
Daniel Leitner

CO-MAT2

Lecture Notes

Wintersemester 2014/15

Computational Science Center
Universität Wien

Oskar-Morgenstern-Platz 1
A-1090 Wien

Contents

1 Eigenvalues 1

1.1 Eigenvalue problems . 1

1.1.1 Estimation of eigenvalues 2

1.1.2 Power iteration . 4

1.1.3 QR algorithm . 5

1.2 Generalized eigenvalue problem 7

1.3 Singular values . 7

2 Iteration methods 9

2.1 Fixed point iteration . 9

2.1.1 Jacobi method . 10

2.1.2 Gauss-Seidel method . 11

2.1.3 Successive over-relaxation (SOR) 11

2.2 Krylov subspace methods . 11

2.2.1 Arnoldi iteration . 12

2.2.2 Lanzcos iteration . 14

2.2.3 Generalized minimal residuals (GMRES) 14

2.2.4 Conjugate gradients (CG) 15

3 Nonlinear systems of equations 21

3.1 Newton’s method . 21

3.1.1 One-dimensional geometric motivation 21

3.1.2 Higher-dimensional generalisation 22

3.2 Quasi-Newton methods . 23

3.2.1 One-dimensional motivation: Secant method 23

3.2.2 Higher-dimensional generalisation 24

3.3 Basic line search concepts . 26

3.3.1 Armijo . 27

3.3.2 Goldstein and Price . 28

3.3.3 Wolfe . 28

4 Discrete-time Markov chains 31

4.1 Modelling with Markov chains . 31

4.2 Probabilistic predictions . 33

i

ii CONTENTS

5 Random numbers and Monte Carlo Simulation 37
5.1 Pseudorandom number generators 37
5.2 Tests of pseudorandom numbers 37
5.3 Basic concepts of Monte Carlo integration 37

Chapter 1

Eigenvalues

In this chapter we will consider a matrix A ∈ Cn×n and numerically find its
eigenvalues and eigenvectors. We use the more general case of complex matrices
because even for real matrices eigenvalues and eigenvectors can be complex.

The section is widely based on the lecture notes [1], and contains additional
material material from [2].

1.1 Eigenvalue problems

For a given matrix A we search for pairs of eigenvalues λ ∈ C and eigenvectors
x ∈ Cn that satisfy

Ax = λx x ∈ Cn \ {0}, λ ∈ C .

We can find the eigenvalues by the roots λi of the characteristic polynomial

χ(z) = det(A− zI) = (z − λ1)(z − λ2) . . . (z − λn) ,

which is a non-linear problem. We define the algebraic multiplicity of an eigen-
value λ to be its multiplicity as a root of χ(z).

For each eigenvalue λ we can calculate the corresponding eigenvectors solving
the linear equation

(A− λI) vj = 0 .

The linear space spanned by the eigenvectors vj is called the eigenspace and is
denoted with Eλ. The number of linear independent eigenvectors (i.e. the rank
of Eλ) is called the geometric multiplicity of the eigenvalue λ.

Example 1.1.1. Consider the two matrices

A =

 2
2

2

 , B =

 2 1
2 1

2

 .

What is the characteristic polynomial, eigenvalues, algebraic and geometric mul-
tiplicities?

1

2 CHAPTER 1. EIGENVALUES

An eigenvalue whose algebraic multiplicity is greater than its geometric mul-
tiplicity is called a defective eigenvalue. A matrix with at least one defective
eigenvalue is called a defective matrix.

We call the matrices A and B similar if there exists a non-singular X ∈ Cn×n
such that B = XAX−1. Similar matrices have the same characteristic polyno-
mial, eigenvalues, and algebraic and geometric multiplicities.

Numerical algorithms to find eigenvalues are not based on finding roots of
the characteristic polynomial, since this is a highly unstable problem. Eigenval-
ues are either computed by power iteration (see Section 1.1.2) or by eigenvalue
revealing factorizations (see Section 1.1.3).

Lemma 1.1.2. The most important matrix factorizations are:

1. If A is nondefective a diagonalisation A = XΛX−1 exists, where Λ is a
diagonal matrix.

2. If A is normal (i.e. AA∗ = A∗A) an unitary diagonalisation A = QΛQ∗

exists, where Q is an unitary matrix (i.e. Q∗ = Q−1), and Λ is a diagonal
matrix. Note that all hermitian matrices are normal.

3. An unitary triangulation (Schur factorization) A = QTQ∗ always exists,
where Q is unitary and T is upper triangular.

Typical applications of eigenvalues are situations where we are interested in
Ak = XΛkX−1 or eA = XeΛX−1 for a nondefective matrix A. The second
expression is especially useful for analysing systems of linear differential equa-
tions.

1.1.1 Estimation of eigenvalues

For a quick estimation of the eigenvalues we can use

Theorem 1.1.3. (Gershgorin circle theorem) Given a matrix A = [aij] ∈
Cn×n, then for every eigenvalue λ of A, holds

λ ∈
n⋃
i=1

Ki,

with the Gershgorin discs

Ki := {ζ ∈ C : |ζ − aii| ≤
∑
j 6=i

|aij |}.

Proof. Let Ax = λx with x = [xi] 6= 0. Then there exists an index i, so that
|xj | ≤ |xi| for all j 6= i. (Ax)i denotes the i-th component of Ax, then

λxi = (Ax)i =

n∑
j=1

aijxj

and therefore,

|λ− aii| =

∣∣∣∣∣∣
∑
j 6=i

aij
xj
xi

∣∣∣∣∣∣ ≤
∑
j 6=i

|aij | .

Therfore, λ ∈ Ki ⊆
⋃n
j=1Kj . �

1.1. EIGENVALUE PROBLEMS 3

Example 1.1.4. What are the Gershgorin discs of

A =

 4 0 −3
0 −1 1
−1 1 0

 ?

We can further confine the range in which the eigenvalues are using the
Rayleigh quotient. The Rayleigh quotient of a vector x is given by

r(x) :=
x∗Ax

x∗x
, x ∈ Cn\{0}.

Note that r(vi) = λi, and for each vector x the Rayleigh quotient gives the value
α := r(x) which acts most like an eigenvalue (i.e. minimizes ‖Ax− αx‖).

The range of r(x)

W(A) :=

{
x∗Ax

x∗x
: x ∈ Cn\{0}

}
⊆ C .

is called the numerical range of the matrix A. Notably, the eigenvalues of A lie
in the numerical range of A.

Further properties of W(A) are

1. W(A) is connected.

2. If A is hermitian, then W(A) is the real interval [λmin, λmax].

3. If A is skew-symmetric (i.e. A∗ = −A), then W(A) is an imaginary
interval, i.e. the convex hull (⊆ C) of all eigenvalues of A.

See [1] for a proof.

Every matrix A ∈ Cn×n can be spilt into an hermitian part (first term) and
a skew symmetric part (second term):

A =
A+A∗

2
+
A−A∗

2
.

From this split and the above properties we directly derive:

Theorem 1.1.5. (Theorem of Bendixon)

σ(A) ⊆ W
(
A+A∗

2

)
⊕W

(
A−A∗

2

)
,

where σ(A) is the spectrum of A ∈ Cn×n (i.e. the set containing all eigenvalues
of A).

Example 1.1.6. We use the theorem to further confine the range of Example
1.1.4. First we calculate the hermitian and skew-symmetric part

H =
A+At

2
=

 4 0 −2
0 −1 1
−2 1 0

 , S =
A−At

2
=

 0 0 −1
0 0 0
1 0 0

 .

4 CHAPTER 1. EIGENVALUES

The spectra of H and S can be estimated by the theorem of Gerschgorin: This
yields

R = [−3, 6]× [−i, i] ⊃ W(A) ⊃ σ(A) .

The spectrum of A must lie in the intersection of R and the Gerschgorin discs
of Example 1.1.4. The actual spectrum of A is

σ(A) = {−1.7878, 0.1198, 4.6679} .

1.1.2 Power iteration

In this section we numerically calculate eigenvalues and eigenvectors by a method
called power iteration. For simplicity, we only consider symmetric real matrices.
Such matrices are diagonalisable and their eigenvectors form an orthonormal
basis. Furthermore, we sort the absolute values of the eigenvalues in descending
orders |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0.

