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Inverse Problems

Let X , Y be topological spaces and F : X → Y and solve, for
given data y ∈ Y , the equation

F (x) = y . (1)

If (1) is ill-posed, regularization is necessary:
Search for xα ∈ X minimizing

T (x ;α, y) := S
(
F (x), y

)
+ αR(x) .

Here,

S : Y × Y → R≥0 . . . non-negative distance measure,

R : X → R≥0 . . . non-negative regularization functional,

α > 0 . . . regularization parameter.
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Well-Posedness

Existence:
T (·;α, y) attains a minimizer for every α > 0 and y ∈ Y .

Stability:

If S(y (k), y)→ 0 and x
(k)
α ∈ arg minx T (x ;α, y (k)), then

x (k)
α → xα ∈ arg min

x
T (x ;α, y) .

Convergence:
If S(y δ, y †) ≤ δ → 0 and α→ 0 sufficiently slowly (δ/α→ 0), then

arg min
x
T (x ;α, y δ) 3 xδα → x† ∈ arg min

{
R(x) : F (x) = y †

}
.

Conditions for well-posedness in: Hofmann et al. 2007, Pöschl
2008, Scherzer et al. 2009.
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Convergence Rates

Measure speed of convergence: Let

Σ(x†;α, δ) :=
{

xδα ∈ arg min
x
T (x ;α, y δ) : S(y δ, y †) ≤ δ

}
and define for some distance measure

D : X × X → [0,+∞]

the function

H(x†;α, δ) := sup
{

D(x†, xδα) : xδα ∈ Σ(x†;α, δ)
}
.

Convergence rate: behaviour of H as α and δ tend to zero ∼
accuracy of the regularization method (for small noise level).
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Classical Convergence Rates in Hilbert Spaces

Setting: X , Y Hilbert spaces, F : X → Y bounded linear.
Let

S(y1, y2) = ‖y1 − y2‖2Y , R(x) = ‖x‖2X ,
D(x1, x2) := ‖x1 − x2‖2X .

If x† satisfies the range condition

x† ∈ Ran F ∗

then there exists a constant γ > 0 such that

H(x†;α, δ) ≤ δ

α
+ γ
√
δ +

γ2

2
α .

Note that δ ' S(y †, y δ) = ‖y † − y δ‖2.
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Banach Spaces: Bregman Distances

Let X , Y be Banach spaces, F : X → Y bounded linear,
S(y1, y2) = ‖y1 − y2‖2Y . Let

R : X → [0,+∞] convex and lower semi-continuous,

D(x1, x2) := R(x1)−R(x2)−
〈
∂R(x2), x1 − x2

〉
.

D. . . Bregman distance.
If x† satisfies the range condition

Ran F ∗ ∩ ∂R(x†) 6= ∅

then there exists a constant γ > 0 such that

H(x†;α, δ) ≤ δ

α
+ γ
√
δ +

γ2

2
α .
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Range Condition and Variational Inequalities

The range condition

Ran F ∗ ∩ ∂R(x†) 6= ∅

is equivalent to the inequality〈
∂R(x†), x† − x

〉
≤ γ

∥∥F (x† − x)
∥∥ . (2)

Proofs of rates rely on (2) rather than on the range condition.
Slight modification of proofs yields similar rates under the weaker
condition〈

∂R(x†), x† − x
〉
≤ ηD(x†, x) + γ

∥∥F (x†)− F (x)
∥∥ .

for some 0 < η < 1. No linearity of F is required.
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Variational Inequalities

Let X , Y be Banach spaces and F : X → Y sufficiently regular.
Assume that, for some β > 0, γ > 0,

βD(x , x†) ≤ R(x)−R(x†) + γ‖F (x)− F (x†)‖

whenever x sufficiently close to x† and |R(x)−R(x†)| small
enough. Then

βH(x†;α, δ) ≤ δ

α
+ γ
√
δ +

γ2

2
α

whenever δ, α, and δ/α are small enough.
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Abstract Convexity

Definition

Let X be a set and let W be a family of functions

w : X → R̄ = R ∪ {+∞} .

