Visualization and Imaging

Summer Term 2015



Intro
°

Overview

® | iterature:

[1] C.D. Hansen, C.R. Johnson: The Visualization Handbook, Elsevier,
2005

[2] I.N. Bankman: Handbook of Medical Imaging, Academic Press, 2000

[3] R.C. Gonzales, R.E. Woods: Digital Image Processing, Prentice Hall,
2002

e Software:
Amira, Paraview, Vislt, Matlab, ...

® Topics:
Histogram Modification, Filtering, Segmentation, Vector Field
Visualization, Volume Rendering

® Data:
Microscopy, CT, MRI, telescope, satellite, ...
Image files (TIFF, JPG, BMP, ...)
Simulation results (Matlab, ...)



Histogram
.

Notations

e Image: Function f: Q — R (scalar grayscale), f : Q — R® (scalar color,
vectorial grayscale), ..., for some domain Q = [0, 1] C R? (planar
image), Q = [0, 1]* € R* (volume data), ...

® Planar Greyscale Image, Pixel Representation:
Q={0,1,.... M—1}x{0,1,..., N =1},
f(mn)e{0,1,...,P—1}, m=0,...M—1,n=0,....,.N—1

denotes the intensity at pixel (m, n).
e Histogram, Pixel Representation:

M-1N-1

h(i)y=>_ 3 6(f(mn)y—i), i=0,...,P-1

m=0 n=0

with §(x) =1, if x =0, and §(x) = 0, else



Histogram

Intensity Scaling

Image infomration might only be present in small intensity bands
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Histogram
.

Intensity Scaling

Fix intensity limits fi, f> in which the information of f is contained. The
enhanced image g is obtained by

dmmz{gmvaQSﬂmmgﬁ
e

Disadvantage: Details outside [fi, 2] are completely opressed



Histogram
°

Histogram Equalization

Distribute intensity information uniformy across the histogram (goal: an
approximate pixel count of ¥ per intensity)

Normalized Cumulative Histogram:

The enhanced image g is obtained by

g(m, n) = (P —1)- H(f(m, n))



Histogram
°

Histogram Equalization
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Histogram
°

Histogram Equalization

Disadvantage: Contrast level takes only global information into account;
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noise might be enhanced as well



Histogram
°

Local Area Histogram Equalization

Apply Histogram Equalization to a small areas around each pixel. For a pixel
(m, n), a local area of size (2K 4+ 1) x (2L + 1) is defined by

Local Area Histogram:

K L
hiamm() = > > 8(f(m—k,n—L)—i), i=0,..., P-1

k=—K I=—L

Normalized Local Area Cumulative Histogram:

1 J
)= hiamm (1), =0,..., P—-1

The enhanced image g is obtained by

g(m, n) = (P - 1) . HLA(m,n)(f(mv n))



Histogram
°

Local Area Histogram Equalization

Histogram Equalization vs. Local Area Histogram Equalization




Histogram

Local Area Histogram Equalization

Histogram Equalization vs. Local Area Histogram Equalization




Histogram
°

Contrast Limited (Local Area) Histogram Equalization

Contrast Enhancement can be defined via the slope of the function that maps
the original intensity / of the image f to the new intensity (P — 1) - H(i) of the
image g. In other words, contrast enhancement is reflected by the 'derivative’

P—1 .
o h(i)
MN
Cutting off the histogram h at some value hmax restricts the enhancement of
the contrast. This can help to reduce the enhancement of noise.

(P~ 1) S H(i) = (P~ 1)(H() ~ H(i — 1)) =

— Amira, Tutorials/BrainMap/DICOM, ImageProcessing —
GrayscaleTransforms — HistogramEqualization (or ... —
AdaptiveHistogramEqualization), MeasureAndAnalysze — Histogram,
OrthoSlice



Filtering
°

Often, measurements are contaminated by (additive) noise n:
f=fh+n

Denoising produces an output image g from the input image f with
(hopefully) g ~ fo. Often used as initial steps for further image processing.