We consider the sequence z(k+1) = Az(k)/‖Az(k)‖. Under certain assump-
tions the sequence converges to the eigenvector corresponding to the largest
eigenvalue of A. The approach is outlined in Algorithm 1.

Data: Matrix A, initial eigenvector z(0) with ‖z(0)‖ = 1
Initialisation: set k = 1
while convergence criterion not satisfied do

z̃(k) := Az(k−1) apply A

z(k) := z̃(k)

‖z̃(k)‖ normalise

k ← k + 1

end

Algorithm 1: Power iteration

The estimation for the eigenvalue can be found by applying the Rayleigh
quotient to the resulting z(k),

λ(k) := z(k)TAz(k).

We analyse power iteration by writing the initial guess z(0) as a linear com-
bination of the orthonormal eigenvectors qi:

z(0) = a1q1 + a2q2 + · · ·+ anqn (1.1)

The value z(k) is a multiple of Akz(0), therefore we write

z(k) = ckA
kz(0) ,

where ck is some scalar constant. Note that Aq1 = λ1q1, thus inserting Eqn
(1.1) yields

z(k) = ck(a1λ
k
1q1 + a2λ

k
2q2 · · ·+ anλ

k
nqn)

z(k) = ckλ
k
1(a1q1 + a2(λ2/λ1)kq2 + · · ·+ an(λn/λ1)kqn)

1.1. EIGENVALUE PROBLEMS 5

If k becomes big, the terms (λj/λ1) for j = 2 . . . n become small if |λ1| > |λj |,
and therefore z(k) → (ckλ

k
1a1)q1. Thus for all z(0), where a1 6= 0 the proposed

Algorithm 1 will converge to the eigenvector corresponding to the largest eigen-
value of A.

The algorithm is very simple, but of limited use, since it only finds the eigen-
vector corresponding to the largest eigenvalue, and if λ1 is not much larger than
λ2 convergence is very slow. To speed things up we would need the absolute
value of λ1 to be large.

We improve the algorithm using the following idea: For any µ ∈ R that is
not an eigenvalue of A, the eigenvectors of A are the same as of (A − µI)−1.
Furthermore, if λi is an eigenvalue of A then (λi − µ)−1 is an eigenvalue of
(A− µI)−1.

Consequently, if we choose a value µ that is close to an eigenvalue λj . Then
(λi−µ)−1 will be large, and therefore the eigenvector of A−µI can be computed
very fast. This leads to the method called inverse iteration which is described
in Algorithm 2. The algorithm computes the eigenvector corresponding to the
eigenvalue nearest to µ.

Data: Matrix A, initial µ close to the desired eigenvalue, initial vector
z(0) with ‖z(0)‖ = 1

Initialisation: set k = 1
while convergence criterion not satisfied do

solve (A− µI)w = z(k−1) for w apply (A− µI)−1

z(k) := w
‖w‖ normalise

k ← k + 1

end

Algorithm 2: Inverse iteration

We can further improve inverse iteration by continuously improving the ei-
genvalue estimate µ in each step to increase the rate of convergence. Therefore,
we use the Rayleigh quotient

r(z) :=
zTAz

zT z
, z ∈ Cn\{0}.

to estimate the eigenvalue λ from the estimated (normed) eigenvector z, thus
λ = zTAz (this minimizes ‖Ax − λx‖). This leads to the Rayleigh quotient
iteration outlined in Algorithm 3. This algorithm is very fast and shows a cubic
convergence rate.

1.1.3 QR algorithm

The QR algorithm is a stable and simple procedure for calculating all eigen-
values and eigenvectors. The algorithm uses the QR factorization and the next
iterate is a recombination of the factors in reverse order (see Algorithm 4).

6 CHAPTER 1. EIGENVALUES

Data: Matrix A, initial vector z(0) with ‖z(0)‖ = 1
Initialisation: set k = 1, let λ(0) := (z(0))TAz(0)

while convergence criterion not satisfied do

solve (A− λ(k−1)I)w = z(k−1) for w apply (A− λ(k−1)I)−1

z(k) := w
‖w‖ normalise

λ(k) := (z(k))TAz(k) Rayleigh quotient
k ← k + 1

end

Algorithm 3: Rayleigh quotient iteration

First, we note that in each iteration of the algorithm we use only (stable)
similarity transformation. Thus A(k) and A(k−1) are similar, since R(k) =
(Q(k))∗A(k−1), and therefore A(k) = (Q(k))∗A(k−1)Q(k). Thus, if A(k) con-
verges, this matrix has the same eigenvalues and eigenvectors as A(0).

Second, QR algorithm can be seen as a more sophisticated variation of power
iteration (Algorithm 1). Instead of using one single vector, QR algorithm works
with a complete orthonormal basis of vectors, using the QR decomposition to
orthogonalize. For a hermitian matrix A the algorithm convergences to a diag-
onal matrix of eigenvalues. The matrix Q is orthogonal, and the columns of Q
are the eigenvectors of A. For the non-hermitian case, the algorithm converges
to the a Schur factorisation of the matrix (see Lemma 1.1.2).

Data: Matrix A
Initialisation: set k = 1, A(0) = A
while convergence criterion not satisfied do

Q(k)R(k) = A(k−1) QR factorization of A(k−1)

A(k) = R(k)Q(k) recombine in reverse order
k ← k + 1

end

Algorithm 4: QR algorithm

QR algorithm is the standard algorithm for computing all eigenvalues of a
matrix. The algorithm can achieve cubic convergence for hermitian matrices,
given the following enhancements:

1. Initially, A is reduced to tridiagonal form using Householder transforma-
tions.

2. Instead of A(k), the shifted matrix A(k)−µkI is factored, where µk is an ei-
genvalue estimate (same idea as Rayleigh quotient iteration, Algorithm 3).

3. When possiblyA(k) is split into submatrices (a divide and conquer strategy).

1.2. GENERALIZED EIGENVALUE PROBLEM 7

1.2 Generalized eigenvalue problem

The problem of finding a vector vi ∈ Cn \ {0} that obeys

Avi = λiBvi

for A,B ∈ Cn×n is called a general eigenvalue problem and the generalised
eigenvalue λi ∈ C obeys the equation

det(A− λiB) = 0.

In this case we can find n linearly independent vectors vi so that Avi = λiBvi
the following equality holds

A = BXΛX−1,

where X is the matrix composed of the eigenvectors vi and Λ is a diagonal
matrix of the eigenvalues λi.

For generalised eigenvalue problem the Rayleigh quotient is defined as

r(x) :=
x∗Ax

x∗Bx
.

With this definition it is easy to generalize the Rayleigh quotient iteration (Al-
gorithm 3) to calculate generalized eigenvectors.

Example 1.2.1. Consider the matrices

A =

[
−1 0

0 1

]
, B =

[
0 1
1 0

]
.

Then, the characteristic polynomial takes the form χ(z) = z2 + 1, which results
to the set of the eigenvalues σ(A,B) = ±i. Even though both matrices are
symmetric the pair of them exhibits complex conjugate eigenvalues.

1.3 Singular values

Let A ∈ Cm×n with range(A) = p ≤ min{m,n}, then there exists a unique
factorisation called singular value decomposition (SVD) such that

A = UΣV ∗,

where U := [u1, . . . , um] ∈ Cm×m is unitary (U∗U = UU∗ = I), and V :=
[v1, . . . , vn] ∈ Cn×n is unitary, with {uj}mj=1 and {vj}nj=1 being orthonormal
bases on Cm and Cn, respectively. Σ ∈ Rm×n is diagonal

Σ :=

σ1 0

. . .

0 σp

0
...
0

0 · · · 0 0

 ,
with real values σ1 ≥ σ2 ≥ ... ≥ σp > 0.

8 CHAPTER 1. EIGENVALUES

A geometrical interpretation of the SVD is that the image of a unit sphere
under any m×n matrix is a hyperellipse, where the vectors σiui are the principal
semiaxis. Note that

Avj = σjuj for j = 1 . . . p ,

and
U∗AV = Σ.

