschow Inverse Problems of Single Molecule Localization MicroscopyIn B. Kaltenbacher, T. Schuster and A. Wald, editors, Time-dependent Problems in Imaging and Parameter Identification, 323–376. Springer Nature, 2021 BibTeX | funding | PDF )
M. C. Schneider, R. Telschow, G. Mercier, M. López-Martínez, O. Scherzer and G. J. Schütz A workflow for sizing oligomeric biomolecules based on cryo single molecule localization microscopy PLoS ONE, 16(1):e0245693, 2021 BibTeX | funding | PDF )
E. Sherina, L. Krainz, S. Hubmer, W. Drexler and O. Scherzer Challenges for Optical Flow Estimates in ElastographyIn Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science, (1)128–139, 2021 BibTeX | funding | PDF )

2020

PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization in 2020 available online)
A. Aspri, S. Banert, O. Öktem and O. Scherzer A Data-Driven Iteratively Regularized Landweber Iteration Numerical Functional Analysis and Optimization, 41(10):1190–1227, March, 2020 BibTeX | funding | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization in 2020 available online)
PDF(published version; © 2020 Society for Industrial and Applied Mathematics)
A. Aspri, E. Beretta, O. Scherzer and M. Muszkieta Asymptotic Expansions for Higher Order Elliptic Equations with an Application to Quantitative Photoacoustic Tomography SIAM Journal on Imaging Sciences, 13(4):1781–1833, 2020 BibTeX | funding | PDF )
PDF(published version; © 2020 Society for Industrial and Applied Mathematics)
A. Aspri, Y. Korolev and O. Scherzer Data driven regularization by projection Inverse Problems, 36(12):125009, December, 2020 BibTeX | funding | PDF )
P. Elbau, M. Ritsch-Marte, O. Scherzer and D. Schmutz Motion Reconstruction for Optical Tomography of Trapped Objects Inverse Problems, 36(4):044004, 2020 BibTeX | funding | PDF )
F. Faucher and O. Scherzer Adjoint-state method for Hybridizable Discontinuous Galerkin discretization, application to the inverse acoustic wave problem Computer Methods in Applied Mechanics and Engineering, 372:113406, 2020 BibTeX | funding | PDF )
F. Faucher, O. Scherzer and H. Barucq Eigenvector Models for Solving the Seismic Inverse Problem for the Helmholtz Equation Geophysical Journal International, 221:394–414, January, 2020 BibTeX | funding | PDF )
J. A. Iglesias, G. Mercier and O. Scherzer Critical Yield Numbers and Limiting Yield Surfaces of Particle Arrays Settling in a Bingham Fluid Applied Mathematics & Optimization, 82(2):399–432, 2020 BibTeX | funding | PDF )
M. Melching and O. Scherzer Regularization with metric double integrals for vector tomography Journal of Inverse and Ill-Posed Problems, 28(6):857–875, 2020 BibTeX | funding | PDF )
O. Scherzer, C. Kirisits, M. Quellmalz, M. Ritsch-Marte, E. Setterqvist and G. Steidl Reconstruction formulae for diffraction tomography with optical tweezersIn L. Borcea, T. Hohage and B. Kaltenbacher, editors, Computational Inverse Problems for Partial Differential Equations (hybrid meeting), (39/2020)32–34. Oberwolfach Reports, 2020 BibTeX | PDF )
E. Sherina, L. Krainz, S. Hubmer, W. Drexler and O. Scherzer Displacement field estimation from OCT images utilizing speckle information with applications in quantitative elastography Inverse Problems, 36(12):124003, 2020 BibTeX | funding | PDF )

2019

R. Ramlau and O. Scherzer 100 years of Mathematical TomographyIn R. Ramlau and O. Scherzer, editors, The Radon Transform: The First 100 Years and Beyond, (22)1–4. De Gruyter, 2019 BibTeX )
A. Beigl, O. Scherzer, J. Sogn and W. Zulehner Preconditioning Inverse Problems for Hyperbolic Equations with Applications to Photoacoustic Tomography Inverse Problems, 36(1):014002, December, 2019 BibTeX | funding | PDF )
R. Boţ, G. Dong, P. Elbau and O. Scherzer Convergence Rates of First and Higher Order Dynamics for Solving Linear Inverse ProblemsIn Tomographic Inverse Problems: Theory and Applications, (16)227–229. EMS Publishing House, 2019 BibTeX | funding | PDF )
R. Ciak, M. Melching and O. Scherzer Regularization with Metric Double Integrals of Functions with Values in a Set of Vectors Journal of Mathematical Imaging and Vision, 2019 BibTeX | funding | PDF )
C. Kirisits, O. Scherzer and E. Setterqvist Preservation of Piecewise Constancy under TV Regularization with Rectilinear AnisotropyIn J. Lellmann, M. Burger and J. Modersitzki, editors, Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science, 11603:510–521. Springer, 2019 BibTeX | PDF )
PDF(published version; © 2019 Society for Industrial and Applied Mathematics)
C. Kirisits, O. Scherzer and E. Setterqvist Invariant $varphi$-Minimal Sets and Total Variation Denoising on Graphs SIAM Journal on Imaging Sciences, 12(4):1643-1668, 2019 BibTeX | funding | PDF )
PDF(published version; © 2019 Society for Industrial and Applied Mathematics)

2018

PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aab584)
A. Beigl, P. Elbau, K. Sadiq and O. Scherzer Quantitative Photoacoustic Imaging in the Acoustic Regime using SPIM Inverse Problems, 35(4):, April, 2018 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aab584)
P. Elbau, L. Mindrinos and O. Scherzer Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging Inverse Problems, 34(1):014006, 2018 BibTeX | funding | PDF )
P. Elbau, L. Mindrinos and O. Scherzer The inverse scattering problem for orthotropic media in polarization-sensitive optical coherence tomography GEM - International Journal on Geomathematics, 9(1):145–165, 2018 BibTeX | funding | PDF )
PDF(published version; © 2018 Society for Industrial and Applied Mathematics)
S. Hubmer, E. Sherina, A. Neubauer and O. Scherzer Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems SIAM Journal on Imaging Sciences, 11(2):1268–1293, 2018 BibTeX | funding | PDF )
PDF(published version; © 2018 Society for Industrial and Applied Mathematics)
J. A. Iglesias, G. Mercier and O. Scherzer A note on convergence of solutions of total variation regularized linear inverse problems Inverse Problems, 34(5):055011, 2018 BibTeX | funding | PDF )
J. A. Iglesias, M. Rumpf and O. Scherzer Shape-Aware Matching of Implicit Surfaces Based on Thin Shell Energies Foundations of Computational Mathematics, 18(4):891–927, 2018 BibTeX | funding | PDF )
C. Kirisits and O. Scherzer A Range Condition for Polyconvex Variational Regularization Numerical Functional Analysis and Optimization, 39(10):1064-1076, 2018 BibTeX | funding | PDF )
R. Ramlau and O. Scherzer The first 100 years of the Radon transform Inverse Problems, 34:E1-E4, July, 2018 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aa9ade)
O. Scherzer and C. Shi Reconstruction formulas for photoacoustic imaging in attenuating media Inverse Problems, 34(1):015006, January, 2018 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aa9ade)

