Variational Inequalities and Convergence Rates for Non-convex Regularization

Markus Grasmair

Computational Science Center, University of Vienna, Austria

June 23, 2010

Outline

1 Variational Inequalities and Convergence Rates

- Convergence Rates
- Variational Methods

2 Abstraction

- Abstract Convexity
- Variational Inequalities

3 Examples

- Metric Regularization
- Non-convex Regularization on Hilbert Spaces
- Sparse Regularization

└─Variational Inequalities and Convergence Rates

Outline

1 Variational Inequalities and Convergence Rates

- Convergence Rates
- Variational Methods

2 Abstraction

- Abstract Convexity
- Variational Inequalities

3 Examples

- Metric Regularization
- Non-convex Regularization on Hilbert Spaces
- Sparse Regularization

< ≣ > <

Variational Inequalities and Convergence Rates

└─ Convergence Rates

Inverse Problems

Let X, Y be topological spaces and $F: X \to Y$ and solve, for given data $y \in Y$, the equation

$$F(x) = y . (1)$$

If (1) is ill-posed, regularization is necessary: Search for $x_{\alpha} \in X$ minimizing

$$\mathcal{T}(x; \alpha, y) := \mathcal{S}(F(x), y) + \alpha \mathcal{R}(x)$$
.

Here,

 $\begin{array}{lll} \mathcal{S} \colon Y \times Y \to \mathbb{R}_{\geq 0} & \dots & \text{non-negative distance measure,} \\ \mathcal{R} \colon X \to \mathbb{R}_{\geq 0} & \dots & \text{non-negative regularization functional,} \\ \alpha > 0 & \dots & regularization parameter. \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Variational Inequalities and Convergence Rates

Convergence Rates

Well-Posedness

Existence:

$$\mathcal{T}(\cdot; lpha, y)$$
 attains a minimizer for every $lpha > \mathsf{0}$ and $y \in Y$.

Stability:

If
$$\mathcal{S}(y^{(k)},y) o 0$$
 and $x^{(k)}_lpha \in$ arg min $_x \mathcal{T}(x;lpha,y^{(k)})$, then

$$x_{\alpha}^{(k)} \to x_{\alpha} \in \operatorname*{arg\,min}_{x} \mathcal{T}(x; \alpha, y) .$$

Convergence:

If $S(y^{\delta}, y^{\dagger}) \leq \delta \rightarrow 0$ and $\alpha \rightarrow 0$ sufficiently slowly $(\delta/\alpha \rightarrow 0)$, then

$$\arg\min_{x} \mathcal{T}(x; \alpha, y^{\delta}) \ni x_{\alpha}^{\delta} \rightarrow x^{\dagger} \in \arg\min\left\{\mathcal{R}(x) : F(x) = y^{\dagger}\right\}.$$

Conditions for well-posedness in: Hofmann et al. 2007, Pöschl 2008, Scherzer et al. 2009.

Variational Inequalities and Convergence Rates

Convergence Rates

Convergence Rates

Measure speed of convergence: Let

$$\Sigma(x^{\dagger}; \alpha, \delta) := \left\{ x_{\alpha}^{\delta} \in \operatorname*{arg\,min}_{x} \mathcal{T}(x; \alpha, y^{\delta}) : \mathcal{S}(y^{\delta}, y^{\dagger}) \leq \delta \right\}$$

and define for some distance measure

$$D: X \times X \to [0, +\infty]$$

the function

$${\mathcal H}(x^\dagger;lpha,\delta):= \sup\Bigl\{ D(x^\dagger,x^\delta_lpha): x^\delta_lpha\in \Sigma(x^\dagger;lpha,\delta) \Bigr\} \;.$$

Convergence rate: behaviour of H as α and δ tend to zero \sim accuracy of the regularization method (for small noise level).