Original Image fy, Gauss noise image f, and Salt and Pepper noise image f



Filtering
°

Notations

e Convolution: Kernel w: Q — R, Q =[0,1]* C R?,
g(x,y) =wxf(x,y)= / w(x —u,y — v)f(u, v)dudv
Q

e Fourier Transform:

F(u,v)=f(uv)= / e 2NNy VYdudv, u v EZ
Q

e Convolution and Fourier Transform:

G(u,v) = W(u,v)F(u,v)



Filtering
°

Notations

e Convolution, Pixel Representation: Kernel w e REKF1x(2L+1)
g(m,n) = (wxf)(m,n)= ZZ f(m—k,n—1)
k=K =L
® Fourier Transform, Pixel Representation:
M—1N-1
F(u,v)=Ff(uv)= —Zmen)eQm( i), u=0,..., M—1,
m=0 n=0 v=20,..., N-—-1

e Convolution and Fourier Transform, Pixel Representation:

G(u,v) = W(u,v)F(u,v)



Filtering
o

Smoothing Filters

Linear filters: Typically convolutions of form
g=T(f)=wxf,

w is called filter/covolution kernel. Examples are

® Averaging kernel in a (2K + 1) x (2L + 1)-neighborhood. For
L=K=1:

2yt L
® Gauss kernel: w(x,y) = ﬁe o2, with ¢ the standard deviation.
For K =L =2 and o = 1, the normalized convolution kernel reads

14 7 4 1

1[4 16 26 16 4
w=-— |7 26 4 26 7
273 |4 16 26 16 4

1 4 7 4 1



Filtering
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Smoothing Filters

Original Image, Gaussian noise




Filtering
°

Smoothing Filters

P
+
ST

o o

Gaussian functions ei< > foroci=0x=1landoy;=1,0,=3




Filtering
°

Smoothing Filters

e Diffusion: Gaussian filtering can be related to the PDE

=9 g(t,x,y) = DAg(t, x,y), 9(0,x,y) =f(x,y)

A possible discretization of the PDE leads to a convolution with the

filter kernel
0 a 0
w=|a 1—4a a
0 a 0

for some o > 0. The PDE can be modified by introducing a spatially
varying (matrix valued) diffusion tensor D:

79t xy) =V - (D(x.y)Vy(t.x.y)), 9(0,x,y) = f(x.y)



Filtering
°

Smoothing Filters

® Wiener Filter: Optimze kernel w such that, for g = w x f, the mean
square error is minimized:
El(g — f)°] — min
This is satisfied for the kernel w with Fourier transform

Rey (U, v)

W(U, V) = Rfofo(uv V) + 0'2’

where rgf, is the auto-correlation of fo and n white noise with variance
2
o”.



Filtering

Unsharp Masking

Emphasize local features in an image (does not preserve overall intensity of
the image). The following steps are required

@ Low pass (smoothing) filter
Jip = wp * T,

the kernel wy, can be, e.g., the Gauss kernel

@® High pass (local) information
9o = — gip
® Unsharp masking:
9 =Jip+ anp,

where a < 1 leads to smoothing, a = 1 yields the original image f,
a > 1 highlights high pass (local) features

— Amira, no_noise.png ImageProcessing — SmoothingAndDenoising —
Gaussian Filter, Compute — Arithmetic, ImageProcessing — Sharpening —
Unsharp Masking (more options)



Filtering

Smoothing Filters

Nonlinear filters 7 : {0, ..., p—1}MN _ 40, ., P — 1}V are more
difficult to characterize. Improvement for preservation of edges. Examples
are:

® Median Filter: For each pixel (m, n) define an environment, e.g.,
LA(m,n)={m—-K, ..., m, ..., m+K}x{n—-1L,..., n..., n+ L} and
choose the median intensity in that environment:

g(m, n) = median{f (k, 1) : (k,1) € LA(m, n)}

® Nonlinear Diffusion: The function D may depend on g and Vg in order
to account for edges

ot xy) = V- (D(x. 1. 9(t.x.9). V(£ x.9)) Vot x.¥)).

