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Overview

� Literature:

[1] C.D. Hansen, C.R. Johnson: The Visualization Handbook, Elsevier,
2005

[2] I.N. Bankman: Handbook of Medical Imaging, Academic Press, 2000

[3] R.C. Gonzales, R.E. Woods: Digital Image Processing, Prentice Hall,
2002

� Software:
Amira, Paraview, VisIt, Matlab, ...

� Topics:
Histogram Modi�cation, Filtering, Segmentation, Vector Field
Visualization, Volume Rendering

� Data:
Microscopy, CT, MRI, telescope, satellite, ...
Image �les (TIFF, JPG, BMP, ...)
Simulation results (Matlab, ...)
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Notations

� Image: Function f : Ω→ R (scalar grayscale), f : Ω→ R3 (scalar color,
vectorial grayscale), ..., for some domain Ω = [0, 1]2 ⊂ R2 (planar
image), Ω = [0, 1]3 ⊂ R3 (volume data), ...

� Planar Greyscale Image, Pixel Representation:
Ω = {0, 1, . . . ,M − 1} × {0, 1, . . . ,N − 1},

f (m, n) ∈ {0, 1, . . . ,P − 1}, m = 0, . . . ,M − 1, n = 0, . . . ,N − 1

denotes the intensity at pixel (m, n).

� Histogram, Pixel Representation:

h(i) =

M−1∑
m=0

N−1∑
n=0

δ(f (m, n)− i), i = 0, . . . ,P − 1

with δ(x) = 1, if x = 0, and δ(x) = 0, else
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Intensity Scaling

Image infomration might only be present in small intensity bands
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Intensity Scaling

Fix intensity limits f1, f2 in which the information of f is contained. The
enhanced image g is obtained by

c(m, n) =

{
f (n,m), if f1 ≤ f (m, n) ≤ f2

0, else

g(m, n) =
c(m, n)− f1

f2 − f1
· (P − 1)

Disadvantage: Details outside [f1, f2] are completely opressed
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Histogram Equalization

Distribute intensity information uniformy across the histogram (goal: an
approximate pixel count of MN

P
per intensity)

Normalized Cumulative Histogram:

H(j) =
1

MN

j∑
i=0

h(i), j = 0, . . . ,P − 1

The enhanced image g is obtained by

g(m, n) = (P − 1) · H(f (m, n))
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Histogram Equalization
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Histogram Equalization

Disadvantage: Contrast level takes only global information into account;
noise might be enhanced as well
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Local Area Histogram Equalization

Apply Histogram Equalization to a small areas around each pixel. For a pixel
(m, n), a local area of size (2K + 1)× (2L + 1) is de�ned by

LA(m, n) = {m − K , . . . ,m, . . . ,m + K} × {n − L, . . . , n, . . . , n + L}

Local Area Histogram:

hLA(m,n)(i) =

K∑
k=−K

L∑
l=−L

δ(f (m − k, n − L)− i), i = 0, . . . ,P − 1

Normalized Local Area Cumulative Histogram:

HLA(m,n)(j) =
1

(2K + 1)(2L + 1)

j∑
i=0

hLA(m,n)(i), j = 0, . . . ,P − 1

The enhanced image g is obtained by

g(m, n) = (P − 1) · HLA(m,n)(f (m, n))
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Local Area Histogram Equalization

Histogram Equalization vs. Local Area Histogram Equalization
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Local Area Histogram Equalization

Histogram Equalization vs. Local Area Histogram Equalization
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Contrast Limited (Local Area) Histogram Equalization

Contrast Enhancement can be de�ned via the slope of the function that maps
the original intensity i of the image f to the new intensity (P − 1) ·H(i) of the
image g. In other words, contrast enhancement is re�ected by the 'derivative'

(P − 1)
d

di
H(i) = (P − 1)(H(i)− H(i − 1)) =

P − 1

MN
h(i)

Cutting o� the histogram h at some value hmax restricts the enhancement of
the contrast. This can help to reduce the enhancement of noise.