Variational Inequalities and Convergence Rates

Convergence Rates

Classical Convergence Rates in Hilbert Spaces

Setting: X, Y Hilbert spaces, $F: X \to Y$ bounded linear. Let

$$\begin{aligned} \mathcal{S}(y_1, y_2) &= \|y_1 - y_2\|_Y^2, \qquad \mathcal{R}(x) = \|x\|_X^2, \\ D(x_1, x_2) &:= \|x_1 - x_2\|_X^2. \end{aligned}$$

If x^{\dagger} satisfies the range condition

$$x^{\dagger} \in \operatorname{\mathsf{Ran}} F^*$$

then there exists a constant $\gamma > 0$ such that

$$H(\mathbf{x}^{\dagger}; \alpha, \delta) \leq rac{\delta}{lpha} + \gamma \sqrt{\delta} + rac{\gamma^2}{2} lpha \; .$$

Note that $\delta \simeq \mathcal{S}(y^{\dagger}, y^{\delta}) = \|y^{\dagger} - y^{\delta}\|^2$.

Variational Inequalities and Convergence Rates

└─ Convergence Rates

Banach Spaces: Bregman Distances

Let X, Y be Banach spaces, $F: X \to Y$ bounded linear, $\mathcal{S}(y_1, y_2) = \|y_1 - y_2\|_Y^2$. Let

 $\begin{aligned} \mathcal{R} \colon X \to [0,+\infty] \text{ convex and lower semi-continuous,} \\ D(x_1,x_2) &:= \mathcal{R}(x_1) - \mathcal{R}(x_2) - \left\langle \partial \mathcal{R}(x_2), x_1 - x_2 \right\rangle. \end{aligned}$

D...Bregman distance.If x^{\dagger} satisfies the range condition

$$\mathsf{Ran}\,F^*\cap\partial\mathcal{R}(x^\dagger)\neq\emptyset$$

then there exists a constant $\gamma > 0$ such that

$$H(x^{\dagger}; \alpha, \delta) \leq rac{\delta}{lpha} + \gamma \sqrt{\delta} + rac{\gamma^2}{2} lpha \; .$$

伺 ト イ ヨ ト イ ヨ ト

Variational Inequalities and Convergence Rates

└─Variational Methods

Range Condition and Variational Inequalities

The range condition

$$\mathsf{Ran}\,F^*\cap\partial\mathcal{R}(x^\dagger)
eq\emptyset$$

is equivalent to the inequality

$$\langle \partial \mathcal{R}(x^{\dagger}), x^{\dagger} - x \rangle \leq \gamma \| F(x^{\dagger} - x) \|$$
 (2)

Proofs of rates rely on (2) rather than on the range condition. Slight modification of proofs yields similar rates under the weaker condition

$$\left\langle \partial \mathcal{R}(x^{\dagger}), x^{\dagger} - x \right\rangle \leq \eta D(x^{\dagger}, x) + \gamma \left\| F(x^{\dagger}) - F(x) \right\|$$

for some $0 < \eta < 1$. No linearity of F is required.

Variational Inequalities and Convergence Rates

└─Variational Methods

Variational Inequalities

Let X, Y be Banach spaces and $F: X \to Y$ sufficiently regular. Assume that, for some $\beta > 0$, $\gamma > 0$,

$$eta D(x, x^{\dagger}) \leq \mathcal{R}(x) - \mathcal{R}(x^{\dagger}) + \gamma \|F(x) - F(x^{\dagger})\|$$

whenever x sufficiently close to x^{\dagger} and $|\mathcal{R}(x)-\mathcal{R}(x^{\dagger})|$ small enough. Then

$$eta \mathcal{H}(\mathbf{x}^{\dagger}; lpha, \delta) \leq rac{\delta}{lpha} + \gamma \sqrt{\delta} + rac{\gamma^2}{2} lpha$$

whenever δ , α , and δ/α are small enough.

.

Abstraction

Outline

Variational Inequalities and Convergence Rates Convergence Rates Variational Methods

- 2 Abstraction
 - Abstract Convexity
 - Variational Inequalities

3 Examples

- Metric Regularization
- Non-convex Regularization on Hilbert Spaces
- Sparse Regularization

• = • •

Abstraction

Abstract Convexity

Abstract Convexity

Definition

Let X be a set and let W be a family of functions

$$w: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$$
.