2017

PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-58771-4_23)
G. Dong and O. Scherzer Nonlinear Flows for Displacement Correction and Applications in TomographyIn F. Lauze, Y. Dong and A. Dahl, editors, Scale Space and Variational Methods in Computer Vision. SSVM 2017, 10302:283–294. Springer, May, 2017 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-58771-4_23)
P. Elbau, L. Mindrinos and O. Scherzer Inverse problems of combined photoacoustic and optical coherence tomography Mathematical Methods in the Applied Sciences, 40(3):505–522, February, 2017 BibTeX | funding | PDF )
P. Elbau, L. Mindrinos and O. Scherzer Modeling polarization-sensitive OCT using inverse scattering techniquesIn Imaging and Applied Optics 2017, MW3C.3. Optical Society of America, June, 2017 BibTeX )
P. Elbau, O. Scherzer and C. Shi Singular Values of the Attenuated Photoacoustic Imaging Operator Journal of Differential Equations, 263(9):5330–5376, November, 2017 BibTeX | funding )
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
I. A. Frigaard, J. A. Iglesias, G. Mercier, C. Pöschl and O. Scherzer Critical Yield Numbers of Rigid Particles Settling in Bingham Fluids and Cheeger Sets SIAM Journal on Applied Mathematics, 77(2):638–663, January, 2017 BibTeX | funding | PDF )
PDF(published version; © 2017 Society for Industrial and Applied Mathematics)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aa7a1e)
C. Kirisits and O. Scherzer Convergence rates for regularization functionals with polyconvex integrands Inverse Problems, 33(8):085008, August, 2017 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aa7a1e)

paper website
PDF(author's post print)
L. F. Lang and O. Scherzer Optical flow on evolving sphere-like surfaces Inverse Problems & Imaging, 11(2):305–338, April, 2017 BibTeX | funding | Website | PDF )
PDF(author's post print)
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
A. P. Patrone and O. Scherzer On a spatial-temporal decomposition of optical flow Inverse Problems & Imaging, 11(4):761–781, August, 2017 BibTeX | funding | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)

2016

V. Albani, P. Elbau, M. V. de Hoop and O. Scherzer Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces Numerical Functional Analysis and Optimization, 37(5):521–540, 2016 BibTeX | funding | PDF )
Z. Belhachmi, T. Glatz and O. Scherzer A direct method for photoacoustic tomography with inhomogeneous sound speed Inverse Problems, 32(4):045005, 2016 BibTeX | funding | PDF )
PDF(published version; the final publication is available at www.degruyter.com)
Z. Belhachmi, T. Glatz and O. Scherzer Photoacoustic Tomography With Spatially Varying Compressibility and Density Journal of Inverse and Ill-Posed Problems, 25:119-133, September, 2016 BibTeX | funding | PDF )
PDF(published version; the final publication is available at www.degruyter.com)
PDF(published version; © 2016 Society for Industrial and Applied Mathematics)
E. Beretta, M. V. de Hoop, F. Faucher and O. Scherzer Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates SIAM Journal on Mathematical Analysis, 48:3962–3983, 2016 BibTeX | PDF )
PDF(published version; © 2016 Society for Industrial and Applied Mathematics)
E. Beretta, M. Muszkieta, W. Naetar and O. Scherzer A variational method for quantitative photoacoustic tomography with piecewise constant coefficientsIn M. Bergounioux, G. Peyre, C. Schnörr, J.B. Caillau and T. Haberkorn, editors, Variational Methods in Imaging and Geometric Control, 202–224. Walter de Gruyter GmbH & Co. KG, 2016 BibTeX | funding )
P. Elbau, L. Mindrinos and O. Scherzer The Inverse Scattering Problem in Optical Coherence TomographyIn Imaging and Applied Optics 2016, MW5H.6. Optical Society of America, 2016 BibTeX )
PDF(author's post print; the final publication is available at Oberwolfach Conference: Theory and Numerics of Inverse Scattering Problems)
P. Elbau, L. Mindrinos and O. Scherzer The inverse electromagnetic scattering problem in OCT for anisotropic mediaIn F. Cakoni, M. Hanke-Bourgeois, A. Kirsch and W. Rundell, editors, Oberwolfach Conference: Theory and Numerics of Inverse Scattering Problems, 13:2612–2615. EMS Publishing House, 2016 BibTeX | PDF )
PDF(author's post print; the final publication is available at Oberwolfach Conference: Theory and Numerics of Inverse Scattering Problems)
PDF(author's post print; cc by-nc-nd 4.0)
K. Sadiq, O. Scherzer and A. Tamasan On the X-ray transform of planar symmetric 2-tensors Journal of Mathematical Analysis and Applications, 442(1):31–49, October, 2016 BibTeX | funding | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
J. Schmid, T. Glatz, B. Zabihian, M. Liu, W. Drexler and O. Scherzer Non-Equispaced Grid Sampling in Photoacoustics with a Non-Uniform FFT Journal of Biomedical Optics, 21(1):015005, 2016 BibTeX | funding | PDF )

2015

PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization in 2015 available online)
R. Andreev, P. Elbau, M. V. de Hoop, L. Qiu and O. Scherzer Generalized Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces Numerical Functional Analysis and Optimization, 36(5):549–566, March, 2015 BibTeX | funding | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization in 2015 available online)
R. Andreev, O. Scherzer and W. Zulehner Simultaneous optical flow and source estimation: Space–time discretization and preconditioning Applied Numerical Mathematics, 96:72–81, October, 2015 BibTeX | funding | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
A. Constantin, K. Kalimeris and O. Scherzer A penalization method for calculating the flow beneath travelling water waves of large amplitude SIAM Journal on Applied Mathematics, 75(4):1513–1535, July, 2015 BibTeX | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
PDF(author's post print; cc by-nc-nd 4.0)
A. Constantin, K. Kalimeris and O. Scherzer Approximations of steady periodic water waves in flows with constant vorticity Nonlinear Analysis. Real World Applications. An International Multidisciplinary Journal, 25:276–306, October, 2015 BibTeX | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
G. Dong, A.R. Patrone, O. Scherzer and O. Öktem Infinite Dimensional Optimization Models and PDEs for DejitteringIn Scale Space and Variational Methods in Computer Vision 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings, 678–689. Springer, April, 2015 BibTeX | funding )
P. Elbau, L. Mindrinos and O. Scherzer Mathematical Methods of Optical Coherence TomographyIn O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, 1169–1204. Springer New York, 2015 BibTeX | funding )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
P. Elbau and O. Scherzer Modelling the Effect of Focusing Detectors in Photoacoustic Sectional Imaging SIAM Journal on Imaging Sciences, 8(1):1–18, January, 2015 BibTeX | funding | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
P. Elbau and O. Scherzer RADAR Imaging - A Mathematical Perspective Schriftenreihe zur Didaktik der Mathematik der Österreichischen Mathematischen Gesellschaft, 48:available only online, 2015 BibTeX | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-015-0561-4)
T. Glatz, O. Scherzer and T. Widlak Texture Generation for Photoacoustic Elastography Journal of Mathematical Imaging and Vision, 52(3):369–384, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-015-0561-4)
M. Grasmair, M. Haltmeier and O. Scherzer Sparsity in Inverse Geophysical ProblemsIn W. Freeden, M. Z. Nashed and T. Sonar, editors, Handbook of Geomathematics. Springer Berlin Heidelberg, 2015 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s00211-014-0629-x)
M. V. de Hoop, L. Qiu and O. Scherzer An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints Numerische Mathematik, 129(1):127–148, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s00211-014-0629-x)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0513-4)
C. Kirisits, L. F. Lang and O. Scherzer Optical Flow on Evolving Surfaces with Space and Time Regularisation Journal of Mathematical Imaging and Vision, 52(1):55–70, May, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0513-4)
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Applicable Analysis in 2015 available online)
C. Kirisits, C. Pöschl, E. Resmerita and O. Scherzer Finite-dimensional approximation of convex regularization via hexagonal pixel grids Applicable Analysis, 94(3):612–636, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Applicable Analysis in 2015 available online)
P. Kuchment and O. Scherzer Mathematical Methods in Photoacoustic imagingIn B. Engquist, editor, Encyclopedia of Applied and Computational Mathematics, 1488-1496. Springer-Verlag, 2015 BibTeX )
C. Pöschl and O. Scherzer Exact solutions of one-dimensional total generalized variation Communications in Mathematical Sciences, 13(1):171–202, 2015 BibTeX | funding )
J. Schmid, B. Zabihian, T. Widlak, T. Glatz, M. Liu, W. Drexler and O. Scherzer Texture generation in compressional photoacoustic elastographyIn Photons Plus Ultrasound: Imaging and Sensing 2015, 9323:93232S, 2015 BibTeX | funding )
T. Widlak and O. Scherzer Stability in the linearized problem of quantitative elastography Inverse Problems, 31(3):035005, 2015 BibTeX | funding | PDF )