−→ Amira, Tutorials/BrainMap/DICOM, ImageProcessing →
GrayscaleTransforms → HistogramEqualization (or ... →
AdaptiveHistogramEqualization), MeasureAndAnalysze → Histogram,
OrthoSlice
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Noise

Often, measurements are contaminated by (additive) noise n:

f = f0 + n

Denoising produces an output image g from the input image f with
(hopefully) g ≈ f0. Often used as initial steps for further image processing.

Original Image f0, Gauss noise image f , and Salt and Pepper noise image f
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Notations

� Convolution: Kernel w : Ω→ R, Ω = [0, 1]2 ⊂ R2,

g(x , y) = w ∗ f (x , y) =

∫
Ω

w(x − u, y − v)f (u, v)du dv

� Fourier Transform:

F (u, v) = f̂ (u, v) =

∫
Ω

e
−2πi(x ,y)·(u,v)

f (u, v)du dv , u, v ∈ Z

� Convolution and Fourier Transform:

G(u, v) = W (u, v)F (u, v)
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Notations

� Convolution, Pixel Representation: Kernel w ∈ R(2K+1)×(2L+1),

g(m, n) =
(
w ∗ f

)
(m, n) =

K∑
k=−K

L∑
l=−L

w(k, l)f (m − k, n − l)

� Fourier Transform, Pixel Representation:

F (u, v) = f̂ (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

f (m, n)e−2πi(
um
M

+ vn
N ), u = 0, . . . ,M − 1,

v = 0, . . . ,N − 1

� Convolution and Fourier Transform, Pixel Representation:

G(u, v) = W (u, v)F (u, v)
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Smoothing Filters

Linear �lters: Typically convolutions of form

g = T (f ) = w ∗ f ,

w is called �lter/covolution kernel. Examples are

� Averaging kernel in a (2K + 1)× (2L + 1)-neighborhood. For
L = K = 1:

w =
1

9

1 1 1

1 1 1

1 1 1



� Gauss kernel: w(x , y) = 1

2πσ2
e
− x2+y2

σ2 , with σ the standard deviation.
For K = L = 2 and σ = 1, the normalized convolution kernel reads

w =
1

273


1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


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Smoothing Filters

Original Image, Gaussian noise

Gauss �ltered image, Average �ltered image
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Smoothing Filters

Gaussian functions e
−

(
x2

σ2
1

+ y2

σ2
2

)
for σ1 = σ2 = 1 and σ1 = 1, σ2 = 3
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Smoothing Filters

� Di�usion: Gaussian �ltering can be related to the PDE

d

dt
g(t, x , y) = D∆g(t, x , y), g(0, x , y) = f (x , y)

A possible discretization of the PDE leads to a convolution with the
�lter kernel

w =

0 α 0

α 1− 4α α
0 α 0


for some α > 0. The PDE can be modi�ed by introducing a spatially
varying (matrix valued) di�usion tensor D:

d

dt
g(t, x , y) = ∇ · (D(x , y)∇g(t, x , y)) , g(0, x , y) = f (x , y)
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Smoothing Filters

� Wiener Filter: Optimze kernel w such that, for g = w ∗ f , the mean
square error is minimized:

E [(g − f0)2]→ min

This is satis�ed for the kernel w with Fourier transform

W (u, v) =
Rf0f0(u, v)

Rf0f0(u, v) + σ2
,

where rf0f0 is the auto-correlation of f0 and n white noise with variance
σ2.
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Unsharp Masking

Emphasize local features in an image (does not preserve overall intensity of
the image). The following steps are required

1 Low pass (smoothing) �lter

glp = wlp ∗ f ,

the kernel wlp can be, e.g., the Gauss kernel

2 High pass (local) information

ghp = f − glp

3 Unsharp masking:

g = glp + αghp,

where α < 1 leads to smoothing, α = 1 yields the original image f ,
α > 1 highlights high pass (local) features

−→ Amira, no_noise.png ImageProcessing → SmoothingAndDenoising →
Gaussian Filter, Compute → Arithmetic, ImageProcessing → Sharpening →
Unsharp Masking (more options)
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Smoothing Filters

Nonlinear �lters T : {0, . . . ,P − 1}M×N → {0, . . . ,P − 1}M×N are more
di�cult to characterize. Improvement for preservation of edges. Examples
are:

� Median Filter: For each pixel (m, n) de�ne an environment, e.g.,
LA(m, n) = {m−K , . . . ,m, . . . ,m +K}× {n− L, . . . , n, . . . , n + L} and
choose the median intensity in that environment:

g(m, n) = median{f (k, l) : (k, l) ∈ LA(m, n)}

� Nonlinear Di�usion: The function D may depend on g and ∇g in order
to account for edges

d

dt
g(t, x , y) = ∇ · (D(x , y , g(t, x , y),∇g(t, x , y))∇g(t, x , y)) ,

g(0, x , y) = f (x , y)

Perona-Malik: e.g. D(|∇g(t, x , y))|) = e
− |∇g(t,x ,y))|2

2σ2 .

−→ Amira, sp_noise.png, gauss_noise, ImageProcessing →
SmoothingAndDenoising → ...
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Smoothing Filters

Median Filtered Salt-and-Pepper Noise
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What is Segmentation?

� Separating an image into foreground/background, subdivide image into
regions of similar properties, subdividing image into regions separated
by certain structures

� Two main approaches:

1 Discontinuities: Separate image based on edges
2 Similarity: Separate image based on similar properties

� There is no universal segementation technique

� Manual Separation is only feasible for small data sets
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Edge Detection

Visualize edges in pictures. Typically based on gradients: prone to noise.
Previous smoothing is advisable.

� Prewitt Filter:

wx =

−1 −1 −1
0 0 0

1 1 1

 , wy =

−1 0 1

−1 0 1

−1 0 1


� Sobel Filter:

wx =

−1 −2 −1
0 0 0

1 2 1

 , wy =

−1 0 1

−2 0 2

−1 0 1


−→ Amira, ImageProcessing → EdgeDetection → Gradient → SobelFilter
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Edge Detection

Original picture, Sobel �lter in x-direction, Sobel �lter in y -direction, Sobel
�lter in x- and y -direction
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Edge Detection

� Laplace Zero-Crossing Maximum gradients are indicated by
zero-crossings of the second derivative. Use Laplace operator, e.g.,0 1 0

1 −4 1
0 1 0


to �nd zero-crossings

� Canny Edge Detection:

1 Apply Gaussian Filter for smoothing
2 Find intensity gradients, e.g., by Sobel �lter
3 Find direction of potential edges in each pixel via θ = arctan(wy ∗f

wx ∗f )
4 Apply Nonmaximum Suppression to �nd edge pixels
5 Retrace edges

Disadvantage: Edge Detection via gradients very sensitive to noise; no

correlation among pixels, hard to �nd closed curves
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Thresholding

� Very basic principle, works well for images with bimodal histograms.
Choose an intensity threshold T > 0 and de�ne a segemented image by

g(m, n) =

{
1, if f (m, n) > T

0, if f (m, n) ≤ T

The areas where g(m, n) = 1 denote the foreground, the areas where
g(m, n) = 0 the background.

� Automatic determination of threshold:

1 Choose initial threshold T

2 Segment image into regions G0, G1 by thresholding with T

3 Compute average gray level values µ0 and µ1 in G1 and G2

4 Compute new threshold T = µ0+µ1
2

5 Stop if di�erence between the tresholds is �small enough�, else,
iterate the previous steps
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Thresholding

� Otsu's Methods for automatic determination of threshold:

1 Initial threshold T = 0
2 Separate image into background G0 and foreground G1 with

respect to T

3 Compute the intra-class variance

σ(T )2 = w0(T )σ0(T )2 + w1(T )σ1(T )2

4 Iterate this for all possible thresholds T
5 Choose the threshold with the minimal intra-class variance σ(T )

−→ Amira, lobus.am, ImageSegmentation / Multi-Thresholding
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Threshholding

Cell threshold segmentation and Laplace Zero-Crossing (Left)
Thresholding after median �ltering (Right)
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(Curve Based) Active Contours

Illustration of Evolution of contour Γ
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(Curve Based) Active Contours

Minimize energy functional to obtain 'well-behaved' edges Γ: E.g. length
prior model

Ef (Γ) = E1(Γ) + E2(Γ)