A function $\mathcal{R} \colon X \to \overline{\mathbb{R}}$ is

W-convex at $x \in X$,

if for every $\varepsilon > 0$ there exists $w \in W$ such that

$$\mathcal{R}(ilde{x}) \geq \mathcal{R}(x) + ig(w(ilde{x}) - w(x)ig) - arepsilon$$

for all $\tilde{x} \in X$.

- Abstraction

Abstract Convexity

Abstract Bregman Distance

Definition

Let \mathcal{R} be a W-convex function.

The *W*-sub-differential of \mathcal{R} at $x \in X$ is defined as

$$\partial_W \mathcal{R}(X) := \left\{ w \in W : \mathcal{R}(\tilde{x}) \geq \mathcal{R}(x) + w(\tilde{x}) - w(x)
ight\}.$$

We define, for $w \in \partial_W \mathcal{R}(x)$, the *W*-Bregman distance with respect to *w* as

$$D^w(x, ilde{x}) = \mathcal{R}(ilde{x}) - \mathcal{R}(x) - ig(w(ilde{x}) - w(x)ig) \geq 0 \; .$$

→ 3 → 4 3

- Abstraction

Abstract Convexity

Example — Classical Convexity

Let X be a Banach space with dual X^* .

A function $\mathcal{R} \colon X \to \overline{\mathbb{R}}$ is X^* -convex, if and only it is lower semi-continuous and convex in the classical sense. We have

$$\partial_{X^*}\mathcal{R}(x) = \left\{ \xi \in X^* : \mathcal{R}(\tilde{x}) \geq \mathcal{R}(x) + \langle \xi, \tilde{x} \rangle - \langle \xi, x \rangle \right\} = \partial \mathcal{R}(x) \; .$$

Moreover,

$$D^{\xi}(x, ilde{x}) = \mathcal{R}(ilde{x}) - \mathcal{R}(x) - \langle \xi, ilde{x} - x
angle$$

is the usual Bregman distance.

4 3 5 4

Abstraction

Abstract Convexity

Example — Clarke Sub-differential

Let X be a Hilbert space. The

proximal sub-differential $\partial_P \mathcal{R}(x)$

is defined as the set of all $\xi \in X$ such that

$$\mathcal{R}(ilde{x}) \geq \mathcal{R}(x) + \langle \xi, ilde{x} - x
angle - \sigma \| ilde{x} - x \|^2$$

for some $\sigma \geq 0$ and all \tilde{x} near x.

Define W by

$$w \in W \iff w(\tilde{x}) = \langle \xi, \tilde{x} - x \rangle - \sigma \|\tilde{x} - x\|^2$$

for some $\xi \in X$, $\sigma \geq 0$, and \tilde{x} close to x. Then

$$\partial_P \mathcal{R}(x) \neq \emptyset \iff \partial_W \mathcal{R}(x) \neq \emptyset$$
.

伺 ト イ ヨ ト イ ヨ ト

Abstraction

Abstract Convexity

Example — Generalized Sub-differential

Define W as the set of all functions of the form

$$w(\tilde{x}) = \langle \xi, \tilde{x} - x \rangle - A(\tilde{x} - x, \tilde{x} - x)$$

for \tilde{x} close to x, with $\xi \in X$ and A a positive semi-definite, symmetric, bounded quadratic form.

Define the generalized sub-differential of \mathcal{R} at x as $\partial_W \mathcal{R}(x)$. Again,

$$\partial_P \mathcal{R}(x) \neq \emptyset \iff \partial_W \mathcal{R}(x) \neq \emptyset$$
.

We have the Bregman distance

$$D^w(x, \tilde{x}) = \mathcal{R}(\tilde{x}) - \mathcal{R}(x) - \langle \xi, \tilde{x} - x \rangle + A(\tilde{x} - x, \tilde{x} - x)$$

for \tilde{x} close to x.

