Exercise Sheet 2

1. Consider the system

$$Ax = b, \tag{1}$$

where A is a symmetric positive definite matrix. Let M be a symmetric positive definite matrix, which can be written as $M = R^T R$, using the Cholesky decomposition, where R is an upper triangular matrix. Show that

- (a) the matrix $\tilde{A} = (R^{-1})^T A R^{-1}$ is positive definite.
- (b) the system (1) is equivalent to the system

$$\begin{aligned}
\tilde{A}y &= \tilde{b}, \\
y &= Rx,
\end{aligned}$$
(2)

where $\tilde{b} = (R^{-1})^T b$.

(c) if x_0 and y_0 are two approximated solutions of the systems (1) and (2) respectively, then

$$||y - y_0||_{\tilde{A}} = ||x - x_0||_A$$

where the norms are the energy norms induced by \tilde{A} and A, respectively.

2. Consider the constrained optimization problem

min
$$f(x)$$
 subject to $c(x) = 0$,

where $f : \mathbb{R}^n \to \mathbb{R}$ and $c : \mathbb{R}^n \to \mathbb{R}^m$, are three times continuously differentiable on \mathbb{R}^n and $m \leq n$. The problem is equivalent to search for solutions $(x^*, \lambda^*) \in \mathbb{R}^n \times \mathbb{R}^m$ of the system

$$\nabla_x L(x^*, \lambda^*) = 0,$$

$$c(x^*) = 0,$$

where $L: \mathbb{R}^{n+m} \to \mathbb{R}$ is the Lagrangian function, given by

$$L(x,\lambda) = f(x) + \lambda^T c(x).$$

For a, b > 0 we define the penalty function

$$P(x,\lambda;b,a) = L(x,\lambda) + \frac{1}{2}\nabla L(x,\lambda)^T K(b,a)\nabla L(x,\lambda),$$

where

$$K(b,a) = \begin{bmatrix} aI & 0\\ 0 & bI \end{bmatrix} \text{ and } \nabla L(x,\lambda) = \begin{bmatrix} \nabla_x L(x,\lambda)\\ \nabla_\lambda L(x,\lambda) \end{bmatrix}$$

and I is the identity matrix of appropriate dimensions. Let $z \in \mathbb{R}^n$ such that

$$\nabla c(x^*)^T z = 0$$
 and $z^T \nabla^2_{xx} L(x^*, \lambda^*) z < 0.$

Show that there exists $\bar{a} > 0$ such that, for all $a \in (0, \bar{a})$ and b > 0, the pair (x^*, λ^*) is not an unconstrained local minimum of $P(\cdot, \cdot; b, a)$.

3. Consider the equality constrained quadratic programming (QP) problem

$$\min f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} + \mathbf{e}_1^T \mathbf{x}$$

subject to $x_1 + 2x_2 + x_3 = 4$, (3)

where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}, \quad \mathbf{e}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Eliminate the variable x_1 in order to express the resulting function in the form

$$\frac{1}{2}\mathbf{y}^T B\mathbf{y} + v^T \mathbf{y} + c,$$

where $\mathbf{y}^T = (x_2 \ x_3)$, B is a constant symmetric matrix, v is a constant vector and $c \in \mathbb{R}$.

- (b) Find the solution \mathbf{x}^* of the QP problem.
- (c) Find the Lagrange multiplier λ^* of the equality constraint.