2014

U. Ansorge, S. Buchinger, C. Valuch, A. R. Patrone and O. Scherzer Visual Attention in Edited Dynamical ImagesIn Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications (SIGMAP-2014), 198–205. SCITEPRESS, 2014 BibTeX )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
E. Beretta, M. Grasmair, M. Muszkieta and O. Scherzer A variational algorithm for the detection of line segments Inverse Problems & Imaging, 8(2):389–408, May, 2014 BibTeX | funding | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
P. Elbau, L. Mindrinos and O. Scherzer Mathematical Modeling of Optical Coherence TomographyIn Oberwolfach Conference: Mathematics and Algorithms in Tomography, 2053–2054. Mathematisches Forschungsinstitut Oberwolfach, 2014 BibTeX )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s13137-013-0055-8)
C. Kirisits, L. F. Lang and O. Scherzer Decomposition of optical flow on the sphere GEM - International Journal on Geomathematics, 5(1):117–141, April, 2014 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s13137-013-0055-8)
PDF(published version; © 2014 Society for Industrial and Applied Mathematics)
W. Naetar and O. Scherzer Quantitative photoacoustic tomography with piecewise constant material parameters SIAM Journal on Imaging Sciences, 7(3):1755–1774, September, 2014 BibTeX | funding | PDF )
PDF(published version; © 2014 Society for Industrial and Applied Mathematics)
PDF(author's post print; cc by-nc-nd 4.0)
T. Takacs, B. Jüttler and O. Scherzer Derivatives of isogeometric functions on n-dimensional rational patches in $mathbb R^d$ Computer Aided Geometric Design, 31(7):567–581, October, 2014 BibTeX | funding | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
PDF(author's post print; © C. Valuch, U. Ansorge, S. Buchinger, A. R. Patrone and O. Scherzer 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14, Newcastle Upon Tyne, United Kingdom, June 25-27, 2014 http://dx.doi.org/10.1145/2602299.2602307)
C. Valuch, U. Ansorge, S. Buchinger, A. R. Patrone and O. Scherzer The effect of cinematic cuts on human attentionIn ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14, Newcastle Upon Tyne, United Kingdom, June 25-27, 2014, 119–122. ACM, June, 2014 BibTeX | PDF )
PDF(author's post print; © C. Valuch, U. Ansorge, S. Buchinger, A. R. Patrone and O. Scherzer 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14, Newcastle Upon Tyne, United Kingdom, June 25-27, 2014 http://dx.doi.org/10.1145/2602299.2602307)

2013

PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
J. Abhau, O. Aichholzer, S. Colutto, B. Kornberger and O. Scherzer Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data Inverse Problems & Imaging, 7(1):1–25, February, 2013 BibTeX | funding | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(published version; the final publication is available at www.degruyter.com)
G. Bal, W. Naetar, O. Scherzer and J. Schotland The Levenberg-Marquardt iteration for numerical inversion of the power density operator Journal of Inverse and Ill-Posed Problems, 21(2):265–280, February, 2013 BibTeX | funding | PDF )
PDF(published version; the final publication is available at www.degruyter.com)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38267-3_34)
G. Dong, M. Grasmair, S. H. Kang and O. Scherzer Scale and Edge Detection with Topological DerivativesIn A. Kuijper, K. Bredies, T. Pock and H. Bischof, editors, SSVM'13: Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision, 7893:404–415. Springer-Verlag, May, 2013 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38267-3_34)
PDF(author's post print; the final publication is available at Interfaces and Free Boundaries)
M. Grasmair, M. Muszkieta and O. Scherzer An approach to the minimization of the Mumford-Shah functional using Γ-convergence and topological asymptotic expansion Interfaces and Free Boundaries, 15(2):141–166, 2013 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Interfaces and Free Boundaries)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/29/3/035006)
M. Grasmair, O. Scherzer and A. Vanhems Nonparametric instrumental regression with non-convex constraints Inverse Problems, 29(3):035006, February, 2013 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/29/3/035006)
PDF(author's post print; the definitive version is available at http://diglib.eg.org/)
J. A. Iglesias, B. Berkels, M. Rumpf and O. Scherzer A Thin Shell Approach to the Registration of Implicit SurfacesIn M. Bronstein, J. Favre and K. Hormann, editors, VMV 2013: Vision, Modeling & Visualization, 89–96. Eurographics Association, 2013 BibTeX | funding | PDF )
PDF(author's post print; the definitive version is available at http://diglib.eg.org/)
PDF(author's post print; this is the peer reviewed version of the following article: Photoacoustic imaging in attenuating acoustic media based on strongly causal models Mathematical Methods in the Applied Sciences, 36(16):2254–2264, which has been published in final form at 10.1002/mma.2756. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
K. Kalimeris and O. Scherzer Photoacoustic imaging in attenuating acoustic media based on strongly causal models Mathematical Methods in the Applied Sciences, 36(16):2254–2264, February, 2013 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Photoacoustic imaging in attenuating acoustic media based on strongly causal models Mathematical Methods in the Applied Sciences, 36(16):2254–2264, which has been published in final form at 10.1002/mma.2756. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
C. Kirisits, L. F. Lang and O. Scherzer Optical Flow on Evolving Surfaces with an Application to the Analysis of 4D Microscopy DataIn A. Kuijper, K. Bredies, T. Pock and H. Bischof, editors, SSVM'13: Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision, 7893:246–257. Springer-Verlag, 2013 BibTeX | funding )
O. Scherzer Regularization of Ill-posed Linear Equations by the Non-stationary Augmented Lagrangian MethodIn A. Keller, F. Kuo, A. Neuenkirch and J. F. Traub, editors, Algorithms and Complexity for Continuous Problems (Dagstuhl Seminar 12391), 2(9):219–219. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013 BibTeX | PDF )