The SVD shows that all matrices are diagonal under the proper bases for the
domain and range spaces.

There are fundamental differences between singular values and eigenvalue
decompositions (compare with Lemma 1.1.2):

• SVD uses two different bases, eigenvalue decomposition just one.

• In a SVD the two bases are always orthogonal, in eigenvalue decomposition
this is generally not the case (only if A is normal).

• Not all matrices have an eigenvalue decomposition, but all (even rectan-
gular) matrices have a SVD.

Theorem 1.3.1. Nonzero singular values of A are the square roots of the nonzero
eigenvalues of A∗A and AA∗.

Theorem 1.3.2. If A is hermitian (i.e. A = A∗) the singular values of A are
the absolute values of the eigenvalues of A.

Thus, numerical computation of singular values could be based on calcu-
lating the eigenvalues of AA∗. However, this method is unstable, since the
condition number of AA∗ might be much bigger than that of A.

Stable SVD algorithms are based on finding the eigenvalues of the self-adjoint
block matrix

M =

(
0 A

A∗ 0

)
,

which are the singular values of A with positive and negative sign. For a proof
refer to [2].

Chapter 2

Iteration methods

Iterative methods try to find an approximate solution x ∈ Rn to the linear equa-
tion Ax = b or the eigenvalue problem Ax = λx, where A ∈ Rn×n is very large
and typically sparse. Such matrices appear frequently in the applied sciences
e.g. as stiffness matrices from partial differential equations.

Section 2.1 is based on the lecture notes [1], with additional notes from [4].
Section 2.2 summarizes the corresponding chapters from [2], with additional
comments from lecture notes [3], and [5].

2.1 Fixed point iteration

We will construct iterative methods based on an important result from analysis:

Theorem 2.1.1. (Banach fixed-point theorem) Let Φ : Rn → Rn be a contrac-
tion, i.e.

‖Φ(x)− Φ(y)‖ ≤ q‖x− y‖ for q < 1 for all x, y ∈ Rn .

The fix point equation x = Φ(x) has exactly one solution x̂ ∈ Rn, and the
iteration {x(k)} with x(0) ∈ Rn, x(k+1) = Φ(x(k)) for k = 0, 1, 2, . . . , converges
to the solution x̂ for k →∞. Furthermore, for k ≥ 1

1. ‖x(k) − x̂‖ ≤ q‖x(k−1) − x̂‖ (monotony)

2. ‖x(k) − x̂‖ ≤ qk

1−q‖x
(1) − x(0)‖ (a-priori bound)

3. ‖x(k) − x̂‖ ≤ q
1−q‖x

(k) − x(k−1)‖ (a-posteriori bound)

See [1] for a proof.

The basic idea is that we choose a splitting

A = M −N,

with a matrix M that can be easily inverted. With this splitting we write Ax = b
as fix point equation

Mx = Nx+ b , or

x = Tx+ c ,

9

10 CHAPTER 2. ITERATION METHODS

where T = M−1N and c = M−1b. Thus, the iteration

x(k+1) = Φ(x(k))

is given by

Φ(x) = Tx+ c .

By choosing M we can construct different iterative methods to solve Ax = b,
and we can use Theorem 2.1.1 to analyse its behaviour (e.g. it shows that such
methods typically have a linear convergence rate). Note that it is essential that
M−1 is easy to compute.

The framework is outlined in Algorithm 5. Choices ofM andN are presented
in the following sections.

Data: Matrix A = [aij], initial vector x(0)

Initialisation: set k = 0
while convergence criterion not satisfied do

for i = 1 : n do

x̃
(k+1)
i := Φ(xk) with Φ according to Eqns (2.1),(2.2), or (2.3)

end
k ← k + 1

end

Algorithm 5: Stationary iterative methods

2.1.1 Jacobi method

Jacobi methods splits the matrix A = [aij] into its diagonal elements M =
diag(a11, . . . , ann) and N = M − A, thus the inverse can be easily calculated:
M−1 = diag(1

a11
, . . . , 1

ann
). Therefore, we write

x(k+1) = M−1(b+Nx(k))

or component-wise

x
(k+1)
i =

1

aii

bi −∑
j 6=i

aijx
(k)
j

 . (2.1)

From fix-point theorem 2.1.1 we know that the iteration converges if we can
find a q < 1 such that ‖Φ(x) − Φ(y)‖ = ‖M−1N(x − y)‖ ≤ q‖x − y‖. From
‖M−1N(x−y)‖ ≤ ‖M−1N‖‖x−y‖ we conclude that ‖M−1N‖ ≤ q. Therefore,
if ‖M−1N‖ < 1 the method will converge. Especially, this is the case when A
is a diagonal dominant matrix.

Note that Jacobi iteration is very simple to parallelise.

2.2. KRYLOV SUBSPACE METHODS 11

2.1.2 Gauss-Seidel method

Gauss-Seidel method accelerates convergence of the Jacobi method by using the

already computed vector components x
(k+1)
j for j < i:

x
(k+1)
i =

1

aii

bi −∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

 . (2.2)

We rewrite this equation as

aiix
(k+1)
i +

∑
j<i

aijx
(k+1)
j = bi −

∑
j>i

aijx
(k)
j

and derive the following matrix form

(D − L)x(k+1) = b+ Ux(k) ,

where D is a diagonal matrix and D = diag(a11, . . . , ann), L a strictly lower
triangular matrix, and U a strictly upper triangular matrix (both with negative
entries aij).

Thus, we choose M = D − L, where M is a lower triangular matrix, and
therefore easy to invert. Furthermore, N = M − A = U , and the fix-point
theorem 2.1.1 can be used to analyse convergence.

2.1.3 Successive over-relaxation (SOR)

The SOR is a variant of Gauss-Seidel method that improves convergence rate by
using a linear inter- or extrapolation between the last iterate x(k) and the Gauss-
Seidel iterate x(k+1) (Eqn 2.2). The method uses the relaxation parameter
ω ∈ (0, 2), which is often chosen heuristically in dependence of the specific
problem. The iteration is given by

x
(k+1)
i = x

(k)
i (1− ω) +

ω

aii

bi −∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

 . (2.3)

The same approach can be applied to the Jacobi method. This is sometimes
called JOR method.

2.2 Krylov subspace methods

The idea of all Krylov subspace methods is to project a n-dimensional problem
into a lower-dimensional m-Krylov subspace (where n >> m).

Definition 2.2.1. Let b ∈ Rn. The mth Krylov-space of A with respect to b is
defined as

Km(A, b) :=
〈
b, Ab,A2b, . . . , Am−1b

〉
.

That is, Km(A, b) is the space spanned by the vectors that one obtains by
iteratively applying the matrix A to b. In particular, we set K1(A, b) := Rb and
K0(A, b) := {0}.
Furthermore, we define the Krylov matrix by

Km(A, b) =
[
b, Ab,A2b, . . . Am−1b

]
.

12 CHAPTER 2. ITERATION METHODS

In the following subsections we describe methods for solving the eigenvalue
problem Ax = λx and linear equations Ax = b for hermitian and non-hermitian
matrices A ∈ Cn×n. The following table states the names or acronyms of the
corresponding methods.

Ax = λx Ax = b
A 6= A∗ Arnoldi (Section 2.2.1) GMRES (Section 2.2.3)
A = A∗ Lanczos (Section 2.2.2) CG (Section 2.2.4)

2.2.1 Arnoldi iteration

We first consider the Arnoldi iteration which is a method of computing a Hessen-
berg reduction A = QHQ∗, where H has the structure

H =

× . . . ×
× ×

. . .
. . .

...
× ×

 .
Arnoldi iteration is an important ingredient in many numerical methods (e.g.
GMRES in Section 2.2.3). In the end of this section we will show how we can
use Arnoldi iteration to approximate eigenvalues.

In principle a Hessenberg reduction can be easily achieved by Housholder
transformations. The advantage of Arnoldi iteration is that it can be stopped
part way, which yields a reduced Hessenberg reduction of the first m columns
of A.

