ÜBUNGSBLATT 2A

Beispiel 1 (Lösungsmengen von Ungleichungen).

Bestimmen Sie alle möglichen Lösungen $x \in \mathbb{R}$

- (a) der Ungleichung $(x-1)^2 < 4$,
- (b) der Ungleichung $e^x 1 \le -x$,
- (c) der Ungleichung $|x-1|x \le x$.

Beispiel 2 (Lösen von kubischen Gleichungen mit einer bekannten Nullstelle).

Bestimmen Sie alle Lösungen $x \in \mathbb{R}$ der kubischen Gleichung

$$x^3 + 2x^2 - 13x + 10 = 0$$

wenn Sie wissen, daß x = 1 eine Lösung ist.

Beispiel 3 (Injektivität und Surjektivität von zusammengesetzten Funktionen).

Seien X, Y und Z Mengen und $f: X \to Y$ und $g: Y \to Z$ zwei Funktionen.

- (a) Zeigen Sie, daß $g \circ f$ injektiv ist, falls f und g injektiv sind.
- (b) Zeigen Sie, daß $g \circ f$ surjektiv ist, falls f und g surjektiv sind.
- (c) Zeigen Sie, daß f injektiv ist, wenn $g \circ f$ injektiv ist. Muß in dem Fall auch die Funktion g injektiv sein?
- (d) Zeigen Sie, daß g surjektiv ist, wenn $g \circ f$ surjektiv ist. Muß in dem Fall auch die Funktion f surjektiv sein?

Beispiel 4 (Inverse des Sinus hyperbolicus).

Zeigen Sie, daß der Sinus hyperbolicus

$$\sinh \colon \mathbb{R} \to \mathbb{R}, \ \sinh(x) \coloneqq \frac{1}{2} (e^x - e^{-x}),$$

bijektiv ist, und berechnen Sie seine inverse Funktion.

Beispiel 5 (Beziehungen zwischen inversen Funktionen).

Folgern Sie aus der Identität $\cos^2(x) + \sin^2(x) = 1$ für alle $x \in \mathbb{R}$, daß die Beziehung

$$\arccos\left(\sqrt{1-y}\right) = \arcsin\left(\sqrt{y}\right)$$
 für alle $y \in [0,1]$

gilt.

Beispiel 6 (Kurve als Graph einer Funktion).

Wir betrachten für gegebene Parameter $a,b\in(0,\infty)$ die Kurve

$$\gamma\colon\mathbb{R}\to\mathbb{R}^2,\ \gamma(t)\coloneqq\begin{pmatrix}x(t)\\y(t)\end{pmatrix}\coloneqq\begin{pmatrix}a\cosh(t)\\b\sinh(t)\end{pmatrix}.$$

- (a) Finden Sie eine Funktion $F: D \to \mathbb{R}$ auf $D := \{(\tilde{x}, \tilde{y}) \in \mathbb{R}^2 \mid \tilde{x} > 0\}$, für die die Gleichung $F(\tilde{x}, \tilde{y}) = 0$ genau dann erfüllt ist, wenn ein $t \in \mathbb{R}$ mit $\tilde{x} = x(t)$ und $\tilde{y} = y(t)$ existiert.
- (b) Bestimmen Sie eine Funktion $g: \mathbb{R} \to \mathbb{R}$, deren Graph über der y-Achse gerade mit der Spur der Kurve übereinstimmt, was bedeute, daß

$$\{(g(\tilde{y}), \tilde{y}) \mid \tilde{y} \in \mathbb{R}\} = \{(x(t), y(t)) \mid t \in \mathbb{R}\}$$

gelte.