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Direct Methods

Let X be a topological space and R : X → R ∪ {+∞} some functional. Recall the
following definitions:

• The mapping R is lower semi-continuous, if for every t ∈ R the set

levelt(R) :=
{
x ∈ X : R ≤ t

}
is closed.

• The mapping R is coercive, if for every t ∈ R the set levelt(R) is pre-compact.

1. Let Ri : X → R∪{+∞}, i ∈ I, be a family of functionals on the topological space
X. Define moreover R := supiRi, that is, R(x) = supiRi(x) for every x ∈ X.
Show that the following assertions hold:

a) If every functional Ri is lower semi-continuous, then so is R.

b) If any functional Ri is coercive, then so is R.

2. Let R, S : X → R ∪ {+∞} be functionals on the topological space X. Show that
the following assertions hold:

a) If R and S are lower semi-continuous, then so is R+ S.

b) If R is coercive and S is bounded below (that is, infx∈X S(x) > −∞), then
R+ S is coercive.

3. Let X be a Hilbert space and R : X → R∪{+∞} any functional. Show that R is
weakly coercive (that is, coercive with respect to the weak topology on X), if and
only if

sup
t>0

inf
{
R(u) : ‖u‖ ≥ t

}
= +∞ .

4. Show that the norm on a Hilbert space X is weakly lower semi-continuous and
weakly coercive.

5. Let X be a topological space and R : X → R∪{+∞} a lower semi-continuous and
coercive functional. Show that R attains its minimum on X.
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Tikhonov Regularization

For the following exercises, we consider the following setting:

• The sets X and Y are Hilbert spaces, and F : D(F) ⊂ X → Y is an operator
mapping a subset of X to Y .

• The operator F is weakly closed in the sense that

graph(F) :=
{

(u, y) ∈ X × Y : u ∈ D(F), F(u) = y
}

is a weakly closed subset of X × Y .

• Let u0 ∈ X be fixed. For every α > 0 and y ∈ Y the Tikhonov functional
Tα,y : X → [0,+∞] is defined by

Tα,y(u) :=

{
‖F(u)− y‖2 + α‖u− u0‖2 if u ∈ D(F) ,

+∞ else.

6. For every α > 0 and every y ∈ Y the Tikhonov functional Tα,y has a minimizer.

7. Let α > 0 be fixed and let {y(k)}k∈N ⊂ Y be some sequences converging to y ∈ Y .
Let moreover

u(k) ∈ arg min
{
Tα,y(k)(u) : u ∈ X

}
.

Then the sequence {u(k)} ⊂ X has a convergent subsequence. Moreover, the limit
of every converging subsequence is a minimizer of the Tikhonov functional Tα,y.

8. Let y ∈ Y be fixed. For every δ > 0 let yδ ∈ Y be such that ‖y − yδ‖ ≤ δ. Let
moreover α : R>0 → R>0 be such that limδ→0 α(δ) = 0 and limδ→0 δ

2/α(δ) = 0.
Let moreover {δ(k)}k∈N be any sequence converging to 0 and let

u(k) ∈ arg min
{
T
α(δ(k)),yδ

(k) (u) : u ∈ X
}
.

Then the sequence {u(k)}k∈N has a convergent subsequence. Moreover, the limit
of every convergent subsequence is a u0-minimum norm solution of the equation
F(u) = y.

9. Show that the sequence {u(k)}k∈N in Exercise 7 itself converges to a minimizer of
the Tikhonov functional Tα,y if the latter is unique. Similarly, if u† is the unique
u0-minimum norm solution of the equation F(u) = y, show that the sequence
{u(k)}k∈N in Exercise 8 converges to u†.



Image Denoising: Linear Filters

One of the basic problems in image processing is that of denoising. Here one is given a
noisy image f ∈ L2(Ω) with Ω ⊂ R2 sufficiently regular, which, one assumes, consists
of an underlying true image u to which noise n has been added. That is, one has the
equality

f = u+ n .

In order to reconstruct u from f , one possibility is to minimize a Tikhonov like functional
of the form

Tα,f (u) := ‖u− f‖2
L2(Ω) + αR(u) , (1)

where the regularization term R should be chosen in such a way that “true” images are
hardly penalized, while noise is penalized rather heavily.

10. Define the set D ⊂ L2(Ω) by

u ∈ D :⇐⇒ sup
{
〈u, div ~ϕ〉L2(Ω) : ~ϕ ∈ C1

c (Ω;R2), ‖~ϕ‖L2(Ω;R2) ≤ 1
}
< +∞ .