Hessenberg reduction can be written in the form

AQ = QH.

If we consider the first m columns of this matrix equation we obtain

AQm = Qm+1Ĥm, (2.4)

where Qm ∈ Cn×m is the matrix with the first m columns of Q:

Qm = [q1, q2, . . . , qm] ,

and Ĥm ∈ C(m+1)×m is the reduced matrix with the first m columns of H (i.e.
the rows at the bottom containing only zeros are removed):

Ĥm =

h11 . . . h1m

h21 h22

...
. . .

. . .
...

hm(m−1) hmm
0 h(m+1)m

 .

Considering the last column of Eqn (2.4) we obtain the following recurrence
relation:

Aqm = h1mq1 + h2mq2 + · · ·+ hmmqm + h(m+1)mqm+1. (2.5)

Progressively solving this equation for qm+1 yields the Arnoldi iteration (see
Algorithm 6).

2.2. KRYLOV SUBSPACE METHODS 13

Data: Matrix A, vector b, number n
Initialisation: q1 = b/‖b‖
for m = 1 . . . n do

v = Aqm
for i = 1 . . .m do

him = q∗i v
v = v − himqi

end
h(m+1)m = ‖v‖
qm+1 = v/h(m+1)m

end

Algorithm 6: Arnoldi iteration

Theorem 2.2.2. The matrices Qm generated by the Arnoldi iteration have the
following properties

1. Qm are the reduced QR factors of the Krylov matrix Km(A, b):

Km = QmRm.

Therefore, the Arnoldi process offers a systematic construction of or-
thonormal bases for successive Krylov subspaces.

2. The Hessenberg matrices Hm are the projections of A onto the m-dimensional
Krylov subspace Km(A, b)

Hm = Q∗mAQm.

Since Hm is a projection of A the eigenvalues of Hm are related to those
of A. The eigenvalues θj of the matrix Hm are called Arnoldi estimates
or Ritz values.

See [2] for a proof.

Arnoldi estimates are most accurate approximations of eigenvalues. There-
fore, an obvious way of approximating the eigenvalues ofA ∈ Cn×n where n is
large is to

1. Calculate the matrix Hm using Algorithm 6 for some m << n.

2. Calculate the eigenvalues of Hm (∈ Cm×m) with a standard method (e.g.
QR algorithm 4).

The Arnoldi process has interesting connection to polynomial approxima-
tion theory. This can help us to analyse in which way Arnoldi approximates
eigenvalues, and which eigenvalues it will find (typically, it will detect only a
few eigenvalues, since m << n).

If a vector is in a Krylov subspace of dimension m+ 1, i.e. x ∈ Km+1(A, b),
it can be expressed as

x = c0b+ c1Ab+ . . . cmA
mb,

14 CHAPTER 2. ITERATION METHODS

or if q(z) = c0 + c1z + . . . cmz
m in polynomial form as

x = q(A)b.

Lets define Pm as the set of all monic (i.e the polynomials, where the highest
coefficient cm = 1) polynomials of degree m:

Lemma 2.2.3. The characteristic polynomial of the Hessenberg matrix Hm is
the unique solution of the minimization problem to find pm ∈ Pm such that

‖pm(A)b‖

is minimal.

This relates the characteristic polynomial of Hm, which acts as a ’pseudo
minimal polynomial’, to the characteristic polynomial of A which is the exact
minimal polynomial.

2.2.2 Lanzcos iteration

Arnoldi iteration is simplified if the matrix A is symmetric or hermitian. In
this case, the matrix H will not only have Hessenberg structure but can be
tridiagonal.

Therefore the recurrence equation (Eqn 2.5) turns into the simpler recurrence

Aqm = h(m−1)mqm−1 + hmmqm + h(m+1)mqm+1 (2.6)

that is used in the hermitian case.

2.2.3 Generalized minimal residuals (GMRES)

The Arnoldi process can be used to approximately solve linear equations Ax = b.
Lets assume A ∈ Rn×n to be a regular matrix and consider the m-th Krylov
subspaces Km(A, b).

The idea of generalized minimal residuals (GMRES) is to choose each iterate
x(m) ∈ Km(A, b) in order to minimize the norm of the residual r(m) = b−Ax(m).
The iterate x(m) ∈ Rn can be written as x(m) = Kmc where Km ∈ Rn×m is
the m-th Krylov matrix and c ∈ Rm. Finding the minimal residuum is a least
square problem:

c = arg min‖AKmc− b‖, x(m) = Kmc.

This method is numerically unstable since Km is typically ill conditioned. But,
we can easily fix this by taking Qm from Section 2.2.1 instead of Km, which is
as basis for the Krylov subspace Km(A, b). The matrices Qm can be iteratively
created using Arnoldi iteration (see Therorem 2.2.2). Therefore, we write x(m) =
Qmy and minimize

y = arg min‖AQmy − b‖, x(m) = Qmy.

Applying Eqn (2.4) yields

y = arg min‖Qm+1Ĥmy − b‖, x(m) = Qmy,

2.2. KRYLOV SUBSPACE METHODS 15

and multiplying the least square problem by Q∗m+1 gives

y = arg min‖Ĥmy −Q∗m+1b‖, x(m) = Qmy.

Finally, we arrive at Algorithm 7 after inserting ‖b‖e1 = Q∗m+1b. This can
be easily verified, since q1 = b/‖b‖ (see Algorithm 6) and qj are orthonormal
vectors.

Data: Matrix A, vector b, number n
Initialisation: k = 1
while convergence criterion not satisfied do

Qk, Ĥk = Arnoldi iteration one step from Alg. 6

y = arg min ‖Ĥky − ‖b‖e1‖ least square problem
x(k) = Qky
k ← k + 1

end

Algorithm 7: GMRES algorithm

2.2.4 Conjugate gradients (CG)

The conjugate gradient (CG) method is a very effective way to solve the linear
equation Ax = b, if A ∈ Rn×n is a symmetric and positive definite matrix.

The mapping 〈·, ·〉A : Rn × Rn → R,

〈x, y〉A := xTAy = 〈x,Ay〉

defines a scalar product on Rn (because of positive definiteness). The corres-
ponding norm

‖x‖A :=
√
〈x, x〉A =

√
xTAx

is called the energy norm induced by A.
The CG method picks the iterate x(m) ∈ Km(A, b) to minimize the energy

norm of the error e(m) := x(m)− x̂, where x̂ := A−1b is the exact solution, thus

x(m) ∈ Km(A, b), such that ‖e(m)‖A = minimum.

In the following we will construct the iterative method. First, we notice
that the equation can be reformulated as a quadratic optimisation problem. We
define the mapping Φ: Rn → R as

Φ(x) :=
1

2
xTAx− xT b . (2.7)

Then ∇Φ(x) = Ax− b, which shows that x̂ ∈ Rn is a critical point of Φ, if and
only if x̂ satisfies Ax̂ = b. Moreover, the Hessian of Φ is simply the positive
definite matrix A, showing that Φ is strictly convex and therefore x̂ := A−1b is
its unique minimiser.

16 CHAPTER 2. ITERATION METHODS

Rewriting the functional Φ, we show that

Φ(x)− Φ(x̂) =
1

2
xTAx− xT b− 1

2
x̂TAx̂+ x̂T b

=
1

2
(x− x̂)TA(x− x̂) +

1

2

(
xTAx̂+ x̂TAx

)
− x̂TAx̂− xT b+ x̂T b︸ ︷︷ ︸

=0, since Ax̂=b

=
1

2
(x− x̂)TA(x− x̂)

=
1

2
‖x− x̂‖2A

Thus, minimising Φ is equivalent to minimising the error e(m) in the energy
norm.

We approximate x̂ by successively minimizing the functional Φ. Let x(k) the
actual approximation, then we find the next iterate by

x(k+1) = x(k) + α(k)d(k), (2.8)

where d(k) 6= 0 is the search direction and α(k) is magnitude we ’move’ into this
direction.

For a given d(k) we determine α by minimizing along the direction d(k). First
we define the mapping α→ F (α) by

F (α) := Φ(x(k) + αd(k))

= Φ(x(k)) + αd(k)TAx(k) +
1

2
α2d(k)TAd(k) − αd(k)T b .