2012

PDF(author's post print; cc by-nc-nd 4.0)
A. De Cezaro, O. Scherzer and J. P. Zubelli Convex regularization of local volatility models from option prices: Convergence analysis and rates Nonlinear Analysis: Theory, Methods & Applications, 75(4):2398–2415, March, 2012 BibTeX | funding | PDF )
PDF(author's post print; cc by-nc-nd 4.0)
PDF(author's post print; the final publication is available at Inverse Problems for Partial Differential Equations)
P. Elbau, A. Kirsch, O. Scherzer and R. Schulze Photoacoustic and Coupled Physics ImagingIn M. Hanke-Bourgeois, A. Kirsch, W. Rundell and M. Lassas, editors, Inverse Problems for Partial Differential Equations, 11:14–17. EMS Publishing House, 2012 BibTeX | PDF )
PDF(author's post print; the final publication is available at Inverse Problems for Partial Differential Equations)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045004)
P. Elbau, O. Scherzer and R. Schulze Reconstruction formulas for photoacoustic sectional imaging Inverse Problems, 28(4):045004, March, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045004)
PDF(author's post print; the final publication is available at Computational Inverse Problems)
P. Elbau, O. Scherzer and R. Schulze Photoacoustic Sectional Imaging and Reconstruction Formulas for a Single Scattering ModelIn H. Ammari, L. Borcea, T. Hohage and B. Kaltenbacher, editors, Computational Inverse Problems, 51:7–8. EMS Publishing House, 2012 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Computational Inverse Problems)
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
T. Fidler, M. Grasmair and O. Scherzer Shape Reconstruction with A Priori Knowledge Based on Integral Invariants SIAM Journal on Imaging Sciences, 5(2):726–745, 2012 BibTeX | funding | PDF )
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045001)
M. V. de Hoop, L. Qiu and O. Scherzer Local analysis of inverse problems: Hölder stability and iterative reconstruction Inverse Problems, 28(4):16pp, March, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/4/045001)
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
A. Kirsch and O. Scherzer Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements SIAM Journal on Applied Mathematics, 72(5):1508-1523, October, 2012 BibTeX | funding | PDF )
PDF(published version; © 2012 Society for Industrial and Applied Mathematics)
R. Kowar and O. Scherzer Attenuation Models in PhotoacousticsIn H. Ammari, editor, Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies, 2035:85–130. Springer Verlag, 2012 BibTeX | funding )
C. Pontow and O. Scherzer Analytical Evaluations of Double Integral Expressions Related to Total VariationIn U. Langer and P. Paule, editors, Numerical and Symbolic Scientific Computing: Progress and Prospects, 1:193–218. Springer, 2012 BibTeX | funding )
O. Scherzer and C. Kirisits Convex Variational Regularization Methods for Inverse ProblemsIn P. Bühlmann, T. Cai, A. Munk and B. Yu, editors, Frontiers in Nonparametric Statistics, 14:43–45. EMS Publishing House, 2012 BibTeX )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/1/015007)
N. Thorstensen and O. Scherzer Convergence of variational regularization methods for imaging on Riemannian manifolds Inverse Problems, 28(1):015007, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/1/015007)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/8/084008)
T. Widlak and O. Scherzer Hybrid tomography for conductivity imaging Inverse Problems, 28(8):084008, July, 2012 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/8/084008)

2011

J. Boulanger, P. Elbau, C. Pontow and O. Scherzer Non-Local Functionals for ImagingIn H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 49:131–154. Springer, 1st edition, 2011 BibTeX | funding )
F. Frühauf, C. Pontow and O. Scherzer Texture Enhancing Based on Variational Image DecompositionIn M. Bergounioux, editor, Mathematical Image Processing, 5:127–140. Springer, 2011 BibTeX | funding )
PDF(author's post print; the final publication is available at Trends in Mathematical Imaging and Surface Processing)
M. Fuchs and O. Scherzer Regularized Reconstruction of M-Rep Shapes with Statistical A Priori KnowledgeIn V. Caselles, M. Rumpf, G. Sapiro and P. Schröder, editors, Trends in Mathematical Imaging and Surface Processing, 08:11–12. EMS Publishing House, 2011 BibTeX | PDF )
PDF(author's post print; the final publication is available at Trends in Mathematical Imaging and Surface Processing)
PDF(author's post print; this is the peer reviewed version of the following article: Necessary and sufficient conditions for linear convergence of l1-regularization Communications on Pure and Applied Mathematics, 64(2):161–182, which has been published in final form at 10.1002/cpa.20350. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
M. Grasmair, M. Haltmeier and O. Scherzer Necessary and sufficient conditions for linear convergence of l1-regularization Communications on Pure and Applied Mathematics, 64(2):161–182, 2011 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Necessary and sufficient conditions for linear convergence of l1-regularization Communications on Pure and Applied Mathematics, 64(2):161–182, which has been published in final form at 10.1002/cpa.20350. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
M. Grasmair, M. Haltmeier and O. Scherzer The residual method for regularizing ill-posed problems Applied Mathematics & Computation, 218(6):2693–2710, 2011 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Causality analysis of frequency-dependent wave attenuation Mathematical Methods in the Applied Sciences, 34:108–124, which has been published in final form at 10.1002/mma.1344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
R. Kowar, O. Scherzer and X. Bonnefond Causality analysis of frequency-dependent wave attenuation Mathematical Methods in the Applied Sciences, 34:108–124, 2011 BibTeX | funding | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Causality analysis of frequency-dependent wave attenuation Mathematical Methods in the Applied Sciences, 34:108–124, which has been published in final form at 10.1002/mma.1344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-010-0326-x)
F. Lenzen and O. Scherzer Partial Differential Equations for Zooming, Deinterlacing and Dejittering International Journal of Computer Vision, 92(2):162–176, April, 2011 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-010-0326-x)
C. Pöschl and O. Scherzer Distance Measures and Applications to Multi-Modal Variational ImagingIn O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, 111–138. Springer, 2011 BibTeX | funding )
R. Schulze, G. Zangerl, M. Holotta, D. Meyer, F. Handle, R. Nuster, G. Paltauf and O. Scherzer On the use of frequency-domain reconstruction algorithms for photoacoustic imaging Journal of Biomedical Optics, 16(8):086002, 2011 BibTeX | funding )

2010

PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-009-0282-5)
J. Abhau and O. Scherzer A Combinatorial Method for Topology Adaptations in 3D Deformable Models International Journal of Computer Vision, 87(3):304–315, May, 2010 BibTeX | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s11263-009-0282-5)
S. Colutto, F. Frühauf, M. Fuchs and O. Scherzer The CMA-ES on Riemannian Manifolds to Reconstruct Shapes in 3-D Voxel Images IEEE Transactions on Evolutionary Computation, 14(2):227–245, 2010 BibTeX )
A. De Cezaro, O. Scherzer and J. P. Zubelli A Convex-Regularization Framework for Local-Volatility Calibration in Derivative Markets: The Connection with Convex Risk Measures and Exponential FamiliesIn Proceedings of the 6th World Congress of the Bachelier Finance Society, 2010 BibTeX )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization in 2010 available online)
P. Elbau, M. Grasmair, F. Lenzen and O. Scherzer Evolution by Non-Convex Functionals Numerical Functional Analysis and Optimization, 31(4):489–517, June, 2010 BibTeX | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Numerical Functional Analysis and Optimization in 2010 available online)
K. Frick and O. Scherzer Regularization of ill-posed linear equations by the non-stationary augmented Lagrangian method Journal of Integral Equations and Applications, 22(2):217–257, June, 2010 BibTeX | PDF )
M. Grasmair, M. Haltmeier and O. Scherzer Sparsity in Inverse Geophysical ProblemsIn W. Freeden, M. Z. Nashed and T. Sonar, editors, Handbook of Geomathematics, 763–784. Springer Berlin Heidelberg, 2010 BibTeX )
PDF(author's post print; the final publication is available at Mathematics and Algorithms in Tomography)
R. Kowar and O. Scherzer Photoacoustic Imaging taking into account AttenuationIn M. Burger, A. Louis and T. Quinto, editors, Mathematics and Algorithms in Tomography, 7:54–56. EMS Publishing House, 2010 BibTeX | PDF )
PDF(author's post print; the final publication is available at Mathematics and Algorithms in Tomography)
R. Nuster, G. Zangerl, M. Haltmeier, O. Scherzer and G. Paltauf Using a Phase Contrast Imaging Method in Photoacoustic TomographyIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2010, 7564:75640Q. SPIE, 2010 BibTeX )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
C. Pöschl, J. Modersitzki and O. Scherzer A Variational Setting for Volume Constrained Image Registration Inverse Problems & Imaging, 4(3):505–522, August, 2010 BibTeX | PDF )
PDF(author's post print; this is a pre-copy-editing, author-produced PDF of an article accepted for publication in Inverse Problems & Imaging following peer review. The definitive publisher-authenticated version is available online)
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/10/105017)
C. Pöschl, E. Resmerita and O. Scherzer Discretization of variational regularization in Banach spaces Inverse Problems, 26(10):105017, 2010 BibTeX | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/26/10/105017)
PDF(author's post print; this is the peer reviewed version of the following article: Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry Mathematical Methods in the Applied Sciences, 33(15):1771–1782, which has been published in final form at 10.1002/mma.1266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)
G. Zangerl and O. Scherzer Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry Mathematical Methods in the Applied Sciences, 33(15):1771–1782, 2010 BibTeX | PDF )
PDF(author's post print; this is the peer reviewed version of the following article: Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry Mathematical Methods in the Applied Sciences, 33(15):1771–1782, which has been published in final form at 10.1002/mma.1266. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.)

