Exercise Sheet 10

1. Let Ω be bounded domain in \mathbb{R}^n , $n \in \mathbb{N}$. Let $u \in C([0,\infty) \times \overline{\Omega})$ be a classical solution of the parabolic problem

$$\begin{aligned} \frac{\partial u}{\partial t}(t,x) - \operatorname{div}_x(\sigma(x)\nabla_x u(t,x)) + c(x)u(t,x) &= f(x), \quad t \in (0,T), \ x \in \Omega, \\ u(0,x) &= u_0(x), \quad x \in \Omega, \\ u(t,x) &= 0, \qquad t \in (0,T), \ x \in \partial\Omega, \end{aligned}$$

for some given functions $u_0 \in C^2(\overline{\Omega})$, $f, c \in C(\overline{\Omega})$ and $\sigma \in C^1(\overline{\Omega})$ with $\sigma(x) > 0$ for all $x \in \overline{\Omega}$, so that the partial derivatives $\frac{\partial u}{\partial t}$ and $\frac{\partial^2 u}{\partial x_i \partial x_j}$ exist for all $i, j = 1, \ldots, n$ and are continuous.

Moreover, let $v \in H_0^1(\Omega)$ be a weak solution of the elliptic problem

$$-\operatorname{div}(\sigma\nabla v)(x) + c(x)v(x) = f(x), \quad x \in \Omega.$$

Show that

$$\|u(t,\cdot) - v\|_{L^2(\Omega)} \to 0 \quad (t \to \infty).$$

2. We consider the one-dimensional heat equation

$$\frac{\partial u}{\partial t}(t,x) = \frac{\partial^2 u}{\partial x^2}(t,x), \quad t>0, \; x\in(0,\pi)$$

with initial data

$$u(0,x) = \sum_{j=1}^{N} c_j \sin(jx), \quad x \in (0,\pi),$$

for some $N \in \mathbb{N}$ and $(c_j)_{j=1}^N \subset \mathbb{R}$, and boundary data

$$u(t,0) = u(t,\pi) = 0, \quad t > 0.$$

- (a) Determine the solution $u \in C^{\infty}([0,\infty) \times [0,\pi])$ of this problem.
- (b) We approximate for given step-size h > 0 the solution u(ih, x) numerically with $u_i(x), i \in \mathbb{N}$, by using an s-stage Runge-Kutta method (A, b, c):

$$\eta_j(x) = u_i(x) + h \sum_{k=1}^s A_{ij} \eta_k''(x), \quad x \in (0,\pi), \ j = 1, \dots, s,$$
$$u_{i+1}(x) = u_i(x) + h \sum_{k=1}^s b_k \eta_k''(x), \quad x \in (0,\pi),$$

where we impose for every η_k the boundary conditions

$$\eta_k(0) = \eta_k(\pi) = 0, \quad k = 1, \dots, s.$$

Show that the solution of this boundary value problem is analytically given by

$$u_i(x) = \sum_{j=1}^N R(-hj^2)^i c_j \sin(jx), \quad x \in (0,\pi), \ i \in \mathbb{N},$$

where $R : \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ denotes the stability function of the Runge-Kutta method (A, b, c), and compare this result with the analytical solution of the heat equation.

- (c) Write a program that solves this problem with the Crank-Nicolson method.
- 3. (a) Let Ω be a bounded domain in \mathbb{R}^n , $n \in \mathbb{N}$, and let $a, c \in C([0, T] \times \overline{\Omega})$ and $b \in C([0, T] \times \overline{\Omega}; \mathbb{R}^2)$ be given functions with a(t, x) > 0 for all $t \in [0, T]$ and $x \in \overline{\Omega}$.

We consider a function $u \in C([0,T] \times \Omega)$, $(t,x) \mapsto u(t,x)$, so that the partial derivatives $\frac{\partial u}{\partial t}$ and $\frac{\partial^2 u}{\partial x_i \partial x_j}$ exist for all $i, j = 1, \ldots, n$ and are continuous. Moreover, assume that u fulfils the inequalities

$$\begin{split} \frac{\partial u}{\partial t}(t,x) &- a(t,x)\Delta u(t,x) \\ &+ \langle b(t,x), \nabla_x u(t,x) \rangle + c(t,x)u(t,x) \leq 0, \quad t \in (0,T), \; x \in \Omega, \\ & u(0,x) \leq 0, \quad x \in \Omega, \\ & u(t,x) \leq 0, \quad t \in (0,T), x \in \partial \Omega. \end{split}$$

Show that $u(t, x) \leq 0$ for all $t \in (0, T)$ and $x \in \Omega$. Hint: Consider the function $v(t, x) = e^{-\gamma t} u(t, x)$ for suitable $\gamma \in \mathbb{R}$.

(b) Let Ω be again a bounded domain in \mathbb{R}^n , $n \in \mathbb{N}$. Use this result to show that the parabolic problem

$$\begin{aligned} \frac{\partial u}{\partial t}(t,x) - \operatorname{div}_x(\sigma \nabla_x u)(t,x) + c(t,x)u(t,x) &= f(t,x), \quad t \in (0,T), \ x \in \Omega, \\ u(0,x) &= u_0(x), \quad x \in \Omega, \\ u(t,x) &= 0, \qquad t \in (0,T), \ x \in \partial\Omega. \end{aligned}$$

has for given functions $u_0 \in C^2(\bar{\Omega})$, $f, c \in C([0,T] \times \bar{\Omega})$, and $\sigma \in C^1([0,T] \times \bar{\Omega})$ with $\sigma(t,x) > 0$ for all $(t,x) \in [0,T] \times \bar{\Omega}$ at most one classical solution $u \in C([0,T] \times \bar{\Omega})$ whose partial derivatives $\frac{\partial u}{\partial t}$ and $\frac{\partial^2 u}{\partial x_i \partial x_j}$ exist for all $i, j = 1, \ldots, n$ and are continuous.

4. Write a program that approximates the solution $u \in C^1([0,\infty) \times \mathbb{R})$ of the transport equation

$$\frac{\partial u}{\partial t}(t,x)+a\frac{\partial u}{\partial x}(t,x)=0,\quad t>0,\ x\in\mathbb{R},$$

for some given constant $a \in \mathbb{R}$ and given initial data $u_0 \in C^1_{c}(\mathbb{R})$,

$$u(0,x) = u_0(x), \quad x \in \mathbb{R},$$

by using the finite difference method.