Then, F (α) is minimal if F ′(α(k)) = 0, thus

α(k) =
(b−Ax(k))T d(k)

d(k)TAd(k)
=:

r(k)T d(k)

d(k)TAd(k)
, (2.9)

where r(k) = b−Ax(k) is the residuum at the k-th iterate.
In the CG method, the direction d(k+1) is chosen to be a linear combination

of the previous direction d(k) and the residual r(k+1) in such a way that d(k+1)

and d(k) are orthogonal with respect to A

d(k+1) := r(k+1) + βkd
(k) ,

with βk such that

〈d(k), d(k−1)〉A = d(k)TAd(k−1) = 0 .

We calculate

0 = d(k+1)TAd(k) = r(k+1)TAd(k) + β(k)d(k)TAd(k) ,

and therefore

β(k) = −r
(k+1)TAd(k)

d(k)TAd(k)
= −〈r

(k+1), d(k)〉A
〈d(k), d(k)〉A

. (2.10)

With Eqns (2.9) and (2.10) the CG iteration of Eqn 2.8 is well defined. We
summarize:

2.2. KRYLOV SUBSPACE METHODS 17

Theorem 2.2.4. Let A ∈ Rn×n be symmetric and positive definite and let
Φ: Rn → R be as in (2.7). Let x(0) = 0 and consider the iteration (the CG
method)

x(k+1) = x(k) − 〈r
(k), d(k)〉
〈d(k), d(k)〉A

d(k)

with r(k) := b−Ax(k), d(0) = r(0), and

d(k) = r(k) − 〈r(k), d(k−1)〉A
〈d(k−1), d(k−1)〉A

d(k−1) ,

where we assume that the iteration is stopped if r(k) = 0.
If r(k) = 0, then x(k) = x̂ = A−1b. Else, the Krylov space Kk(A, b) has

dimension k and x(k) minimises Φ on the space Kk(A, b).

Some properties of the CG method are described by the following lemma:

Lemma 2.2.5. Let x(0) an arbitrary initial vector, and d(0) = r(0). If x(k) 6= x̂
for k = 0, . . . ,m, then

1.
r(m)T d(j) = 0 , ∀0 ≤ j < m ,

2.
r(m)T r(j) = 0 , ∀0 ≤ j < m ,

3.
〈d(m), d(j)〉A = 0 , ∀0 ≤ j < m .

The first equation shows that the residuals are orthogonal to all prior search
directions. Thus, to reach the exact solution it is enough to go into each direction
only once.

The second equation shows that the residuals are orthogonal to each other.
This means especially that the residuals are linear independent, and therefore
the CG method finds the solution x̂ in at most n steps.

The third equation shows that all search directions are orthogonal to each
other regarding the inner product 〈·, ·〉A.

See [1] for a proof of the lemma.

The following reformulations of α(k) (Eqn 2.9), and β(k) (Eqn 2.10) yields
the method described in Algorithm 8:

• We calculate

r(k)T d(k) = r(k)T r(k) + β(k−1)r(k)T d(k−1)

= r(k)T r(k) (by Lemma 2.2.5) .

Inserting into Eqn (2.9) yields

α(k) =
‖r(k)‖22

〈d(k), d(k)〉A
. (2.11)

18 CHAPTER 2. ITERATION METHODS

• First we notice that −αAd(k) = r(k+1) − r(k). This is easily verified by
multiplying the equation by A−1 from left, yielding Eqn (2.8). Then we
can calculate

r(k+1)tAd(k) = − 1

α(k)
(r(k+1)tr(k+1) − r(k+1)tr(k))

= − 1

α(k)
‖r(k+1)‖22 (by Lemma 2.2.5)

= −‖r
(k+1)‖22
‖r(k)‖22

d(k)tAd(k) .

Inserting into Eqn (2.10) yields

β(k) =
‖r(k+1)‖22
‖r(k)‖22

. (2.12)

Data: a positive definite and symmetric matrix A ∈ Rn×n, some b ∈ Rn
Result: the solution x∗ ∈ Rn of Ax = b

Initialisation: set x(0) = 0, r(0) = b, d(0) = r(0), k = 0

while convergence criterion not satisfied do

α(k) =
‖r(k)‖2

〈d(k), d(k)〉A
x(k+1) = x(k) + α(k)d(k)

r(k+1) = r(k) − α(k)Ad(k)

β(k) =
‖r(k+1)‖2

‖r(k)‖2

d(k+1) = r(k+1) + β(k)d(k)

k ← k + 1;

end

define x̂ := x(k)

Algorithm 8: Conjugate gradient method.

Theoretically, solving an equation with the conjugate gradient method is not
very efficient, because it requires more operations than for instance a Cholesky
or LDL decomposition. In addition, the convergence after n steps is purely
theoretical, as it only holds when all the computations are performed in exact
arithmetic without any rounding errors. In practise, however, it performs much
better, because one can, and should, make use of the advantage of iterative
methods: One need not stop only when the residual equals zero, but rather
when the residual is sufficiently small.

One problem of CG and GMRES methods is that the convergence speed
depends heavily on the condition of the matrix A. In order to improve the per-
formance, usually the method is not applied directly to the equation Ax = b,

2.2. KRYLOV SUBSPACE METHODS 19

but rather to a transformed problem M−1Ax = M−1b, where the (easily invert-
ible) matrix M is chosen in such a way that M−1A is much better conditioned
than A. This approach is called preconditioning.

In theory, a slightly different approach is required, as the matrix M−1A
will not be symmetric any more. To that end one can consider a Cholesky
factorisation M = LLT of the positive definite and symmetric matrix M and
then apply the CG method to the equation L−1AL−T x̂ = L−1b and solve LTx =
x̂. It is possible to rewrite the resulting algorithm in a such a way that one only
needs the original matrix M and never its factorisation.

Chapter 3

Nonlinear systems of
equations

In this chapter we solve the equation f(x) = 0 numerically for arbitrary f in
one and higher dimensions. This will be achieved by methods that are based on
the Newton’s method.

Obviously, solving such equations has many application. A frequent applica-
tion arises from unconstrained optimisation, since the derivative of the function
is set to zero in order to find extremal points.

The section is closely based on [5], with additional comments from [4].

3.1 Newton’s method

3.1.1 One-dimensional geometric motivation

We want to numerically find the root of a dimensional function, thus for a given
function f : R → R we search for x ∈ R so that f(x) = 0. Furthermore, we
assume f to be continuously differentiable.

We start with an initial guess x0 and iteratively improve it. The idea of the
method is to locally approximate the function by its tangent around the guess
x(k):

f(x(k) + h) = f(x(k)) + hf ′(x(k)) +O(h2).

In the next step the x-intercept of the tangent is computed (0 = f(x(k)) +
hf ′(x(k))). The value x(k+1) = x(k) +h will typically be a better approximation.
Thus we obtain the following iterative method

x(k+1) = x(k) − f(x(k))

f ′(x(k))
. (3.1)

In this way x(k) is improved in every step (illustrated in Figure 3.1).
Newton’s method is frequently used in solving equations as well as in optim-

isation. It is a very powerful approach since its convergence rate is quadratic.
However, the Newton method has two main difficulties: First, if a stationary
point of the function f is encountered, i.e. f ′(x(k)) = 0, we cannot calculate

21

22 CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Figure 3.1: One iteration of the one-dimensional Newton method.

Eqn 3.1. Second, Newton’s method does not globally converge. Indeed, for
arbitrary initialisation xinit, we can expect Newton’s method to diverge.

One possibility for obtaining a higher probability of convergence is the com-
bination of Newton’s method with one of the line search algorithms of Section
3.3.

3.1.2 Higher-dimensional generalisation

In this section we consider the case where we have n equations and n unknowns,
thus for a given function f : Rn → Rn we search for x ∈ Rn so that f(x) = 0.
Again, we assume f to be continuously differentiable.