= α

∫
Γ

ds︸ ︷︷ ︸
internal energy,

regularization term

+β

∫
Γ

h(|∇f |)ds︸ ︷︷ ︸
external energy,

data term

or Euler's elastica prior model

Ef (Γ) = E1(Γ) + E2(Γ)

=

∫
Γ

(α+ βκ2)ds + µ

∫
Γ

h(|∇f |)ds,

with curvature κ and some function h : R2 → R, e.g.

h(p) = e
−σp2 , h(p) =

1

1 + σp2

Solution: e.g., by gradient descent
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Mumford-Shah

Region Based Active Contours + Intrinsic Smoothing (more stable). Minimize
a functional of the form

Ef (Γ, g) = α

∫
Γ

ds + β

∫
Ω\Γ

h(|∇f |)dx︸ ︷︷ ︸
region based

counterpart of E2(Γ)

+
µ

2

∫
Ω

(g − f )2dx︸ ︷︷ ︸
smoothing,
data �t

,

where, e.g., Ω = [0, 1]2 and h(p) = 1
2
p2 (penalizing large gradients).

Solution: e.g. by level sets (better at capturing topological changes)
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Level Sets

A level set {x ∈ Ω : Φ(x) = M}, M ∈ R, is de�ned by a level set function
Φ : Ω→ R. A curve Γ is de�ned as the zero level set for an adequate Φ, i.e.,

Γ = {x ∈ Ω : Φ(x) = 0}.

Furthermore, we set

Ω± = {x ∈ Ω : ±Φ(x) > 0},

and g± are the enhanced images on Ω±. The heavyside function is given by
H(z) = 1, if z > 0, and H(z) = 0, if z ≤ 0. Mumford-Shah functional in
Level Set formulation:

Ef (Φ, g+, g−) =α

∫
Ω

|∇H(Φ)|dx +

∫
Ω

(
βh(|∇g+|) +

µ

2
(g+ − f )2

)
H(Φ)dx

+

∫
Ω

(
βh(|∇g−|) +

µ

2
(g− − f )2

)
H(−Φ)dx
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Introduction

� Representation of volume data by surfaces: An isosurface is the level set
LΦ(k) = {x ∈ R3 : Φ(x) = k} of a function Φ : R3 → R or a
corresponding data set

� Applications: Visualizing results of Segmentation/Thresholding (2-D or
3-D), Vsualization of Volume data, Geoid

� Problem: How to extract the actual surface from given volume data or a
function Φ? E.g. Ray Casting or Marching Cubes
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Introduction
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Marching Squares

� 2-D counterpart to marching cubes

� In each grid point decide whether a point is inside or outside an object
(by thresholding)

� Find intersecting edges and connect them

� Determine surface normals for shading

� http://undergraduate.csse.uwa.edu.au/units/CITS4241/
Handouts/index.html
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Marching Squares
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Marching Squares
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Marching Cubes
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Marching Cubes
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Marching Cubes
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Marching Cubes
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Marching Cubes



Intro Histogram Filtering Segmentation Isosurfaces Optical Flow Volume Rendering

Marching Cubes
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Marching Cubes
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Marching Cubes
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Marching Cubes
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Time Dependent Isosurfaces

� Allow/Force a surface over time: The Surface St can be de�ned by
time-dependent level sets LΦ(t,·)(k)

� For points x(t) ∈ St , it holds

Φ(t, x(t)) = k ⇔ ∂

∂t
Φ(t, x(t)) = −∇Φ(t, x(t)) · dx(t)

dt
(1)

� The time evolution dx

dt
can be imposed by a 'forcing term'

F (x ,Φ,∇Φ, . . .)
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Surface Morphing

� Morph a surface Si into a surface Se
� Find a good forcing term F to describe the morphing process: Maximize

the functional

E(St) =

∫
S intt

χS inte
(y)dy

χS inte
(y)


= 0, y ∈ Se
> 0, y ∈ S inte

< 0, otherwise

� The variational derivative of E is

∇E(St) = χS inte
(x)Nt(x)
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Surface Morphing