A function R : X → R̄ is

W -convex at x ∈ X ,

if for every ε > 0 there exists w ∈W such that

R(x̃) ≥ R(x) +
(
w(x̃)− w(x)

)
− ε

for all x̃ ∈ X .
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Abstract Bregman Distance

Definition

Let R be a W -convex function.
The W -sub-differential of R at x ∈ X is defined as

∂WR(X ) :=
{

w ∈W : R(x̃) ≥ R(x) + w(x̃)− w(x)
}
.

We define, for w ∈ ∂WR(x), the W -Bregman distance with
respect to w as

Dw (x , x̃) = R(x̃)−R(x)−
(
w(x̃)− w(x)

)
≥ 0 .
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Example — Classical Convexity

Let X be a Banach space with dual X ∗.

A function R : X → R̄ is X ∗-convex, if and only it is lower
semi-continuous and convex in the classical sense.

We have

∂X∗R(x) =
{
ξ ∈ X ∗ : R(x̃) ≥ R(x) + 〈ξ, x̃〉 − 〈ξ, x〉

}
= ∂R(x) .

Moreover,
Dξ(x , x̃) = R(x̃)−R(x)− 〈ξ, x̃ − x〉

is the usual Bregman distance.
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Example — Clarke Sub-differential

Let X be a Hilbert space. The

proximal sub-differential ∂PR(x)

is defined as the set of all ξ ∈ X such that

R(x̃) ≥ R(x) + 〈ξ, x̃ − x〉 − σ‖x̃ − x‖2

for some σ ≥ 0 and all x̃ near x .

Define W by

w ∈W ⇐⇒ w(x̃) = 〈ξ, x̃ − x〉 − σ‖x̃ − x‖2

for some ξ ∈ X , σ ≥ 0, and x̃ close to x . Then

∂PR(x) 6= ∅ ⇐⇒ ∂WR(x) 6= ∅ .
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Example — Generalized Sub-differential

Define W as the set of all functions of the form

w(x̃) = 〈ξ, x̃ − x〉 − A(x̃ − x , x̃ − x)

for x̃ close to x , with ξ ∈ X and A a positive semi-definite,
symmetric, bounded quadratic form.

Define the generalized sub-differential of R at x as ∂WR(x).
Again,

∂PR(x) 6= ∅ ⇐⇒ ∂WR(x) 6= ∅ .

We have the Bregman distance

Dw (x , x̃) = R(x̃)−R(x)− 〈ξ, x̃ − x〉+ A(x̃ − x , x̃ − x)

for x̃ close to x .
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Generalized Variational Inequalities

Let
x† ∈ arg min

{
R(x) : Ax = y †

}
.

and let Φ: R≥0 → R≥0 concave and strictly increasing with
Φ(0) = 0.

Definition

We say that a variational inequality at x† holds with β > 0 and Φ,
if

βDw (x†, x) ≤ R(x)−R(x†) + Φ
(
S(F (x),F (x†))

)
for all x in a neighbourhood of x† with R(x) close to R(x†).
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Theorem

Assume that a variational inequality at x† holds with β > 0 and Φ.
Then for α and δ small enough we have the following estimates:

If limt→0+ Φ(t)/t < +∞, then

βH(x†;α, δ) ≤ δ

α
+ γΦ(δ) .

If limt→0+ Φ(t)/t = +∞, then

βH(x†;α, δ) ≤ δ

α
+ γ1Φ(δ) + γ2

Ψ(α)

α

with Ψ denoting the convex conjugate of Φ−1.
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Convergence Rates — Asymptotics

Let now

xδα ∈ arg min
x
T (x ;α, y δ) with S(y δ, y †) ≤ δ .