We use the same concept as in the one-dimensional case. We first linearise
around the point x(k):

f(x(k) + d) ≈ f(x(k)) + Jf (x(k))d+O(‖d‖2),

with x(k) ∈ Rn and d(k) ∈ Rn, and where Jf (x(k)) ∈ Rn×n is the Jacobian
matrix.

As in the one-dimensional case we set the linearised equation to zero, i.e.
f(x(k)) + Jf (x(k))d = 0, and solve for d, thus d = −J−1

f (x(k))f(x(k)), where

J−1
f (x(k)) is the inverse of the Jacobian matrix. This yields the following itera-

tion
x(k+1) = x(k) − J−1

f (x(k))f(x(k)).

The equation corresponds to the one-dimensional case (see Eqn 3.1), but the
method is not implemented in this way. Since the calculation of the inverse
Jacobian is computationally expensive, d is calculated directly from the linear
system of equations

Jf (x(k))d = −f(x(k)) ,

x(k+1) = x(k) + d.

3.2. QUASI-NEWTON METHODS 23

This method is described in Algorithm 9.
Generally, the computation time of d has to be taken into account when one

studies the efficiency of the method. For decomposition methods the computa-
tion time is of order n3. Iterative methods as described in Chapter 2 may often
be faster depending how accurate d is computed.

Data: function f : Rn → Rn, initial guess xinit (∈ Rn) ;
Initialisation: set x1 := xinit, k = 1;
while convergence criterion not satisfied do

solve Jf (xk) d = −f(xk) for d
x(k+1) := x(k) + d
k ← k + 1

end

Algorithm 9: Newton’s method.

The Newton method in higher dimensions has similar drawbacks than in one
dimension: Problems will arise when the matrix Jf (x(k)) is ill conditioned, be-
cause then an accurate solution of the equation Jf (x(k))d = −f(x(k)) is difficult.
Furthermore, we can not guarantee convergence for arbitrary initial values.

Additionally, the computation of the Jacobian Jf (x(k)) in each Newton step
is computational expensive for large systems of equations. In the following two
sections we discuss methods that have been developed specifically to counter
these problems.

3.2 Quasi-Newton methods

3.2.1 One-dimensional motivation: Secant method

For a given function f : R → R and we search for x ∈ R so that f(x) = 0.
As in the one-dimensional Newton method the idea is to employ an iterative
algorithm, defining the next iterate x(k+1) by approximating the function f
around x(k) linearly by f(x) ≈ f(x(k)) +f ′(x(k))(x−x(k)), and then solving the
linear equation f(x(k)) + f ′(x(k))(x− x(k)) = 0 for x.

Since f ′(x(k)) may not exist, or may be zero, or could be difficult to calculate
numerically, we avoid direct calculation, and use the following approximation
instead:

f ′(x(k)) =
f(x(k))− f(x(k−1))

x(k) − x(k−1)
.

Note that the approximation becomes more exact as the method converges (i.e.
x(k) − x(k−1) → 0).

Inserting this additional approximation into Eqn (3.1)

x(k+1) = x(k) − x(k) − x(k−1)

f(x(k))− f(x(k−1))
f(x(k))

is obtained.

24 CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Figure 3.2: One iteration of the one-dimensional secant method.

More intuitively, the idea behind this approach is to approximate the func-
tion f (or its graph) near x(k) by the secant through the points

(
x(k), f(x(k))

)
and

(
x(k−1), f(x(k−1))

)
and then to find the zero of this line. Hence the name:

secant method. See also Figure 3.2.
Using this approach we do not have to calculate the derivative f ′(x(k)). This

simplification, however, comes at a price: instead of quadratic convergence, one
only has super-linear convergence (more precisely, the convergence rate equals
the golden section (

√
5 + 1)/2).

Note, that the secant method has an interpretation that is very similar to
that of Newton’s method. In Newton’s method, we have approximated the func-
tion f by its linearisation around x(k). Here, we use the following approximation
f̃ of f satisfying f̃(x(k)) = f(x(k)) and the one-dimensional secant equation

f̃ ′(x(k))(x(k) − x(k−1)) = f(x(k))− f(x(k−1)) . (3.2)

3.2.2 Higher-dimensional generalisation

For generalising the one-dimensional secant method to higher dimensions we
first start analogously to Section 3.1.2 and linearise the function f : Rn → Rn
around x(k) ∈ Rn by

f̃(x(k) + d) = f(x(k)) +Bkd

where Bk ∈ Rn×n is an approximation of the Jacobian Jf (x(k)). We calculate

d from f̃ = 0, which can be computed by solving the system of linear equations
Bkd = −f(x(k)).

This approach makes sense, if the following conditions are satisfied:

• The matrix Bk must be an estimate of Jf (x(k)) in some sense. Otherwise,
we cannot expect good convergence rates.

• The equation Bkd = −f(x(k)) can be solved without too much effort. This
could be achieved by approximating B−1

k instead of Bk.

3.2. QUASI-NEWTON METHODS 25

Quasi-Newton methods choose the estimates Bk of the Jacobian Jf (x(k)) to
fit the secant equation for more dimensions which is given by

Bk(x(k) − x(k−1)) = f(x(k))− f(x(k−1)). (3.3)

For more than one dimension this system of equations is highly under determ-
ined (n equations, n×n unknowns). As a result the choice of Bk is not unique.

Brodyden’s method uses an initial estimate Bk and improves it by taking the
solution of the secant equation which is a minimal modification to Bk. By a min-
imal modification we assume that the new estimate Bk+1 is close to the original
estimate Bk according to the Frobenius norm (thus minimize ‖Bk+1 −Bk‖F).

We construct a matrix Bk+1 such that

Bk+1s
(k+1) = y(k+1) , and (3.4)

Bk+1u = Bku for all u orthogonal to s(k+1) , (3.5)

where

s(k+1) := x(k+1) − x(k) , and

y(k+1) := f(x(k+1))− f(x(k)).

Thus, Eqn (3.4) is just a reformulation of the secant equation (Eqn 3.3).

The construction of Bk is achieved by the following rank one update:

Bk+1 = Bk +

(
y(k+1) −Bks(k+1)

)
s(k+1)T

s(k+1)T s(k+1)
. (3.6)

We show that Bk+1 fits into Eqns (3.4) and (3.5): This is done by multiplying
Eqn (3.6) by a u, such that 〈s(k+1), u〉 = 0. Then, the second term of the right
hand side vanishes, and therefore Bk+1u = Bku (Eqn 3.5).

Furthermore, if we multiply Eqn (3.6) by s(k+1), we obtain Bk+1s
(k+1) =

Bks
(k+1) + y(k+1) −Bks(k+1) = y(k+1), yielding Eqn (3.4).

Sherman-Morrison formula is used to update the inverse of the Jacobian
matrix directly, yielding

B−1
k+1 = B−1

k +
s(k+1) −B−1

k y(k+1)

s(k+1)TB−1
k y(k+1)

(
s(k+1)TB−1

k

)
(3.7)

The method is referred to as good Broyden’s method and is illustrated in Al-
gorithm 10. For initialisation of B−1

1 the inverted Jacobian Jf (xinit) is calcu-
lated exactly.

Generally, for arbitrary initial values all Quasi-Newton methods (like New-
ton methods) do not always converge. One possibility for obtaining a higher
probability of convergence is using line search as described in the following sec-
tion.

26 CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Data: function f : Rn → Rn, initial guess xinit

Initialisation: set x1 := xinit, k = 1, B−1
1 = Jf (x1)−1

while convergence criterion not satisfied do

d := −B−1
k f(x(k))

x(k+1) := x(k) + d
compute B−1

k+1 according to Eqn (3.7)
k ← k + 1

end

Algorithm 10: Good Broyden’s method

3.3 Basic line search concepts

In this section, we assume that we have already calculated a direction d ∈ Rn,
such that

x(k+1) = x(k) + d , (3.8)

see Sections 3.1.2 and 3.2.2. Instead of using Eqn (3.8) we will use

x(k+1) = x(k) + td , (3.9)

and try to find find a good step size t, that minimizes the function f along the
line x(k) + td, e.g.

g(t) :=
1

2
‖f(x(k) + td)‖2 .