Show that there exists a unique (unbounded) linear mapping ∇ : D ⊂ L2(Ω) →
L2(Ω;R2), the weak gradient, such that

〈∇u, ~ϕ〉L2(Ω;R2) = −〈u, div ~ϕ〉L2(Ω)

whenever ~ϕ ∈ C1
c (Ω;R2).

11. Consider the regularization functional (1) with

R(u) = ‖∇u‖2
L2(Ω;R2) . (2)

Show that in this case the function u ∈ L2(Ω) is a minimizer of the regularization
functional, if and only if it is a weak solution of the partial differential equation

u− f − α∆u = 0 on Ω,

∂νu = 0 on ∂Ω .
(3)

Recall that u ∈ L2(Ω) is a weak solution of (3), if and only if u ∈ D and

〈u, v〉L2(Ω) + α〈∇u,∇v〉L2(Ω;R2) = 〈f, v〉L2(Ω)

for every v ∈ D.

12. Write a Matlab (or Octave) implementation of the linear filter (3). Assume
to that end that the domain Ω is rectangular and that the data f are given on
a regular grid on Ω. Test the programme for different parameters on the images
Lenna.png, Peppers.jpg, and Boats.png. In addition, test the effects of the filter, if
noise is added to the images.



You may use either a finite difference or a finite element method for the imple-
mentation. In case of finite elements, use either piecewise linear or bilinear basis
functions; for finite differences, use a standard 5-point stencil for the discretization
of the Laplacian. The method for the solution of the system of linear equations
that is easiest to implement might be a Jacobi iteration. You may also use the
standard Matlab solvers, but note that the system matrix will be huge (use sparse
matrices!).

You can load images in Matlab with the imread command and display them with
imagesc (possibly with colormap(gray)). Depending on your implementation, it
might be necessary to convert the images to double at some stage. Random noise
can be generated with rand (for uniformly distributed random noise in [0, 1]) and
randn (for normally distributed noise).

13. The main problem with the linear filter defined by (1) is that it blurs the image
heavily. One possibility to mitigate this blurring is to decrease the diffusivity
across edges, which can be detected by applying the filter (3) to the noisy, original
image f .

Denote therefore by uα ∈ L2(Ω) the solution of (3) and define

R(u) =

∫
Ω

|∇u(x)|2

1 + |∇uα(x)|2
dx . (4)

This leads, with a regularization parameter β > 0, possibly different from α, to
the filter

u− f − β div
( ∇u

1 + |∇uα|2
)

= 0 on Ω,

∂νu = 0 on ∂Ω .

(5)

Write a Matlab or Octave implementation of the filter (5). Compare the results
of (5) with the results of (3). You may want to use the discretizations of the
gradient and divergence given in Exercise 14 below. In case you need to setup a
system matrix, recall the product rule for the divergence,

div
(
c(x)∇u(x)

)
=
〈
∇c(x),∇u(x)

〉
+ c(x)∆u(x) .

14. Assume that Ω = (0, a)× (0, b) ⊂ R2 is a rectangular domain, which we discretize
using a uniform grid with nodal points (ih, jh) ∈ Ω, 1 ≤ i ≤ M , 1 ≤ j ≤ N , for
some step size h > 0. Consider the discretization of the gradient ∇ : RM×N →
(R2)M×N by forward differences,

(∇u)
(1)
i,j =


ui+1,j − ui,j

h
if i < M ,

0 if i = M ,
(∇u)

(2)
i,j =


ui,j+1 − ui,j

h
if j < N ,

0 if j = N .



Define moreover the discrete divergence div : (R2)M×N → RM×N as the negative
adjoint of ∇, that is,

〈div Φ, u〉 = 〈Φ,−∇u〉 whenever u ∈ RM×N and Φ ∈ (R2)M×N ,

with 〈·, ·〉 denoting the standard scalar product on Euclidean space. Derive an
explicit formula for the discrete divergence.

15. As an alternative to the usage of |∇uα|2 in (4), it is also possible—and more
common—to convolve the noisy image f with some smooth convolution kernel
ρε, and to use |∇(ρε ∗ f)|2 as an edge detector. More precisely, we assume that
Ω = (0, a)×(0, b) ⊂ R2 is a rectangular domain and consider the following mirrored
continuation f̃ of f to R2 defined, for k, l ∈ Z, and 0 < x < a, 0 < y < b, by

f̃(ka+ x, lb+ y) =


f(x, y) if k and l are even,

f(a− x, y) if k is odd and l is even,

f(x, b− y) if k is even and l is odd,

f(a− x, b− y) if k and l are odd.