Corollary

Assume that a variational inequality at x† holds with β > 0 and Φ.

If limt→0+ Φ(t)/t < +∞, then we have for α = const small
enough

Dw (x†, xδα) = O(δ) .

If limt→0+ Φ(t)/t = +∞ and α ∼ δ/Φ(δ) then

Dw (x†, xδα) = O
(
Φ(δ)

)
.

Markus Grasmair Convergence Rates for Non-convex Regularization



Convergence Rates for Non-convex Regularization

Examples

Outline

1 Variational Inequalities and Convergence Rates
Convergence Rates
Variational Methods

2 Abstraction
Abstract Convexity
Variational Inequalities

3 Examples
Metric Regularization
Non-convex Regularization on Hilbert Spaces
Sparse Regularization

Markus Grasmair Convergence Rates for Non-convex Regularization



Convergence Rates for Non-convex Regularization

Examples

Metric Regularization

Metric Regularization

Let Y be a metric space and

S(y1, y2) = d(y1, y2)p with p > 1 .

If the variational inequality

βDw (x†, x) ≤ R(x)−R(x†) + γd
(
F (x),F (x†)

)
holds, then we have for a parameter choice

α ∼ d(y †, y δ)p−1

the rate
Dw (x†, xδα) ≤ O

(
d(y †, y δ)

)
.
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Non-convex Regularization on Hilbert Spaces

Setting

Let X and Y be Hilbert spaces and F : X → Y bounded linear.
Let moreover

S(y1, y2) = ‖y1 − y2‖p with p > 1 .

Assume that R has a proximal sub-differential w at x†, that is,

R(x) ≥ R(x†) + 〈ξ, x − x†〉 − A(x − x†, x − x†)

with ξ ∈ X and A : X → X positive semi-definite, symmetric,
bounded, bilinear.
Then there exists L : X → X bounded linear and self-adjoint such
that

A(x1, x2) =
〈
Lx1, x2

〉
.
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Lemma

Assume that for some µ > 0 the mapping µ2F ∗F − L is positive
semi-definite and that

ξ ∈ Ran
(√

µ2F ∗F − L
)
.

Then the variational inequality

Dw (x†, x) ≤ R(x)−R(x†) + γ‖F (x − x†)‖

holds for some γ > 0. In particular, with a parameter choice
α ∼ ‖y † − y δ‖p−1,

Dw (x†, xδα) = O(‖y † − y δ‖) .
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Sparse Regularization

Setting

Let Y be a Hilbert space, X = `2, and F : `2 → Y bounded linear.
Let S(y1, y2) = ‖y1 − y2‖2 and define

R(x) =
∑
λ

φ(xλ) for some φ : R→ [0,+∞] .

Let 1 < p < 2 and consider the set W of functions of the form

w(x) =
〈
ξ, x − x†

〉
−
∑
λ

cλ|xλ − x†λ|
p

with ξ ∈ `2 and cλ > 0. Assume that, for some p > q > 0 and
C > 0,

φ(t) ≥ C |t|q

1 + |t|q
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Lemma

Assume that the following hold:

x† is the unique R-minimizing solution of Fx† = y †.

supp(x†) is finite (x† is sparse).

F |`2(supp(x†)) is injective.

Assume that

w̃ = x 7→
〈
ξ, x − x†

〉
−
∑
λ

cλ|xλ − x†λ|
p ∈ ∂WR(x†) .

If ξ ∈ Ran(F ∗) and supp(ξ) = supp(x†), then, for some
w ∈ ∂WR(x†) and γ > 0,

γ‖xδα − x†‖p ≤ Dw (x†, xδα) = O(‖y δ − y †‖) .
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Summary

Derivation of convergence rates for non-convex Tikhonov
regularization.

Variational inequalities allow generalization by means of
abstract concepts of convexity.

Connection to standard range condition for linear operators on
Hilbert spaces.

Convergence rates for sparse regularization with non-convex
regularization term.
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