4 B 6 4 B 6

- Abstraction

└─Variational Inequalities

Generalized Variational Inequalities

Let

$$x^{\dagger} \in rgminig\{\mathcal{R}(x): \mathcal{A}x = y^{\dagger}ig\}$$
 .

and let $\Phi\colon \mathbb{R}_{\geq 0}\to \mathbb{R}_{\geq 0}$ concave and strictly increasing with $\Phi(0)=0.$

Definition

We say that a *variational inequality* at x^{\dagger} holds with $\beta > 0$ and Φ , if

$$eta D^w(x^\dagger, x) \leq \mathcal{R}(x) - \mathcal{R}(x^\dagger) + \Phiig(\mathcal{S}(F(x), F(x^\dagger))ig)$$

for all x in a neighbourhood of x^{\dagger} with $\mathcal{R}(x)$ close to $\mathcal{R}(x^{\dagger})$.

伺 ト イ ヨ ト イ ヨ

Abstraction

└─Variational Inequalities

Convergence Rates

Theorem

Assume that a variational inequality at x^{\dagger} holds with $\beta > 0$ and Φ . Then for α and δ small enough we have the following estimates:

• If $\lim_{t \to 0^+} \Phi(t)/t < +\infty$, then

$$eta \mathcal{H}(x^{\dagger}; lpha, \delta) \leq rac{\delta}{lpha} + \gamma \Phi(\delta) \; .$$

• If $\lim_{t \to 0^+} \Phi(t)/t = +\infty$, then

$$\beta H(x^{\dagger}; \alpha, \delta) \leq \frac{\delta}{\alpha} + \gamma_1 \Phi(\delta) + \gamma_2 \frac{\Psi(\alpha)}{\alpha}$$

with Ψ denoting the convex conjugate of Φ^{-1} .

- 4 同 6 4 日 6 4 日 6

- Abstraction

└─Variational Inequalities

Convergence Rates — Asymptotics

Let now

$$x_{lpha}^{\delta} \in \operatorname*{arg\,min}_{x} \mathcal{T}(x; lpha, y^{\delta}) \qquad ext{with} \qquad \mathcal{S}(y^{\delta}, y^{\dagger}) \leq \delta \; .$$

Corollary

Assume that a variational inequality at x^{\dagger} holds with $\beta > 0$ and Φ .

• If $\lim_{t\to 0^+} \Phi(t)/t < +\infty$, then we have for $\alpha = const$ small enough

$$D^w(x^{\dagger}, x^{\delta}_{\alpha}) = O(\delta)$$
.

• If $\lim_{t\to 0^+} \Phi(t)/t = +\infty$ and $\alpha \sim \delta/\Phi(\delta)$ then

$$D^w(x^{\dagger}, x^{\delta}_{\alpha}) = O(\Phi(\delta))$$
.

— Examples

Outline

1) Variational Inequalities and Convergence Rates

- Convergence Rates
- Variational Methods

2 Abstraction

- Abstract Convexity
- Variational Inequalities

3 Examples

- Metric Regularization
- Non-convex Regularization on Hilbert Spaces
- Sparse Regularization

3 b. 4

- Examples

Metric Regularization

Metric Regularization

Let Y be a metric space and

$$S(y_1, y_2) = d(y_1, y_2)^p$$
 with $p > 1$.

If the variational inequality

$$eta D^w(x^\dagger,x) \leq \mathcal{R}(x) - \mathcal{R}(x^\dagger) + \gamma dig(F(x),F(x^\dagger)ig)$$

holds, then we have for a parameter choice

$$\alpha \sim d(y^{\dagger}, y^{\delta})^{p-1}$$

the rate

$$D^w(x^\dagger,x^\delta_lpha) \leq Oig(d(y^\dagger,y^\delta)ig) \;.$$

- Examples

Non-convex Regularization on Hilbert Spaces

Setting

Let X and Y be Hilbert spaces and $F : X \to Y$ bounded linear. Let moreover

$$S(y_1, y_2) = \|y_1 - y_2\|^p$$
 with $p > 1$.