� Using the steepest decent method, we are lead to the following PDE for
the point evolution x(t) ∈ St :

dx(t)

dt
= χS inte

(x(t))Nt(x(t))

� Inserting the above into Equation (1), we are lead to the following initial
value problem that describes the morphing process:

∂

∂t
Φ(t, x) = −∇Φ(t, x) · dx(t)

dt
= −|Φ(t, x)|dx(t)

dt
· N(t, x)

= −|Φ(t, x)|χS inte
(x)

with an initial value Φ(0, ·) that satis�es Φ(0, x) = k, for all x ∈ Si .
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Surface Morphing

Examples for two di�erent initial values (taken from David E. Breen and Ross
T. Whitaker: A Level-Set Approach for the Metamorphosis of Solid Models,
IEEE Trans. Vis. Comp. Graph. 7 (2001))
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Introduction

� Given is a sequence of images f : R× R2 → R
� Find the motion vector u : R× R2 → R2 that describes the motion

between the succesive images: In other words �nd trajectories x(t) ∈ R2

such that the brightness constancy assumption (BCA) holds true:

f (t, x(t)) = const.

Then the motion vector at the location x(t) in the image f (t, ·) is given
by u(t, x(t)) = d

dt
x(t)
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Introduction

Taken from http://jonathanmugan.com/GraphicsProject/OpticalFlow/
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Optical Flow Equations

Di�erentiating the BCA with respect to time leads to

0 =
d

dt
f (t, x(t)) = ∇f (t, x(t)) · d

dt
x(t) +

∂

∂t
f (t, x(t)).

Therefore, the following equation has to be solved

0 = ∇f (t, x) · u(t, x) +
∂

∂t
f (t, x).
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Optical Flow Equations

We regard the same problem as before but for a sequence of images
f : R× S → R on a surface S ⊂ R3. Then

0 =
d

dt
f (t, x(t)) = ∇S f (t, x(t)) · d

dt
x(t) +

∂

∂t
f (t, x(t))

and we have to solve

0 = ∇S f (t, x) · u(t, x) +
∂

∂t
f (t, x).
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Minimization Problem

The optical �ow equations are underdetermined. Therefore one minimizes the
following functional to �nd the motion vector u

F(u) =

∥∥∥∥∇S f (t, x) · u(t, x) +
∂

∂t
f (t, x)

∥∥∥∥
L2(R×S)

+R(u),

where, e.g., R(u) = ‖u‖H1(S,TS ).
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Surface Example
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Surface Example
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Optical Flow Equations on Evolving Manifolds

We regard the same problem as before but for a sequence of images
f : R× St → R on a time-dependent surface St ⊂ R3. Let κ : R×Ω→ R3 be
a smooth map with κ(t, x̃) ∈ St , for all x̃ ∈ Ω ⊂ R2. Then we set

f̃ (t, x̃) = f (t, κ(t, x̃))

and the BCA reads

f̃ (t, x̃(t)) = f (t, κ(t, x̃(t))) = f (t, x(t)) = const.

for a curve x̃(t) ∈ Ω. The corresponding di�erential equation is

0 =
d

dt
f̃ (t, x̃(t)) = ∇f̃ (t, x̃(t)) · d

dt
x̃(t) +

∂

∂t
f̃ (t, x̃(t))

or, in other words

0 =
d

dt
f̃ (t, x̃) = ∇f̃ (t, x̃) · ũ(x̃) +

∂

∂t
f̃ (t, x̃).

Afterwards, ũ(t, ·) needs to be mapped back onto St .
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Optical Flow Equations on Evolving Manifolds

Alternative Representation:

Optical Flow equation intrinsic on the manifold:

0 =
dnor

dt
f (t, x) +∇St f (t, x) · utan(t, x).
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Introduction

� Di�erent from an isosurface, the whole volume information is used to
visualize a 3-D object

� Rays casted (perspective or parallel) through object onto a projection
plane

� Intensities f at grid points need to be interpolated in order to obtain
intensities along rays (nearest-neighbour (staircasing), linear
(discontinuous derivatives), cubic)

� Use information along the rays to compute values on projection plane
(simpest cases: x-ray, maximum intensity projection)
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Introdutcion
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Ray Casting

Image-Order Technique

� Maximum Intensity Projection (MIP): Intensity I (x , γ) at some point
x on the projection along the ray γ is given as

I (x , γ) = max
t∈[0,L]

f (γ(t))

Local Maximum Intensity Projection (LMIP) takes the �rst local
maximum along the ray above some prede�ned threshold.