9(0,x,y) = f(x,y)

_ Vgt )P

Perona-Malik: e.g. D(|Vg(t, x,y))|) =e 22

— Amira, sp_noise.png, gauss_ noise, ImageProcessing —
SmoothingAndDenoising — ...



Filtering

Smoothing Filters

Median Filtered Salt-and-Pepper Noise




Segmentation
.

What is Segmentation?

® Separating an image into foreground/background, subdivide image into
regions of similar properties, subdividing image into regions separated
by certain structures

® Two main approaches:

@ Discontinuities: Separate image based on edges
® Similarity: Separate image based on similar properties

® There is no universal segementation technique

® Manual Separation is only feasible for small data sets



Segmentation
.

Edge Detection

Visualize edges in pictures. Typically based on gradients: prone to noise.
Previous smoothing is advisable.

® Prewitt Filter:

N
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e Sobel Filter:

-1 -2 -1 -1 0 1
wy = 0 0 0 s wy = | —2 0 2
1 2 1 -1 0 1

— Amira, ImageProcessing — EdgeDetection — Gradient — SobelFilter



Segmentation
°

Edge Detection

Original picture, Sobel filter in x-direction, Sobel filter in y-direction, Sobel
filter in x- and y-direction




Segmentation
°

Edge Detection

® Laplace Zero-Crossing Maximum gradients are indicated by
zero-crossings of the second derivative. Use Laplace operator, e.g.,

0 1 O
1 -4 1
0 1 O

to find zero-crossings
e Canny Edge Detection:

@ Apply Gaussian Filter for smoothing

@® Find intensity gradients, e.g., by Sobel filter

® Find direction of potential edges in each pixel via 8 = arctan(zi::)
@ Apply Nonmaximum Suppression to find edge pixels

® Retrace edges

Disadvantage: Edge Detection via gradients very sensitive to noise; no
correlation among pixels, hard to find closed curves



Segmentation
.

Thresholding

® \ery basic principle, works well for images with bimodal histograms.
Choose an intensity threshold 7 > 0 and define a segemented image by

1, iff(mn)>T
g(m, n) = { 0, iff(mn<T

The areas where g(m, n) = 1 denote the foreground, the areas where
g(m, n) = 0 the background.

® Automatic determination of threshold:

@ Choose initial threshold T

@® Segment image into regions Gy, Gi by thresholding with T

® Compute average gray level values po and w1 in Gy and Gy

O Compute new threshold T = efi

@® Stop if difference between the tresholds is “small enough”, else,
iterate the previous steps



Segmentation
°

Thresholding

e Otsu’s Methods for automatic determination of threshold:

@ Initial threshold T =0

@ Separate image into background Gg and foreground G; with
respect to T

® Compute the intra-class variance

o(T)* = wo(T)ao(T)* + wa(T)or(T)°

@ Iterate this for all possible thresholds T
@ Choose the threshold with the minimal intra-class variance o(T)

— Amira, lobus.am, ImageSegmentation / Multi-Thresholding



Segmentation
.

Threshholding

Cell threshold segmentation and Laplace Zero-Crossing (Left)
Thresholding after median filtering (Right)
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(Curve Based) Active Contours

Illustration of Evolution of contour I




Segmentation
]

(Curve Based) Active Contours

Minimize energy functional to obtain 'well-behaved’ edges I': E.g. length
prior model

Ef(MN) = &(I) + Ex(IN)
= afds +B [ n(vf))ds
g/‘i_/ L,-/

internal energy, external energy,
regularization term data term

or Euler’s elastica prior model
Ef(T) = E1(T) + E2(T)
= /(a +Bl{2)ds+u/h(|Vﬂ)ds,
r r

with curvature  and some function h: R? — R, e.g.