Assume that \mathcal{R} has a proximal sub-differential w at x^{\dagger} , that is,

$$\mathcal{R}(x) \geq \mathcal{R}(x^{\dagger}) + \langle \xi, x - x^{\dagger} \rangle - A(x - x^{\dagger}, x - x^{\dagger})$$

with $\xi \in X$ and $A: X \to X$ positive semi-definite, symmetric, bounded, bilinear.

Then there exists $L \colon X \to X$ bounded linear and self-adjoint such that

$$A(x_1,x_2)=\left\langle Lx_1,x_2\right\rangle.$$

- 同 ト - ヨ ト - - ヨ ト

Examples

Non-convex Regularization on Hilbert Spaces

Convergence Rates

Lemma

Assume that for some $\mu > 0$ the mapping $\mu^2 F^* F - L$ is positive semi-definite and that

$$\xi \in \mathsf{Ran}ig(\sqrt{\mu^2 F^*F - L}ig)$$
 .

Then the variational inequality

$$D^w(x^{\dagger}, x) \leq \mathcal{R}(x) - \mathcal{R}(x^{\dagger}) + \gamma \|F(x - x^{\dagger})\|$$

holds for some $\gamma > 0$. In particular, with a parameter choice $\alpha \sim \|y^{\dagger} - y^{\delta}\|^{p-1}$,

$$D^w(x^{\dagger}, x^{\delta}_{\alpha}) = O(\|y^{\dagger} - y^{\delta}\|)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Let Y be a Hilbert space, $X = \ell^2$, and $F \colon \ell^2 \to Y$ bounded linear. Let $S(y_1, y_2) = ||y_1 - y_2||^2$ and define

$$\mathcal{R}(x) = \sum_{\lambda} \phi(x_{\lambda})$$
 for some $\phi \colon \mathbb{R} o [0, +\infty]$.

Let 1 and consider the set <math>W of functions of the form

$$w(x) = \langle \xi, x - x^{\dagger}
angle - \sum_{\lambda} c_{\lambda} |x_{\lambda} - x_{\lambda}^{\dagger}|^{p}$$

with $\xi \in \ell^2$ and $c_\lambda > 0$. Assume that, for some p > q > 0 and C > 0, $\phi(t) > \frac{C|t|^q}{2}$

$$\phi(t) \geq \frac{c|t|^q}{1+|t|^q}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

— Examples

Sparse Regularization

Convergence Rates

Lemma

Assume that the following hold:

- x^{\dagger} is the unique \mathcal{R} -minimizing solution of $Fx^{\dagger} = y^{\dagger}$.
- $supp(x^{\dagger})$ is finite (x^{\dagger} is sparse).
- $F|_{\ell^2(\text{supp}(x^{\dagger}))}$ is injective.

Assume that

$$ilde{w} = x \mapsto ig\langle \xi, x - x^\dagger ig
angle - \sum_\lambda c_\lambda |x_\lambda - x^\dagger_\lambda|^{m{p}} \in \partial_W \mathcal{R}(x^\dagger) \; .$$

If $\xi \in \text{Ran}(F^*)$ and $\text{supp}(\xi) = \text{supp}(x^{\dagger})$, then, for some $w \in \partial_W \mathcal{R}(x^{\dagger})$ and $\gamma > 0$,

$$\gamma \|x_{lpha}^{\delta} - x^{\dagger}\|^{p} \leq D^{w}(x^{\dagger}, x_{lpha}^{\delta}) = O(\|y^{\delta} - y^{\dagger}\|) \;.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Summary

Summary

- Derivation of convergence rates for non-convex Tikhonov regularization.
- Variational inequalities allow generalization by means of abstract concepts of convexity.
- Connection to standard range condition for linear operators on Hilbert spaces.
- Convergence rates for sparse regularization with non-convex regularization term.

4 B b 4 B