� X-Ray Projection: Intensity I (x , γ) at some point x on the projection
plane along the ray γ is given as

I (x , γ) =

∫
γ

f ds
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MIP vs. LMIP
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Ray Casting

� Full Volume Rendering Intensity I (x , γ) (depending on wavelength λ)
at some point x on the projection along the ray γ is given as

I (x , γ) =

∫ L

0

C(s)µ(s)e−
∫ s
0 µ(t)dt

ds

where µ(s) is the mass density (or light extinction value) at the point
γ(s) (relates to f (γ(s)) and the coe�cient C(s) = E(s) + R(s) de�nes
the emmision and re�ection properties at the location γ(s).
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Numerical Realization: Substitue Integration by Riemann sum:

I (x , γ) =

L
∆s
−1∑

i=0

C(i∆s)µ(i∆s)∆s

i−1∏
j=0

e
−µ(j∆s)∆s

≈

L
∆s
−1∑

i=0

C(i∆s)α(i∆s)

i−1∏
j=0

(1− α(j∆s))

where α is the opacity. Front-to-back compositing formula,
k = 1, . . . , L

∆s
− 1:

Īk+1 = Īk + C((k + 1)∆s)α((k + 1)∆s)(1− ᾱk)

ᾱk = α(k∆s)(1− ᾱk−1) + ᾱk−1

The design of the transfer functions C , α is crucial.
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Slide taken from http://www-
pequan.lip6.fr/∼tierny/stu�/teaching/tierny_intro_vol_rend09.pdf
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The re�ection coe�cient R(s) can be modeled by the standard illumination
equation (cf. J. Foley, A. Dam, S. Feiner, and J. Hughes. Computer
Graphics: Principles and Practice, 1996):

R(s) = kaCa + kdClC0(s)(N(s) · L(s)) + ksCl(N(s) · H(s))p

where ka, Ca are ambient material and color coe�cients, Cl color of the light
source, C0(s) the color of the object at location γ(s), kd the di�use material
coe�cient, N(s), L(s), H(s) the normal vector, light direction vector, and
halfvector at location γ(s), respectively, ks the spherical material coe�cient,
and p is the Phong coe�cient.

The design of R is crucial.
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Ray Casting

Di�use Re�ection with and without ambient light
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Ray Casting

Specular shading
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Ray Casting

Previous model does not include attenuation of light from source to γ(s)
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Volumetric Shadows: Make Cl dependent on γ(s)

Cl(s) = C̃le
−
∫ D
s µ(t)dt

where µ(t) is the mass density at point γ̃(t) along the ray connecting γ(s) to
the light source at distance D.

Rendering without vs. rendering with shadows
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The previous model is called pre-classi�cation since α, C are mapped to
voxels before interpolation. In post-classi�cation, �rst the volume intensities
f are interpolated along the ray and then they are mapped to α, C :

I (x , γ) ≈

L
∆s
−1∑

i=0

C(f (i∆s),∇f (i∆s))α(f (i∆s))

i−1∏
j=0

(1− α(f (j∆s)))

Post-classi�cation is typically better at capturing high-frequency details.
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Transfer function aliasing in pre-classi�ed rendering
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Ray Casting

Pre-classi�ed vs. post-classi�ed rendering
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Multiple Scattering: For clouds, e.g., the pervious single-scattering (low
albedo) scenario is not correct. Scattering after the �rst initial scattering has
to be taken into account:

C(s)µ(s) =

∫
S2
W (γ(s), ξ)I (γ(s), ξ)dS(ξ)

where ξ denotes the direction of incoming light at point γ(s). Then:

I (x , γ) =

∫ L

0

(∫
S2
W (γ(s), ξ)I (γ(s), ξ)dS(ξ)

)
e
−
∫ s
0 µ(t)dt

ds

This is an integral equation that needs to be solved.
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