Let therefore ρε ∈ C∞(R2) satisfy ρε ≥ 0 and
∫
R2 ρε(x) dx = 1. Show that the

functional Tα,f (u) = ‖u− f‖2
L2(Ω) + αR(u) with

R(u) =

∫
Ω

|∇u(x)|2

1 + |∇(ρε ∗ f̃)(x)|2
dx

attains a unique minimizer on L2(Ω), which is a weak solution of the partial dif-
ferential equation

u− f − α div

(
∇u

1 + |∇(ρε ∗ f̃)|2

)
= 0 on Ω ,

∂νu = 0 on ∂Ω .

(6)

You may use the fact that under the assumptions above we have that ρε ∗ f̃ ∈
C∞(R2).

16. Write a Matlab or Octave implementation of the filter (6) and compare the
results with the results of (5). Use as convolution kernel a Gaussian of variance
ε > 0.

Note that the function imfilter provides a fast implementation of the convolution
in the image processing toolbox in Matlab. Mirrored boundary conditions can
be generated by using the option ’symmetric’.



Image Denoising: Iterative Filtering — Parabolic PDEs

In the linear filter (3), one smoothes the noisy image u by minimizing the regularization
functional (1) once, but with a fairly large regularization parameter α. Instead, it is also
possible to use a small regularization parameter, but repeatedly, in each step denoising
the solution of the previous step further. Then one arrives at the iterative method

u(0) = f , u(k+1) = arg min
{
‖u− u(k)‖2 + αkRk(u) : u ∈ L2(Ω)

}
.

Note that, in principle, the regularization parameter αk and the regularization functional
Rk may change in each iteration step—in particular, Rk may depend on the outcome
u(k) of the previous step. This approach is strongly related to parabolic differential
equations and semi-group theory.

17. Prove, using the Hille–Yosida theorem, that the negative Laplace operator −∆
defines a linear contraction semi-group on L2(Ω) (you might want to recall the
definitions of Exercise 11).

18. Implement the solution of the parabolic differential equation

∂tu−∆u = 0 ,

u(x, 0) = f(x) , x ∈ Ω ,

∂νu(x, t) = 0 , x ∈ ∂Ω , t > 0 ,

by computing the iteration

u(k+1) = (Id−τ∆)−1u(k)

under the assumption that Ω ⊂ R2 is a rectangular domain and that the intial
data f are given on a regular grid on Ω (note that this is by no means efficient: an
explicit solution can easily be computed by convolving the data f with a Gaussian
kernel of increasing variance).

19. Using the notation of Exercise 15 and fixing some ε > 0, implement the solution
of the parabolic differential equation

∂tu− div

(
∇u

1 + |∇(ρε ∗ f̃)|2

)
= 0 ,

u(x, 0) = f(x) , x ∈ Ω ,

∂νu(x, t) = 0 , x ∈ ∂Ω , t > 0 ,

again by computing the corresponding iteration.

20. Using the notation of the previous exercises, implement the iteration u(0) = f and

u(k+1) − τ div

(
∇u(k+1)

1 + |ρε ∗ ∇ũ(k)|2

)
= u(k) ,

∂νu
(k+1) = 0 , x ∈ ∂Ω .



Total Variation

The Sobolev space W 1,1(Ω), with Ω ⊂ Rn non-empty, open, and bounded with suffi-
ciently regular boundary (say C2 or Lipschitz), is defined as the space of all u ∈ L1(Ω)
for which there exists a function ~v ∈ L1(Ω;Rn) such that∫

Ω

〈~v(x), ~ϕ(x)〉 dx = −
∫

Ω

u(x) div ~ϕ(x) dx (7)

for all ~ϕ ∈ C1
c (Ω;Rn). If u ∈ W 1,1(Ω), then the mapping ~v ∈ L1(Ω;Rn) satisfying (7)

is unique; one usually writes ~v =: ∇u, the weak gradient of u. If u ∈ W 1,1(Ω) ∩ C1(Ω),
then the Gauß–Green theorem implies that ∇u coincides with the classical gradient of
u.

In addition, we define the space BV(Ω) of functions of bounded variation as

BV(Ω) :=

{
u ∈ L1(Ω) : sup

{∫
Ω

u div ~ϕ : ~ϕ ∈ C1
c (Ω;Rn), ‖~ϕ‖L∞ ≤ 1

}
< +∞

}
.

For u ∈ BV(Ω) we define the total variation of u on Ω as

|Du|(Ω) := sup
{∫

Ω

u div ~ϕ : ~ϕ ∈ C1
c (Ω;Rn), ‖~ϕ‖L∞ ≤ 1

}
.