_op? . 1
hpy=e™". hp)= 15

Solution: e.g., by gradient descent



Segmentation
°

Mumford-Shah

Region Based Active Contours + Intrinsic Smoothing (more stable). Minimize
a functional of the form

Ef(F,g):oa/rds +B/Q\r h(|Vf|)dx+%/Q(g—f)2dX,

smoothing,
data fit

region based
counterpart of Ep(T)

where, e.g., Q = [0,1]* and h(p) = 2p” (penalizing large gradients).

Solution: e.g. by level sets (better at capturing topological changes)



Segmentation
.

Level Sets

A level set {x € Q: ®(x) = M}, M € R, is defined by a level set function
d:Q — R. A curve I is defined as the zero level set for an adequate ¢, i.e.,

MN={xeQ:d(x)=0}.
Furthermore, we set
Qf = {x € Q: +d(x) > 0},
and g* are the enhanced images on Q*. The heavyside function is given by

H(z)=1,if z> 0, and H(z) =0, if z < 0. Mumford-Shah functional in
Level Set formulation:

E(®.9"g7) =a | [VH@)dx+ [ (Bh(Va'l)+ 50"~ F) H(®)dx

+ [ (Br1v9 )+ 5™ - £F) H(-0)ax



Isosurfaces
.

Introduction

® Representation of volume data by surfaces: An isosurface is the level set
Lo(k) = {x € R*: ®(x) = k} of a function ® : R* - R or a
corresponding data set

® Applications: Visualizing results of Segmentation/Thresholding (2-D or
3-D), Vsualization of Volume data, Geoid

® Problem: How to extract the actual surface from given volume data or a
function 7 E.g. Ray Casting or Marching Cubes



Isosurfaces
°

Introduction

Geors

Orthometric Ellipsoidal Height  Geoid
Height from GPS. Hoight

Oceans




Isosurfaces
.

Marching Squares

® 2-D counterpart to marching cubes

® In each grid point decide whether a point is inside or outside an object
(by thresholding)

® Find intersecting edges and connect them
® Determine surface normals for shading

® http://undergraduate.csse.uwa.edu.au/units/CITS4241/
Handouts/index.html



Isosurfaces
°

Marching Squares

Marching Squares

+ Let's work out the possibilities:

ufsizls|slsufs

0000 0001 0010 0011 0100 0101 0110 0111

@pNlSIRI=IRIN

1000 1001 1010 1011 1100 1101 1110 1111

® Point above contour
(index bit = 1)



Isosurfaces
°

Marching Squares

Marching Squares - Ambiguities

+ Two possible contours
+ In 2D, choose either one

T 1010 T 1010
Break contour Join contour
Either acceptable

+ Resulting contour lines will be continuous or closed
or end at dataset boundary



Isosurfaces
°

Marching Cubes




Isosurfaces
°

Marching Cubes

Butin 3D ...

is called the “amblguous face”

We can generate "hole?’,—-;- This face of the cube

(see also Figure 6.8 of Schroeder et al for another example)
* 6 of the 15 topologies can generate such holes



Isosurfaces
°

Marching Cubes

Resolving the ambiguity | (cont.)

+ If topology of the current cell is not consistent with the
previous neighbour cell then we should consider taking the
complementary topology of the current cell (See Figure 6.10
of Schroeder et al for the 6 complementary cases), e.g.

Case 3s

Case 6 Case 3s Case 6 complement

AT

+ MNote: Case 3s Is a symmetric case of Case 3 (see page 5)
+ MNote: Inconsistency only arises for the & ‘hole-generating’
topologies




Isosurfaces
°

Marching Cubes

Resolving the ambiguity | (cont.)