2009

J. Abhau, Z. Belhachmi and O. Scherzer On a Decomposition Model for Optical FlowIn Energy Minimization Methods in Computer Vision and Pattern Recognition, 5681:126–139. Springer-Verlag, 2009 BibTeX )
F. Frühauf, A. Heilig, M. Schneebeli, W. Fellin and O. Scherzer Experiments and Algorithms to Detect Snow Avalanche Victims Using Airborne Ground-Penetrating Radar IEEE Transactions on Geoscience and Remote Sensing, 47(7):2240 -2251, July, 2009 BibTeX )
M. Fuchs, B. Jüttler, O. Scherzer and H. Yang Shape metrics based on elastic deformations Journal of Mathematical Imaging and Vision, 35(1):86–102, 2009 BibTeX )
M. Fuchs, B. Jüttler, O. Scherzer and H. Yang Combined evolution of level sets and B-spline curves for imaging Computing and Visualization in Science, 12(6):287–295, 2009 BibTeX )
M. Haltmeier, O. Scherzer and G. Zangerl Influence of detector bandwidth and detector size to the resolution of photoacoustic tomagraphyIn F. Breitenecker and I. Troch, editors, Argesim Report no. 35: Proceedings Mathmod 09 Vienna, 1736–1744, 2009 BibTeX )
M. Haltmeier, O. Scherzer and G. Zangerl A Reconstruction Algorithm for Photoacoustic Imaging Based on the Nonuniform FFT IEEE Transactions on Medical Imaging, 28(11):1727–1735, November, 2009 BibTeX )
M. Holotta, R. Esterhammer, P. Torbica, J. Völkl, C. Kremser, W. Jaschke, H. Grossauer, M. Haltmeier, O. Scherzer, R. Nuster, G. Paltauf and Burgholzer P. Photoacoustic Tomography of Small Animals and OrgansIn J. M. R. S. Tavares and N. R. M. Jorge, editors, Computational Vision and Medical Image – VipIMAGE 2009, 25–29. CRC Press, 2009 BibTeX )
F. Lenzen and O. Scherzer A Geometric PDE for Interpolation of M-channel DataIn SSVM '09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, 413–425. Springer-Verlag, 2009 BibTeX )
O. Scherzer and B. Walch Sparsity Regularization for Radon MeasuresIn SSVM '09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, 452–463. Springer-Verlag, 2009 BibTeX )
G. Zangerl, O. Scherzer and M. Haltmeier Circular integrating detectors in photo and thermoacoustic tomography Inverse Problems in Science and Engineering, 17(1):133–142, 2009 BibTeX )
G. Zangerl, O. Scherzer and M. Haltmeier Exact series reconstruction in photoacoustic tomography with circular integrating detectors Communications in Mathematical Sciences, 7(3):665–678, 2009 BibTeX )

2008

J. Abhau and O. Scherzer An efficient topology adaptation system for parametric active contour segmentation of 3D imagesIn Medical Imaging 2008: Image Processing, 6914:69143T. SPIE, 2008 BibTeX )
A. De Cezaro, M. Haltmeier, A. Leit ao and O. Scherzer On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations Applied Mathematics & Computation, 202(2):596–607, 2008 BibTeX )
R. Feichtinger, M. Fuchs, B. Jüttler, O. Scherzer and H. Yang Dual evolution of planar parametric spline curves and T-spline level sets Computer Aided Design, 40(1):13–24, 2008 BibTeX )
T. Fidler, M. Grasmair and O. Scherzer Identifiability and reconstruction of shapes from integral invariants Inverse Problems & Imaging, 2(3):341–354, 2008 BibTeX )
M. Fuchs and O. Scherzer Regularized Reconstruction of Shapes with Statistical a priori Knowledge International Journal of Computer Vision, 79(2):119–135, 2008 BibTeX )
B. Gebauer and O. Scherzer Impedance-acoustic tomography SIAM Journal on Applied Mathematics, 69(2):565–576, 2008 BibTeX )
M. Grasmair, M. Haltmeier and O. Scherzer Sparse regularization with lq penalty term Inverse Problems, 24(5):055020, 13, 2008 BibTeX )
C. Pöschl and O. Scherzer Characterization of minimizers of convex regularization functionalsIn Frames and operator theory in analysis and signal processing, 451:219–248. Amer. Math. Soc., 2008 BibTeX )

2007

J. Abhau, W. Hinterberger and O. Scherzer Segmenting surfaces of arbitrary topology: a two-step approachIn S. Y. Emelianov and S. A. McAleavey, editors, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, 6513:651314. SPIE, 2007 BibTeX )
M. Burger, K. Frick, S. Osher and O. Scherzer Inverse total variation flow Multiscale Modeling & Simulation, 6(2):365–395 (electronic), 2007 BibTeX )
K. Frick and O. Scherzer Convex inverse scale spacesIn SSVM'07: Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision, 4485:313–325. Springer-Verlag, 2007 BibTeX )
K. Frick and O. Scherzer Application of non-convex BV regularization for image segmentationIn Image processing based on partial differential equations, 211–228. Springer, 2007 BibTeX )
F. Frühauf, B. Gebauer and O. Scherzer Detecting interfaces in a parabolic-elliptic problem from surface measurements SIAM Journal on Numerical Analysis, 45(2):810–836 (electronic), 2007 BibTeX )
M. Fuchs and O. Scherzer Segmentation of Biologic Image Data with A-Priori KnowledgeIn P. Neittaanmäki, J. Périaux and T. Tuovinen, editors, Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems. CIMNE, 2007 BibTeX )
M. Haltmeier, R. Kowar, A. Leit ao and O. Scherzer Kaczmarz methods for regularizing nonlinear ill-posed equations. II. Applications Inverse Problems & Imaging, 1(3):507–523, 2007 BibTeX )
M. Haltmeier, A. Leit ao and O. Scherzer Kaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis Inverse Problems & Imaging, 1(2):289–298, 2007 BibTeX )
M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster and G. Paltauf Thermo-acoustic tomography and the circular Radon transform: exact inversion formula Mathematical Models and Methods in Applied Sciences, 17(4):635–655, 2007 BibTeX )
B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators Inverse Problems, 23(3):987–1010, 2007 BibTeX )
B. Jüttler, H. Pottmann and O. Scherzer Variational and PDE level set methods [Special issue on industrial geometry] Computing. Archives for Scientific Computing, 81(2-3):107–108, 2007 BibTeX )
M. A. Moyers-González, I. A. Frigaard, O. Scherzer and T.-P. Tsai Transient effects in oilfield cementing flows: qualitative behaviour European Journal of Applied Mathematics, 18(4):477–512, 2007 BibTeX )
A. Obereder, O. Scherzer and A. Kovac Bivariate density estimation using BV regularisation Computational Statistics & Data Analysis, 51(12):5622–5634, 2007 BibTeX )
S. K. Patch and O. Scherzer Special section on photo- and thermo-acoustic imaging Inverse Problems, 23(6):S1–S10, 2007 BibTeX )
G. Zangerl, M. Haltmeier and O. Scherzer Cylindrical coordinates in Thermoacoustic TomographyIn IPDO Symposium on inverse problems, design and optimization, Miami, Florida, 2007 BibTeX )