21. Show that W 1,1(Ω) ⊂ BV(Ω) and that |Du|(Ω) =
∫

Ω
|∇u(x)| dx for every u ∈

W 1,1(Ω).

22. Consider the case Ω = (a, b) ⊂ R. Show that every function u ∈ W 1,1((a, b)) has
a continuous representative.

Hint: Consider test functions ϕ of the form ϕ = ρε ∗ χ(c,d), where ρε is a smooth
convolution kernel and χ(c,d) the characteristic function of an interval (c, d) ⊂
(a, b).

23. Find a function u ∈ BV((a, b)) that has no continuous representative.

24. Show that the mapping R1 : L2(Ω)→ R ∪ {+∞},

R1(u) :=

{
|Du|(Ω) if u ∈ BV(Ω) ∩ L2(Ω) ,

+∞ else

is lower semi-continuous, convex, and positively homogeneous (that is, R1(tu) =
|t|R1(u) for all u ∈ L2(Ω) and t ∈ R \ {0}).

25. Consider the mapping R2 : L2(Ω)→ R ∪ {+∞},

R2(u) :=


∫

Ω

|∇u(x)| dx if u ∈ W 1,1(Ω) ∩ L2(Ω) ,

+∞ else.

Show that the mapping R2 is not lower semi-continuous on L2(Ω).



26. The goal of this exercise is the implementation of an approximation of total vari-
ation filtering, defined by the minimization of the functional

Tα,f (u) :=
1

2
‖u− f‖2

L2 + αR1(u)

with R1 defined as in Exercise 24. The first step is the replacement of the total
variation R1 by the integral over the absolute value of the gradient, i.e., the func-
tional R2 defined in Exercise 25. The integrand being non-differentiable, it is then
replaced by the smooth approximation

R(ε)
2 :=


∫

Ω

√
ε2 + |∇u(x)|2 dx if u ∈ W 1,1(Ω) ∩ L2(Ω) ,

+∞ else,

where ε > 0 is some small parameter. The ensuing functional can then be minim-
ized by solving the non-linear PDE

u− f − α div

(
∇u√

ε2 + |∇u|2

)
= 0 on Ω ,

∂νu = 0 on ∂Ω .

(8)

A common approach for the numerical solution of (8) is the usage of the fixed
point iteration

u(k+1) − f − α div

(
∇u(k+1)√
ε2 + |∇u(k)|2

)
= 0 on Ω ,

∂νu
(k+1) = 0 on ∂Ω .

(9)

Write a Matlab or Octave implementation of the approximation of total vari-
ation filtering introduced above using the iteration (9). Compare the results with
those of anisotropic diffusion (5).



Mean Curvature Motion

From an axiomatic point of view, one can argue that evolution equations are useful for
image processing only if they satisfy certain invariance properties, among them invari-
ance with respect to constrast changes. That is, if φ : R → R is a strictly increasing
and continuous bijection and u and uφ denote the solutions of the equation with initial
values f and φ ◦ f , respectively, then we should have that

φ
(
u(t, x)

)
= uφ(t, x)

for every t and x. Basically, the only useful evolutions that have this property are
governed by equations of the form

∂tu = |∇u|G
(

div
( ∇u
|∇u|

))
,

where G : R→ R is a continuous and non-decreasing function.

27. Write a Matlab or Octave implementation of mean curvature motion given by

∂tu = |∇u|
(

div
( ∇u
|∇u|

))
.

Use an explicit Euler method (with sufficiently small step size) for the time dis-
cretization, and a simple finite difference method for the space discretization.
Moreover, regularize the denominator like for total variation regularization re-
placing |∇u| by

√
ε2 + |∇u|2. If one uses a non-symmetric space discretization, it

can be useful to rotate the image by 90 degrees using rot90 after each time step
in order to minimize artifacts.

Test the programme on the images Cards.png and Lenna.png. In addition, verify
that the evolution indeed is (approximately) invariant with respect to gray-value
transformations by applying different contrast changes to the initial function and
comparing the respective results.

28. The same as Exercise 27, but with affine invariant mean curvature motion given
by

∂tu = |∇u|
(

div
( ∇u
|∇u|

))1/3

.

Here, in theory, the evolution should also be invariant with respect to affine trans-
formations of the domain of the image.

29. Verify numerically that neither the linear filter of Exercise 18 nor total variation
flow given by

∂tu =
(

div
( ∇u
|∇u|

))
are contrast invariant.


