Übungen zu Numerische Methoden zur Lösung von Differentialgleichungen

Markus Grasmair, Markus Haltmeier, Otmar Scherzer

Wien, Wintersemester 2010–2011

1. Der zeitlichen Verlauf der Konzentration c eines Wirkstoffs eines Medikaments im menschlichen Körper lässt sich (stark vereinfacht) durch die Differentialgleichung

$$\frac{dc(t)}{dt} = -\frac{c(t)}{\tau} \tag{1}$$

beschreiben, wobei $1/\tau > 0$ die Rate bestimmt, mit der die Konzentration des Wirkstoffs abnimmt. Dabei gilt Gleichung (1) für alle Zeiten t zu denen kein Wirkstoff verabreicht wird.

- (a) Bestimmen Sie c(t) unter der Annahme, dass das Medikament nur einmal verabreicht wird und dadurch die Konzentration auf den Anfangswert $c(0) = c_0$ ansteigt. Bestimmen Sie außerdem den Zeitpunkt t_h mit $c(t_h) = c_0/2$.
- (b) Betrachten Sie nun die Situation, dass das Medikament regelmäßig in gleichen Dosen verabreicht wird, die Konzentration des Wirkstoffs also zu den Zeiten $t=0,\,t=t_0,\,t=2t_0,\,\ldots$, jeweils um c_0 ansteigt.
 - Berechnen Sie die zeitliche Entwicklung der Konzentration c des Wirkstoffs. Bestimmen Sie insbesondere die Konzentration unmittelbar vor beziehungsweise nach der Verabreichung des Medikaments.
 - Zeigen Sie weiters, dass die Konzentrationen unmittelbar nach der Verabreichung des Medikaments sich dem Maximalwert $c_M = \frac{c_0}{1 e^{-t_0/\tau}}$ nähern.
- (c) Nehmen Sie nun an, dass jede Verabreichung des Medikaments die Konzentration c um $10\,\mathrm{mg/l}$ (Milligramm pro Liter) erhöht und dass $\tau=4\,\mathrm{h}$ (Stunden) gilt. Wie groß darf t_0 höchstens sein, damit die Konzentration c(t) den Maximalwert von $15\,\mathrm{mg/l}$ niemals überschreitet.
- 2. Das Wachstum von Populationen unter Ressourcenknappheit lässt sich vereinfacht mithilfe der logistischen Gleichung

$$\frac{dN(t)}{dt} = c_0 N(t) - \alpha N(t)^2 \tag{2}$$

beschreiben. Dabei wird der Parameter $c_0 > 0$ durch die Reproduktionsrate der Population bestimmt, während der Term $-\alpha N(t)^2$ das verminderte Wachstum bei zunehmender Bevölkerung und dadurch bedingter Ressourcenknappheit modelliert.

Bestimmen Sie die Lösung der logistischen Gleichung (2) bei gegebener Anfangspopulation $N(0) = N_0 > 0$. Wie sieht das Langzeitverhalten der Population aus? Bestimmen Sie $\lim_{t\to\infty} N(t)$.

3. Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$\frac{dy(t)}{dt} = y(t)^2 .$$

4. Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$\frac{dy(t)}{dt} = \frac{y(t)^2}{t^2} \ .$$

5. Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$\frac{dy(t)}{dt} = 3 + t - \frac{2y(t)}{t} .$$

6. Implementieren Sie in Matlab eine Funktion euler.m, die die Lösung einer Differentialgleichung

$$\frac{dy(t)}{dt} = f(t, y(t)), \qquad y(t_0) = y_0,$$

mithilfe des expliziten Eulerverfahrens löst. Der Funktion euler m sollen als Eingabeparameter die Funktion f, der Anfangswert y_0 , die Startzeit t_0 , die Endzeit t_1 und die Schrittweite h übergeben werden.

Testen Sie ihre Funktion an der logistischen Differentialgleichung (2) für verschiedene Werte von $c_0 > 0$, $\alpha > 0$ und $N_0 > 0$, und verschiedene Schrittweiten h > 0. Für welche Schrittweiten stimmt das Langzeitverhalten der numerischen Lösung mit dem der exakten Lösung überein?