2006

P. Burgholzer, C. Hofer, G. J. Matt, G. Paltauf, M. Haltmeier and O. Scherzer Thermoacoustic tomography using fiber based Fabry-Perot interferometer as an integrating line detectorIn A. A. Oraevsky and L. V. Wang, editors, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6086:60861N. SPIE, 2006 BibTeX )
I. A. Frigaard and O. Scherzer Herschel-Bulkley diffusion filtering: non-Newtonian fluid mechanics in image processing Zeitschrift f ür Angewandte Mathematik und Mechanik. Journal of Applied Mathematics and Mechanics, 86(6):474–494, 2006 BibTeX )
M. Haltmeier, R. Kowar and O. Scherzer Computer aided location of avalanche victims with ground penetrating radar mounted on a helicopterIn F. Lenzen, O. Scherzer and M. Vincze, editors, Digital Imaging and Pattern Recognition: 30th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), 209:19–28. Oesterreichische Computer Gesellschaft, 2006 BibTeX )
W. Hinterberger and O. Scherzer Variational methods on the space of functions of bounded Hessian for convexification and denoising Computing. Archives for Scientific Computing, 76(1-2):109–133, 2006 BibTeX )
S. Leimgruber, F. Lenzen and O. Scherzer Automatic Detection and Counting of Small Airborne Dust ParticlesIn F. Lenzen, O. Scherzer and M. Vincze, editors, Digital Imaging and Pattern Recognition: 30th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR), 209:29–36. Oesterreichische Computer Gesellschaft, 2006 BibTeX )
A. Obereder, S. Osher and O. Scherzer On the use of Dual Norms in Bounded Variation Type RegularizationIn R. Klette, R. Kozera, L. Noakes and J. Weickert, editors, Geometric Properties for Incomplete Data, 31:373–390. Springer, 2006 BibTeX )
E. Resmerita and O. Scherzer Error estimates for non-quadratic regularization and the relation to enhancement Inverse Problems, 22(3):801–814, 2006 BibTeX )
H. Yang, M. Fuchs, B. Jüttler and O. Scherzer Evolution of T-spline Level Sets with Distance Field Constraints for Geometry Reconstruction and Image SegmentationIn Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI06), 37. IEEE Computer Society, 2006 BibTeX )

2005

A. Borzi, H. Grossauer and O. Scherzer Analysis of Iterative Methods for Solving a Ginzburg-Landau Equation International Journal of Computer Vision, 64(2-3):203–219, 2005 BibTeX )
P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier and O. Scherzer Thermo-acoustic tomography with integrating area and line detectors IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(9):1577–1583, September, 2005 BibTeX )
P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier and O. Scherzer Thermoacoustic Tomography Using Integrating DetectorsIn C. D. Depeursinge, editor, Novel Optical Instrumentation for Biomedical Applications II, 5864:SuD3. SPIE and OSA, 2005 BibTeX )
P. Burgholzer, C. Hofer, R. Nuster, G. Paltauf, M. Haltmeier and O. Scherzer Thermoacoustic tomography using integrating line detectorsIn Ultrasonics Symposium, 2005 IEEE, 1:166–169. IEEE, 2005 BibTeX )
F. Frühauf, O. Scherzer and A. Leit ao Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators SIAM Journal on Numerical Analysis, 43(2):767–786 (electronic), 2005 BibTeX )
M. Grasmair, F. Lenzen, A. Obereder, O. Scherzer and M. Fuchs A Non-convex PDE Scale SpaceIn R. Kimmel, N. Sochen and J. Weickert, editors, Scale Space and PDE Methods in Computer Vision, 3459:303–315. Springer, 2005 BibTeX )
M. Grasmair and O. Scherzer Relaxation of nonlocal singular integrals Numerical Functional Analysis and Optimization, 26(4-5):481–506, 2005 BibTeX )
M. Haltmeier, T. Schuster and O. Scherzer Filtered backprojection for thermoacoustic computed tomography in spherical geometry Mathematical Methods in the Applied Sciences, 28(16):1919–1937, 2005 BibTeX )
F. Lenzen, O. Scherzer and S. Schindler Robust Reconstruction from Chopped and Nodded Images Astronomy & Astrophysics, 443(3):1087–1093, 2005 BibTeX )
G. Paltauf, P. Burgholzer, M. Haltmeier and O. Scherzer Thermo-acoustic tomography using optical line detectionIn C. D. Depeursinge, editor, Novel Optical Instrumentation for Biomedical Applications II, 5864:586402. SPIE, 2005 BibTeX )
G. Regensburger and O. Scherzer Symbolic computation for moments and filter coefficients of scaling functions Annals of Combinatorics, 9(2):223–243, 2005 BibTeX )
O. Scherzer Taut-string algorithm and regularization programs with G-norm data fit Journal of Mathematical Imaging and Vision, 23(2):135–143, 2005 BibTeX )
O. Scherzer, W. Yin and S. Osher Slope and G-set characterization of set-valued functions and applications to non-differentiable optimization problems Communications in Mathematical Sciences, 3(4):479–492, 2005 BibTeX )

2004

M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf Thermoacoustic computed tomography with large planar receivers Inverse Problems, 20(5):1663–1673, 2004 BibTeX )
F. Lenzen and O. Scherzer Tikhonov type regularization methods: history and recent progressIn P. Neittaanmäki, T. Rossi, K. Majava and O. Pironneau, editors, Proceedings of ECCOMAS 2004. University of Jyväskylä, 2004 BibTeX )
F. Lenzen, S. Schindler and O. Scherzer Automatic Detection of Arclets formed by Gravitational Lensing Astronomy & Astrophysics, 416(1):391–401, 2004 BibTeX )
S. Osher and O. Scherzer G-norm properties of bounded variation regularization Communications in Mathematical Sciences, 2(2):237–254, 2004 BibTeX )