= Using this method, the resultant surface will complete
though not necessarily correct. The correct surface may
look like that shown in the right diagram:
Case 3s Case &
Case 6 complement complement Case 3s

= The degree of incorrectness is likely to be small
= These ambiguous cell faces are not common in medical
visualisation applications



Isosurfaces

Marching Cubes

Resolving the ambiguity Il (cont.)

+  We know that the contour will be broken into two sections,
intersecting all the edges of the square cell. We can find the
4 intersection points by linear interpolation of the function
values at the vertices. The intersection may occur in one of
the following cases:

By N\ I By, /
\ B / By,
N N ) ,

AN

B ~ 7
W Case A Do B CaseB  Buo

+ We need to decide which case actually arises.



Isosurfaces

Marching Cubes

Resolving the ambiguity Il (cont.)
+ From bilinear interpolation, we know that for any point p,
positioned at (x, v) inside the square cell, its function value
can be interpolated as follows:

By B,

i
By © By
Flx, 3) = (-1~ ) B+ 5(1- ) Byy+ (1 -5 1By + 5By,

+ The gquestion we would like to ask is:
What are the values of s and t such that .“{xp. ¥ =a?



Isosurfaces

Marching Cubes

Resolving the ambiguity Il (cont.)

+ The contour plot of the example on page 13 is shown below:

s A 1 = All the contours show up

- / T . as hyperbolae. There are

e - . two asymptotes, cne paralle]

to the x-axis, another the y-axis.

In the diagram, these two
tes intersect at the point
e (8, T = (0.304)

a1 @z 1w 4a on ar oA 4w

showing that, for example, if @= 5 then the intersection is
case B; if &= 6 then the intersection is case A



Isosurfaces

Marching Cubes

Resolving the ambiguity Il

* Whether the intersection occurs as case A or case
B depends on which quadrants the broken
contour falls onto. So, we need to find
coordinates of the point (S,, T)):

__ BBy
3 -+ -B, - B, Exercise: use these formulae
Boot By~ By~ By to verify that (S, T,) = (0.3.0.4)
7P = By~ By in our example.
* By+B,-B,-B,
I See the values of By, By,
B,, and B;; on Page 13



Isosurfaces

Marching Cubes

Resolving the ambiguity Il

- Having determined where the point (S,. T)) is and
whether the intersection is case A (or case B), we
can decide which one of the following to take:

Case 3s Case &
Case 6 complement complement

Case 3s




Isosurfaces
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Time Dependent Isosurfaces

e Allow/Force a surface over time: The Surface S; can be defined by
time-dependent level sets Loy:,.)(k)

® For points x(t) € S, it holds

ot =k & ot x()=-votx) 2 ()

® The time evolution % can be imposed by a 'forcing term’
F(x,®,Vo,...)



Isosurfaces

Surface Morphing

® Morph a surface S; into a surface Se

® Find a good forcing term F to describe the morphing process: Maximize
the functional

E(S:) :/ X (v)dy
S;nf
=0, ye€ S¢
Xspe(¥)q >0, yeS&”
< 0, otherwise

® The variational derivative of E is

VE(S:) = xspe () Ne(x)



Isosurfaces

Surface Morphing

® Using the steepest decent method, we are lead to the following PDE for
the point evolution x(t) € S;:
dx(t)
dt

= X (X(£))Ne(x(1))

® |Inserting the above into Equation (1), we are lead to the following initial
value problem that describes the morphing process:
dx(t)
dt
= —[®(t, X)X g (X)

dx(t)
dt

- N(t, x)

o
510t x) = —Vo(t,x) = —|®(t, )|

with an initial value ®(0, -) that satisfies (0, x) = k, for all x € S;.