Line search algorithms use the following framework of Algorithm 11 that
consist of two sub-algorithms:

First, an algorithm that, given the values t > 0, g(t), and, possibly, g′(t),
decides whether the step size t is too large, too small, or acceptable.

Second, an algorithm that computes a new candidate for the step size if the
former candidate has been rejected.

Initialisation: set tL = 0 and tR = +∞, choose some initial t > 0
while t not satisfactory do

if t is too small then
tL ← t

else
tR ← t

end
compute new t ∈ (tL, tR)

end
define t∗ := t

Algorithm 11: Sketch of a line search algorithm.

First we note that the classification sub-algorithm has to satisfy at least the
following properties.

1. For each t > 0, either t is classified as too small, or t is classified as too
large, or t is accepted.

3.3. BASIC LINE SEARCH CONCEPTS 27

Figure 3.3: Armijo’s rule. A step size is declared too large, if the actual decrease
of the function value is much smaller than the predicted decrease.

2. There is some upper bound tmax such that every t > tmax is classified as
too large. Thus it cannot happen that the step size increases to +∞ and
the line search fails to terminate (note that the upper bound need not be
given explicitly).

3. Whenever tL is classified as too small and tR is classified as too large, there
exists a non-empty open interval I ⊂ [tL, tR] such that every element in I
is classified as satisfactory (thus the algorithm has a chance to terminate
for suitable updates of t).

Note that these three properties do not imply that the result will be a good
choice for a step size; they are merely required for obtaining any result at all.

3.3.1 Armijo

One main criterion in all modern line search algorithms is that the actual de-
crease of the function g is (at least) of the same order as the expected decrease.

The expected decrease for a step size t > 0 is given by the derivative of g
at zero, multiplied by t. Thus we should consider a step size too large, if the
difference g(t) − g(0) is much larger than tg′(0) (note that g′(0) is assumed to
be negative!).

In practise, this means that we choose some 0 < m1 < 1 and say that a step
size t is too large, if

g(t) > g(0) +m1tg
′(0) . (3.10)

The condition (3.10) is called Armijo’s rule. For an illustration see Figure 3.3.
In principle, this condition alone can already be used for the classification step
in a line search algorithm. Then we end up with the simple Algorithm 12.

The usage of Armijo’s is limited, because it never declares a step size to be
too small. However, this only works, if we either have a good understanding of
the function we want to optimise, or the algorithm that determines the search
direction at the same time yields a step length. This is for instance the case in

28 CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Initialisation: choose some t > 0 and 0 < m1 < 1

while g(t) > g(0) +m1tg
′(0) do

decrease t
end
define t∗ := t

Algorithm 12: Line search with Armijo’s rule.

the Newton method and its derivatives, where the step length t = 1 is asymp-
totically optimal and the main task of the line search is to increase the region
of convergence of the method.

3.3.2 Goldstein and Price

The second classification sub-algorithm we discuss is based on Armijo’s rule,
but, in addition, introduces a criterion that decides whether a step size is too
small. Again this criterion compares the actual decrease with the expected
decrease. The difference is now that we declare the step size too small if the
actual decrease is not much smaller than the expected one. The idea is that, in
this case, it should be possible to decrease the value of g further by increasing
t.

In practise, this means that we choose two numbers 0 < m1 < m2 < 1 and
say that:

• t is too large if g(t) > g(0) +m1tg
′(0),

• t is too small if g(t) < g(0) +m2tg
′(0),

• t is acceptable, if

m2g
′(0) ≤ g(t)− g(0)

t
≤ m1g

′(0) .

These three conditions are called the rule of Goldstein and Price. An interpret-
ation of these condition is shown in Figure 3.4. The method is summarised in
Algorithm 13.

3.3.3 Wolfe

The two methods discussed above only use the function values g(0) and g(t), as
well as the derivative g′(0) for determining the step length, but not the derivative
of g at other points. It is reasonable to assume that the additional usage of
gradient information may lead to better results of the line search provided that
the cost of computing derivatives is not too large. We will, however, still base
the decision whether a step size is too large on Armijo’s rule and only use the
gradient information for declaring step sizes too small.

We choose two numbers 0 < m1 < m2 < 1 and say that:

• t is too large if g(t) > g(0) +m1tg
′(0),

• t is too small if g(t) ≤ g(0) +m1tg
′(0) and g′(t) < m2g

′(0),

3.3. BASIC LINE SEARCH CONCEPTS 29

Figure 3.4: Goldstein and Price line search. In addition to Armijo’s rule, a step
size is declared too small, if the actual decrease of the function value is not much
smaller than the predicted decrease.

Initialisation: set tL = 0 and tR = +∞ choose some initial t > 0;
declare t unacceptable, fix 0 < m1 < m2 < 1;
while t is unacceptable do

if g(t) > g(0) +m1tg
′(0) then

set tR ← t;
choose new t ∈ (tL, tR)

else if g(t) < g(0) +m2tg
′(0) then

set tL ← t;
choose new t ∈ (tL, tR)

else
declare t acceptable

end

end
define t∗ := t

Algorithm 13: Line search according to Goldstein and Price.

30 CHAPTER 3. NONLINEAR SYSTEMS OF EQUATIONS

Figure 3.5: Wolfe’s line search. In addition to Armijo’s rule, one compares the
derivative of g at t with the derivative of g at the origin.

• t is acceptable, if g(t) ≤ g(0) +m1tg
′(0) and g′(t) ≥ m2g

′(0).

This leads to Wolfe’s line search. An interpretation of these conditions is
provided in Figure 3.5. The method is summarised in Algorithm 14.

Initialisation: set tL = 0 and tR = +∞ choose some initial t > 0;
declare t unacceptable, fix 0 < m1 ≤ m2 < 1;

while t is unacceptable do
if g(t) > g(0) +m1tg

′(0) then
set tR ← t;
choose new t ∈ (tL, tR)

else if g′(t) < m2g
′(0) then

set tL ← t;
choose new t ∈ (tL, tR)

else
declare t acceptable

end

end
define t∗ := t;

Algorithm 14: Wolfe’s line search.

While in general Wolfe’s line search should be preferred over the other meth-
ods, in situations where the evaluation of g′ takes considerably more time than
the evaluation of g alone the method of Goldstein and Price should take pre-
cedence. Note moreover that Wolfe’s line search is very well suited for the
Quasi-Newton methods and ensures super-linear convergence of the algorithm.

Chapter 4

Discrete-time Markov
chains

The following presentation of Markov chains is based on the MIT lectures of
John Tsitsiklis. Additional information can be found in [6].

4.1 Modelling with Markov chains

Most generally, mathematical modelling of physical processes is done by deriving
a new state xnew in dependence of a old state xold. Additionally some random
processes (noise) could be included:

xnew = f(xold, noise).

In the following chapter we use discrete time steps and discrete state space.
The modelling approach is illustrated by the following example of a checkout
counter.

Example 4.1.1. We model a single checkout counter of a supermarket:

• We use discrete time steps n = 0, 1, 2, . . . (e.g. hours).

• Customer arrivals happen according to a Bernoulli process (i.e. with
chance p a customer arrives at each time step)

• Customer leave after a customer service time, which is a random amount of
time calculated according to a geometric distribution (i.e. The probability
distribution of the number X of Bernoulli trials with chance q needed to
get one success).

• State of the system Xn is the number of customers at time n.

The model can be visualized by a graph, see Figure 4.1. The states are the
nodes of the graph, and the transitions between the states are the graph’s edges.
Edge weights are the transition probabilities.

For Xn = 1 . . . N − 1 the probabilities are given by: (a) q(1 − p) someone
leaves, and no one arrives, (b) p(1− q) someone arrives, and no one leaves, and

31

32 CHAPTER 4. DISCRETE-TIME MARKOV CHAINS

0 1 2 . . . N-1 N

(c)

(a)

(b)

Figure 4.1: Illustration of the checkout counter example: (a) q(1−p), (b) p(1−q),
and (c) (1− p)(1− q) + pq.

(c) (1 − p)(1 − q) + pq nothing happens: no one leaves, and no one arrives, or
someone arrives, and someone leaves.