2003

I. A. Frigaard, S. Leimgruber and O. Scherzer Variational methods and maximal residual wall layers Journal of Fluid Mechanics, 483:37–65, 2003 BibTeX )
I. A. Frigaard, G. Ngwa and O. Scherzer On effective stopping time selection for visco-plastic nonlinear BV diffusion filters used in image denoising SIAM Journal on Applied Mathematics, 63(6):1911–1934 (electronic), 2003 BibTeX )
H. Grossauer and O. Scherzer Using the complex Ginzburg–Landau equation for digital inpainting in 2D and 3DIn L. D. Griffin and M. Lillholm, editors, Scale Space Methods in Computer Vision, 4th International Conference, Scale-Space 2003, (2695)225–236, 2003 BibTeX )
W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen and O. Scherzer Tube methods for BV regularization Journal of Mathematical Imaging and Vision, 19(3):219–235, 2003 BibTeX )
S. I. Kabanikhin, O. Scherzer and M. A. Shishlenin Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation Journal of Inverse and Ill-Posed Problems, 11(1):87–109, 2003 BibTeX )
A. Leit ao and O. Scherzer On the relation between constraint regularization, level sets, and shape optimization Inverse Problems, 19(1):L1–L11, 2003 BibTeX )
P. Paule, O. Scherzer and A. Schoisswohl Wavelets with scale dependent propertiesIn Symbolic and numerical scientific computation (Hagenberg, 2001), 2630:255–265. Springer, 2003 BibTeX )
O. Scherzer Scale space methods for denoising and inverse problem Advances in Imaging and Electron Physics, 128:445–530, 2003 BibTeX )

2002

C. W. Groetsch and O. Scherzer Iterative stabilization and edge detectionIn M. Z. Nashed and O. Scherzer, editors, Inverse problems, image analysis, and medical imaging, 313:129–141. American Mathematical Society, 2002 BibTeX )
W. Hinterberger, O. Scherzer, C. Schnörr and J. Weickert Analysis of Optical Flow Models in the Framework of Calculus of Variations Numerical Functional Analysis and Optimization, 23(1-2):69–89, 2002 BibTeX )
R. Kowar and O. Scherzer Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problemsIn V. G. Romanov, S. I. Kabanikhin, Yu. E. Anikonov and A. L. Bukhgeim, editors, Ill-posed and Inverse Problems, 253–270. VSP, 2002 BibTeX )
R. Kowar and O. Scherzer Beam-forming for nonlinear ultrasound inversion Journal of Inverse and Ill-Posed Problems, 10(2):195–211, 2002 BibTeX )
O. Scherzer Explicit versus implicit relative error regularization on the space of functions of bounded variationIn M. Z. Nashed and O. Scherzer, editors, Inverse problems, image analysis, and medical imaging, 313:171–198. American Mathematical Society, 2002 BibTeX )
O. Scherzer Relative error regularization for functions of bounded variationIn Proceedings PICOF 02, 181–188, 2002 BibTeX )
O. Scherzer and A. Schoisswohl A fast and robust algorithm for 2D/3D panorama ultrasound data Real-Time Imaging, 8(1):53–60, 2002 BibTeX )

2001

M. Burger and O. Scherzer Regularization methods for blind deconvolution and blind source separation problems Mathematics of Control, Signals, and Systems, 14(4):358–383, 2001 BibTeX )
F. Chyzak, P. Paule, O. Scherzer, A. Schoisswohl and B. Zimmermann The construction of orthonormal wavelets using symbolic methods and a matrix analytical approach for wavelets on the interval Experimental Mathematics, 10(1):67–86, 2001 BibTeX )
I. A. Frigaard, O. Scherzer and G. Sona Uniqueness and non-uniqueness in the steady displacement of two visco-plastic fluids Zeitschrift f ür Angewandte Mathematik und Mechanik. Journal of Applied Mathematics and Mechanics, 81(2):99–118, 2001 BibTeX )
M. Hanke and O. Scherzer Inverse problems light: numerical differentiation The American Mathematical Monthly, 108(6):512–521, 2001 BibTeX )
W. Hinterberger and O. Scherzer Models for image interpolation based on the optical flow Computing. Archives for Scientific Computing, 66(3):231–247, 2001 BibTeX )
S. I. Kabanikhin, R. Kowar, O. Scherzer and V. V. Vasin Numerical comparison of iterative regularization methods for a parameter estimation problem in a hyperbolic PDE Journal of Inverse and Ill-Posed Problems, 9(6):615–626, 2001 BibTeX )
O. Scherzer A posteriori error estimates for the solution of nonlinear ill-posed operator equations Nonlinear Analysis: Theory, Methods & Applications, 45(4):459–481, 2001 BibTeX )
O. Scherzer and C. W. Groetsch Inverse Scale Space Theory for Inverse ProblemsIn M. Kerckhove, editor, Scale-Space and Morphology in Computer Vision, (2106)317–325. Springer, 2001 BibTeX )
J. Weickert, J. Heers, C. Schnörr, K. J. Zuiderveld, O. Scherzer and H. S. Stiehl Fast Parallel Algorithms for a Broad Class of Nonlinear Variational Diffusion Approaches Real-Time Imaging, 7(1):31–45, 2001 BibTeX )

2000

H. W. Engl and O. Scherzer Convergence rates results for iterative methods for solving nonlinear ill-posed problemsIn Surveys on solution methods for inverse problems, 7–34. Springer, 2000 BibTeX )
I. A. Frigaard and O. Scherzer The effects of yield stress variation on uniaxial exchange flows of two Bingham fluids in a pipe SIAM Journal on Applied Mathematics, 60(6):1950–1976 (electronic), 2000 BibTeX )
C. W. Groetsch and O. Scherzer Non-stationary iterated Tikhonov-Morozov method and third-order differential equations for the evaluation of unbounded operators Mathematical Methods in the Applied Sciences, 23(15):1287–1300, 2000 BibTeX )
E. Radmoser, O. Scherzer and J. Weickert Scale-Space Properties of Nonstationary Iterative Regularization Methods Journal of Visual Communication and Image Representation, 11(2):96–114, 2000 BibTeX )
O. Scherzer and J. Weickert Relations between regularization and diffusion filtering Journal of Mathematical Imaging and Vision, 12(1):43–63, 2000 BibTeX )

1999

M. Hanke and O. Scherzer Error analysis of an equation error method for the identification of the diffusion coefficient in a quasi-linear parabolic differential equation SIAM Journal on Applied Mathematics, 59(3):1012–1027 (electronic), 1999 BibTeX )
E. Radmoser, O. Scherzer and J. Weickert Scale-Space Properties of Regularization MethodsIn M. Nielsen, P. Johansen, O. Olsen and J. Weickert, editors, Scale-Space Theories in Computer Vision, 1682:211–222. Springer, 1999 BibTeX )
O. Scherzer and M. Gulliksson Adaptive strategy for the damping parameters in an iteratively regularized Gauss-Newton method Journal of Optimization Theory and Applications, 100(1):161–180, 1999 BibTeX )