Isosurfaces

Surface Morphing

Examples for two different initial values (taken from David E. Breen and Ross
T. Whitaker: A Level-Set Approach for the Metamorphosis of Solid Models,
IEEE Trans. Vis. Comp. Graph. 7 (2001))

— & = =



Optical Flow
°

Introduction

e Given is a sequence of images f : R x R? - R

e Find the motion vector v : R x R? — R? that describes the motion
between the succesive images: In other words find trajectories x(t) € R?
such that the brightness constancy assumption (BCA) holds true:

f(t, x(t)) = const.

Then the motion vector at the location x(t) in the image f(t,-) is given
by u(t, x(1)) = x(t)



Optical Flow
°

Introduction

Taken from http://jonathanmugan.com/GraphicsProject/OpticalFlow/




Optical Flow
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Optical Flow Equations

Differentiating the BCA with respect to time leads to

0= %f(t,x(t)) = VF(t,x(t)) - %x(t) + %f(t,X(t))-

Therefore, the following equation has to be solved

0=Vr(t,x)- u(t,x)+ %f(t,x).



Optical Flow
°

Optical Flow Equations

We regard the same problem as before but for a sequence of images
f:Rx8 — R onasurface S C R®. Then

0= %f(t,x(t)) = Vsf(t, x(t)) t) + %f(”(t))

‘EX()

and we have to solve

0 = Vsf(t,x)-u(t,x)+ %f(t,x).



Optical Flow
.

Minimization Problem

The optical flow equations are underdetermined. Therefore one minimizes the
following functional to find the motion vector u

+ R(u),

F(u)= HVSf(t,x) ~u(t, x)+ gf(t,x)
ot L2(RXS)

where, e.g., R(u) = ||ully,(s.75)-



Optical Flow




Optical Flow

Surface Example




Optical Flow
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Optical Flow Equations on Evolving Manifolds

We regard the same problem as before but for a sequence of images
f:R x S: — R on a time-dependent surface S C R3. Let k : R x Q — R3? be
a smooth map with k(t, %) € S¢, for all X € Q C R?. Then we set

F(t, %) = f(t, k(t, X))
and the BCA reads
F(t, %(t)) = f(t, k(t, (t))) = f(t, x(t)) = const.

for a curve X(t) € Q. The corresponding differential equation is
0= LF(t 5(t)) = VF(£.X(8) - S5(t) + 27 (£ %(1))
DA - X ar’ ot X
or, in other words
0= i?(r %) = VF(t, %) 0(%) + 3F(t )
Codt T ' ot 77

Afterwards, @i(t,-) needs to be mapped back onto S;.



Optical Flow
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Optical Flow Equations on Evolving Manifolds

Alternative Representation:

Optical Flow equation intrinsic on the manifold:

nor

0= "G

f(t, x) + Vs, f(t,x) - u™(t, x).



Volume Rendering
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Introduction

e Different from an isosurface, the whole volume information is used to
visualize a 3-D object

® Rays casted (perspective or parallel) through object onto a projection
plane

® |ntensities f at grid points need to be interpolated in order to obtain
intensities along rays (nearest-neighbour (staircasing), linear
(discontinuous derivatives), cubic)

Use information along the rays to compute values on projection plane
(simpest cases: x-ray, maximum intensity projection)



Volume Rendering
°

Introdutcion




Volume Rendering
°

Ray Casting

Image-Order Technique

® Maximum Intensity Projection (MIP): Intensity /(x, ) at some point
x on the projection along the ray -y is given as

I(x.v) = max f(y(t))

Local Maximum Intensity Projection (LMIP) takes the first local
maximum along the ray above some predefined threshold.

e X-Ray Projection: Intensity /(x,y) at some point x on the projection
plane along the ray <y is given as

I(x,v) = / fds



Volume Rendering

Ray Casting

MIP vs. LMIP




Volume Rendering
°

Ray Casting

® Full Volume Rendering Intensity /(x, ) (depending on wavelength X)
at some point x on the projection along the ray <y is given as

(x,7) / C(s)u(s)e™ Jo wo)dt g

where (s) is the mass density (or light extinction value) at the point
(s) (relates to f(y(s)) and the coefficient C(s) = E(s) + R(s) defines
the emmision and reflection properties at the location y(s).