In the following we will make probabilistic predictions how the model be-
haves, e.g. how many people will be at supermarket checkout counter when it
closes at 7pm.

Definition 4.1.2. A Markov chain is a discrete time stochastic process (Xn, n ≥
0) such that each random variable Xn takes values in a discrete set S and

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i).

This equation describes the Markov property : The transition probability from
Xn is independent of the way you got to Xn, i.e. the process does not remember
the past.

Modelling with Markov chains includes

1. Choosing states: The state space must be choosen carefully (a state must
include everything that is relevant for the future)

2. Define possible transitions

3. Set transition probabilities

We use the notation

pij(n) := P(Xn+1 = j|Xn = i).

Thus pij denotes the transition probability from state i to state j at time n.
If the transition probabilities are independent of the time, the Markov chain
is called homogeneous. In the following we will focus on homogeneous Markov
chains.

A homogeneous Markov chain is characterized by its transition matrix P =
[pij], which has often high dimension and is sparse (depending on the applica-
tion). Obvious properties of the transition matrix are:

pij ≥ 0 ∀i, j ∈ {1 . . . N}, (4.1)

N∑
j=1

pij = 1 ∀i ∈ {1 . . . N}. (4.2)

This means that all the probabilities of all transitions leaving node i are positive
and sum up to one.

Markov chains are used for probabilistic modelling. In the following we want
to predict how the stochastic process will behave in the future.

4.2. PROBABILISTIC PREDICTIONS 33

4.2 Probabilistic predictions

Definition 4.2.1. We define the n-step probabilities rij , as

rij(n) = P(Xn = j|X0 = i).

This is the probability that, if we initially start at node i we will reach node j
after n steps. Note that rij(0) = δij , and 1-step probabilities are exactly the
transition probabilities rij(1) = pij .

For n > 1 the n−step probability will be the sum the probabilities of all
possible paths the process might take, and we can derive the following recursions:

rij(n) =

m∑
k=1

rik(n− 1)pkj (4.3)

or

rij(n) =

m∑
k=1

pikrkj(n− 1). (4.4)

Using n-step probabilities we arrive at

P(Xn = j) =

m∑
i=1

P(X0 = i)rij(n),

and we are interested in a long term prediction (i.e. n >> 0).

Example 4.2.2. Consider the following Markov chain:

1 2

0.5 0.8
0.5

0.2

Calculate the n-step probabilities. Will the state be more likely be in 1 or 2,
and with which probabilities (in the long run)?

In this example after a certain time the state of the chain does not depend
on the initial condition any more.

Definition 4.2.3. If the limit

lim
n→∞

rij(n) = πj

exists and it is independent of the initial state i, then πj is called the steady
state probabilities of state j.

In the following we will analyse in which situations (a) the initial state does
not matter, and (b) the limit exists.

34 CHAPTER 4. DISCRETE-TIME MARKOV CHAINS

Definition 4.2.4. A state is called recurrent, if wherever we go from the state,
there is a way back. If the state is not recurrent, it is called a transient state.
Two states i and j communicate if there is a way from i to j and from j to i.
Note that ’to communicate’ is an equivalence relation.

We can label each node to be recurrent or transient and produce equivalence
classes of recurrent and transient states regarding if the states communicate or
not. For a long term prediction we know that eventually the state will leave the
transient classes and enter one of the recurrent classes. The state will stay in
this recurrent class.

Example 4.2.5. Label the states as transient or recurrent, and make equival-
ence classes

Definition 4.2.6. A state i is periodic with period d > 1, if d is the smallest
integer such that rii(n) = 0 for all n which are not multiples of d. In case d = 1
the state i is not periodic.

Lemma 4.2.7. If the Markov chain has a single recurrent class that is not peri-
odic, then the n-step probabilities rij(n) converge to the steady state probabilities
πj for all state j = 1 . . . N .

If there is a single non-periodic recurrent class, we can take the limit of the
recursion (Eqn 4.3) on both sides, it yields the following equation.

πj =

N∑
k=1

πkpkj (4.5)

or in matrix notation
πT = πTP, or π = PTπ

Since the transition matrix is singular, there is a non-trivial solution. If addi-
tionally,

N∑
j=1

πj = 1

the solution is unique.
Eqns 4.5 are called the balance equations, and are used to calculate the steady

state probabilities πj .

Generally wherever we start in a Markov chain, after a certain time the state
will end up in in a recurrent class. With an initial value X0 in a transient class,
we are interested in two questions:

4.2. PROBABILISTIC PREDICTIONS 35

• What is the absorption probability of each recurrent class (i.e. the prob-
ability the state ends up in this class)?

• What is the expected number of transitions, until the state enters the
recurrent class?

Example 4.2.8. Consider the following example:

1 2

3
4

5

0.4

0.5

0.6

0.8

0.3

0.2

1

0.2

1

The nodes 4, and 5 are transient, and nodes 1, 2 and 3 are recurrent. Lets
denote the chance to end up in node 4 starting from node i as adsorption
probability ai. Therefore a4 = 1, and a5 = 0. We are interested in a1, a2, and
a3. If we start at node 2 the chance to end up in node 4 is a2 = 0.2a4 + 0.8a1,
because 0.2 is the chance to move from node 2 to node 1, and 0.8 is the chance
to visit node 1. Per definition a1 the chance to end up in node 4 from node 1. If
we do this for every node i this yields a system of linear equations, that enable
us to calculate all ai.

Generalising the idea from Example 4.2.8 the adsorption probability of a
recurrent class RC starting at a transient node i can be calculated according to

ai =

N∑
j=1

pijaj ∀i ∈ {transient states},

for the recurrent nodes i

ai =

{
1 if i ∈ RC
0 if i /∈ RC

.

The question about the expected number of transitions until the state enters
a recurrent class can be answered by similar arguments. Consider the Markov
chain of Example 4.2.8: Lets denote the expected number of transitions to enter
the recurrent node 4 from node i as µi. If we start at node 1 this number will
be µ1 = 0.6µ2 + 0.4µ3 + 1. Therefore, we make one transition, and add the
expected number of transition from node 2 and 3. Generalising the idea yields:

µi = 1 +

N∑
j=1

pijµj ∀i ∈ {transient states},

and for the recurrent nodes i

µi =

{
0 if i ∈ RC
∞ if i /∈ RC

.

Chapter 5

Random numbers and
Monte Carlo Simulation

5.1 Pseudorandom number generators

5.2 Tests of pseudorandom numbers

5.3 Basic concepts of Monte Carlo integration

37

Bibliography

[1] O. Scherzer Numerische Mathematik. Lecture notes 2013.

[2] N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, Phil-
adelphia, 1997.

[3] H. Schichl Numerik 2. Lecture notes 2009/10.

[4] A. Quarteroni, R. Sacco, and F. Saleri Numerical Mathematics. Springer
Verlag, Berlin, 2000.

[5] M. Grasmair Continuous Optimisation. Lecture notes 2012.

[6] W.K Ching, X. Huang, M.K. Ng and T.-K. Siu Markov Chains - Models,
Algorithms and Appllications. Springer Verlag, Berlin, 2013.

39

	Eigenvalues
	Eigenvalue problems
	Estimation of eigenvalues
	Power iteration
	QR algorithm

	Generalized eigenvalue problem
	Singular values

	Iteration methods
	Fixed point iteration
	Jacobi method
	Gauss-Seidel method
	Successive over-relaxation (SOR)

	Krylov subspace methods
	Arnoldi iteration
	Lanzcos iteration
	Generalized minimal residuals (GMRES)
	Conjugate gradients (CG)

	Nonlinear systems of equations
	Newton's method
	One-dimensional geometric motivation
	Higher-dimensional generalisation

	Quasi-Newton methods
	One-dimensional motivation: Secant method
	Higher-dimensional generalisation

	Basic line search concepts
	Armijo
	Goldstein and Price
	Wolfe

	Discrete-time Markov chains
	Modelling with Markov chains
	Probabilistic predictions

	Random numbers and Monte Carlo Simulation
	Pseudorandom number generators
	Tests of pseudorandom numbers
	Basic concepts of Monte Carlo integration