1998

P. Deuflhard, H. W. Engl and O. Scherzer A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions Inverse Problems, 14(5):1081–1106, 1998 BibTeX )
I. A. Frigaard and O. Scherzer Uniaxial exchange flows of two Bingham fluids in a cylindrical duct IMA Journal of Applied Mathematics, 61(3):237–266, 1998 BibTeX )
B. Hofmann and O. Scherzer Local ill-posedness and source conditions of operator equations in Hilbert spaces Inverse Problems, 14(5):1189–1206, 1998 BibTeX )
S. I. Kabanikhin, R. Kowar and O. Scherzer On the Landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order Journal of Inverse and Ill-Posed Problems, 6(5):403–430, 1998 BibTeX )
M. Z. Nashed and O. Scherzer Least squares and bounded variation regularization with nondifferentiable functionals Numerical Functional Analysis and Optimization, 19(7-8):873–901, 1998 BibTeX )
A. Neubauer and O. Scherzer Regularization for curve representations: uniform convergence for discontinuous solutions of ill-posed problems SIAM Journal on Applied Mathematics, 58(6):1891–1900 (electronic), 1998 BibTeX )
O. Scherzer A modified Landweber iteration for solving parameter estimation problems Applied Mathematics & Optimization, 38(1):45–68, 1998 BibTeX )
O. Scherzer An iterative multi-level algorithm for solving nonlinear ill-posed problems Numerische Mathematik, 80(4):579–600, 1998 BibTeX )
O. Scherzer and T. Strohmer A multi-level algorithm for the solution of moment problems Numerical Functional Analysis and Optimization, 19(3-4):353–375, 1998 BibTeX )

1997

B. Blaschke, A. Neubauer and O. Scherzer On convergence rates for the iteratively regularized Gauss-Newton method IMA Journal of Numerical Analysis, 17(3):421–436, 1997 BibTeX )
I. A. Frigaard and O. Scherzer Spraying the perfect billet SIAM Journal on Applied Mathematics, 57(3):649–682, 1997 BibTeX )
M. Z. Nashed and O. Scherzer Stable approximation of nondifferentiable optimization problems with variational inequalitiesIn Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), 204:155–170. Amer. Math. Soc., 1997 BibTeX )
M. Z. Nashed and O. Scherzer Stable approximations of a minimal surface problem with variational inequalities Abstract and Applied Analysis, 2(1-2):137–161, 1997 BibTeX )
A. Neubauer and O. Scherzer Reconstruction of discontinuous solutions from blurred dataIn R. L. Barbour, M. J. Carvlin and M. A. Fiddy, editors, Computational, Experimental, and Numerical Methods for Solving Ill-Posed Inverse Imaging Problems: Medical and Nonmedical Applications, 3171:34–41. SPIE, 1997 BibTeX )
O. Scherzer Stable evaluation of differential operators and linear and nonlinear multi-scale filtering Electronic Journal of Differential Equations, 15:12 pp. (electronic), 1997 BibTeX )

1996

A. Binder, M. Hanke and O. Scherzer On the Landweber iteration for nonlinear ill-posed problems Journal of Inverse and Ill-Posed Problems, 4(5):381–389, 1996 BibTeX )
D. Dobson and O. Scherzer Analysis of regularized total variation penalty methods for denoising Inverse Problems, 12(5):601–617, 1996 BibTeX )
F. Hettlich, J. Morgan and O. Scherzer On the estimation of interfaces from boundary measurementsIn Inverse problems in geophysical applications (Yosemite, CA, 1995), 163–178. SIAM, 1996 BibTeX )
O. Scherzer A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems Numerical Functional Analysis and Optimization, 17(1-2):197–214, 1996 BibTeX )

1995

M. Hanke, F. Hettlich and O. Scherzer The Landweber iteration for an inverse scattering problemIn K.-W. Wang, B. Yang, J.Q. Sun, K. Seto, K. Nonami, H.-S. Tzou, S.S. Rao, G.R. Tomlinson, B. Yang, H.T. Banks, G.M.L. Gladwell, M. Link, G. Lallement, T.E. Alberts, C.-A. Tan and Y.Y. Hung, editors, Proceedings of the 1995 Design Engineering Technical Conferences, 909–915. The American Society of Mechanical Engineers, 1995 BibTeX )
M. Hanke, A. Neubauer and O. Scherzer A convergence analysis of the Landweber iteration for nonlinear ill-posed problems Numerische Mathematik, 72(1):21–37, 1995 BibTeX )
A. Neubauer and O. Scherzer A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems Zeitschrift für Analysis und ihre Anwendungen. Journal of Analysis and its Applications, 14(2):369–377, 1995 BibTeX )
O. Scherzer Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems Journal of Mathematical Analysis and Applications, 194(3):911–933, 1995 BibTeX )

1994

A. Binder, H. W. Engl, C. W. Groetsch, A. Neubauer and O. Scherzer Weakly closed nonlinear operators and parameter identification in parabolic equations by Tikhonov regularization Applicable Analysis, 55(3-4):215–234, 1994 BibTeX )
P. Burgholzer and O. Scherzer On the numerical determination of optimal textures of aluminium Textures and Microstructures, 22:177–186, 1994 BibTeX )
H. W. Engl, W. Rundell and O. Scherzer A regularization scheme for an inverse problem in age-structured populations Journal of Mathematical Analysis and Applications, 182(3):658–679, 1994 BibTeX )
H. W. Engl, O. Scherzer and M. Yamamoto Uniqueness and stable determination of forcing terms in linear partial differential equations with overspecified boundary data Inverse Problems, 10(6):1253–1276, 1994 BibTeX )
B. Hofmann and O. Scherzer Factors influencing the ill-posedness of nonlinear problems Inverse Problems, 10(6):1277–1297, 1994 BibTeX )

1993

C. W. Groetsch and O. Scherzer Optimal order of convergence for stable evaluation of differential operators Electronic Journal of Differential Equations, 4:1–10, 1993 BibTeX )
O. Scherzer The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems Computing. Archives for Scientific Computing, 51(1):45–60, 1993 BibTeX )
O. Scherzer Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems Numerische Mathematik, 66(2):259–279, 1993 BibTeX )
O. Scherzer A parameter choice for Tikhonov regularization for solving nonlinear inverse problems leading to optimal convergence rates Applications of Mathematics, 38(6):479–487, 1993 BibTeX )
O. Scherzer, H. W. Engl and R. S. Anderssen Parameter identification from boundary measurements in a parabolic equation arising from geophysics Nonlinear Analysis: Theory, Methods & Applications, 20(2):127–156, 1993 BibTeX )
O. Scherzer, H. W. Engl and K. Kunisch Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems SIAM Journal on Numerical Analysis, 30(6):1796–1838, 1993 BibTeX )

1992

O. Scherzer The use of Tikhonov regularization in the identification of electrical conductivities from overdetermined boundary data Results in Mathematics. Resultate der Mathematik, 22(1-2):598–618, 1992 BibTeX )

1990

A. Neubauer and O. Scherzer Finite-dimensional approximation of Tikhonov regularized solutions of nonlinear ill-posed problems Numerical Functional Analysis and Optimization, 11(1-2):85–99, 1990 BibTeX )

Published Books

2019

R. Ramlau and O. Scherzer, editors The Radon Transform: The First 100 Years and BeyondDe Gruyter, 2019 BibTeX )

2015

O. Scherzer, editor Handbook of Mathematical Methods in ImagingSpringer, 2nd edition, 2015 BibTeX )

2011

O. Scherzer, editor Handbook of Mathematical Methods in ImagingSpringer, 2011 BibTeX )

2009

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen Variational methods in imagingSpringer, 2009 BibTeX )

2008

B. Kaltenbacher, A. Neubauer and O. Scherzer Iterative regularization methods for nonlinear ill-posed problemsWalter de Gruyter, 2008 BibTeX )

2006

O. Scherzer, editor Mathematical models for registration and applications to medical imagingSpringer-Verlag, 2006 BibTeX )

2003

M. Bertero and O. Scherzer, editors Special section on imagingInstitute of Physics Publishing, 2003 BibTeX )

Contact

Computational Science Center
Faculty of Mathematics
University of Vienna

Oskar-Morgenstern-Platz 1
1090 Wien
T: +43-1-4277-55771