Volume Rendering
°

Ray Casting

Numerical Realization: Substitue Integration by Riemann sum:

s

~ i-1
I(x,7v) = C(ins)u(ins)As [ [ e 0a9%
' =0

B

Il
o

B
Pl
|
-

%

i-1
C(iAs)a(iAs H (1 —a(jAs))
i=0 Jj=0

where a is the opacity. Front-to-back compositing formula,

7k+1 = 7k + C((k + 1)As)a((k + 1)AS)(1 — dk)
Q= OL(kAS)(]. - O_kal) + Qi1

The design of the transfer functions C, « is crucial.



Volume Rendering
°

Ray Casting

Slide taken from http://www-
pequan.lip6.fr/~tierny/stuff/teaching/tierny _intro_vol rend09.pdf




Volume Rendering
°

Ray Casting

Slide taken from http://www-
pequan.lip6.fr/~tierny/stuff/teaching/tierny _intro_vol rend09.pdf




Volume Rendering
°

Ray Casting

Slide taken from http://www-
pequan.lip6.fr/~tierny/stuff/teaching/tierny _intro_vol rend09.pdf




Volume Rendering
.

Ray Casting

Slide taken from http://www-
pequan.lip6.fr/~tierny/stuff/teaching/tierny _intro vol rend09.pdf




Volume Rendering
°

Ray Casting

Slide taken from http://www-
pequan.lip6.fr/~tierny/stuff/teaching/tierny _intro_vol rend09.pdf




Volume Rendering
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Ray Casting

The reflection coefficient R(s) can be modeled by the standard illumination
equation (cf. J. Foley, A. Dam, S. Feiner, and J. Hughes. Computer
Graphics: Principles and Practice, 1996):

R(S) = kaCys + ka Ci Co(S)(N(s) - L(S)) + ks CI(N(S) - H(s))?

where ks, C, are ambient material and color coefficients, C; color of the light
source, Co(s) the color of the object at location y(s), ka the diffuse material
coefficient, N(s), L(s), H(s) the normal vector, light direction vector, and
halfvector at location y(s), respectively, ks the spherical material coefficient,
and p is the Phong coefficient.

The design of R is crucial.



Volume Rendering
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Ray Casting

Diffuse Reflection with and without ambient light




Volume Rendering
.

Ray Casting

Specular shading




Volume Rendering
°

Ray Casting

Previous model does not include attenuation of light from source to y(s)

Light source

Delivered light

Reflected light [

\

Sample point s

Eye

Ll __1___a____



Volume Rendering

Ray Casting

Volumetric Shadows: Make C; dependent on y(s)
C/(S) = 6]67 f‘D Ky

where w(t) is the mass density at point 4(t) along the ray connecting «y(s) to
the light source at distance D.

Rendering without vs. rendering with shadows




Volume Rendering
o

Ray Casting

The previous model is called pre-classification since o, C are mapped to
voxels before interpolation. In post-classification, first the volume intensities
f are interpolated along the ray and then they are mapped to a, C:

I(x. ) ~ Z C(f(ins), Vf(iAs))a(f(iAs))ﬁ(l — a(f(jAs)))

Post-classification is typically better at capturing high-frequency details.
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Ray Casting

Transfer function aliasing in pre-classified rendering
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Volume Rendering

Ray Casting

Pre-classified vs. post-classified rendering




Volume Rendering

Ray Casting

Multiple Scattering: For clouds, e.g., the pervious single-scattering (low
albedo) scenario is not correct. Scattering after the first initial scattering has
to be taken into account:

($)uls) = | W), 91(7(5), 9as(6)
where £ denotes the direction of incoming light at point y(s). Then:
1) = [ ([ wer). ), 9as(e)) 0% s

This is an integral equation that needs to be solved.
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