Exercise Sheet 7

1. We consider the Sturm-Liouville problem

$$-(au')'(x) = f(x), \quad x \in (0,1),$$

 $u(0) = u(1) = 0,$

for the function $u \in C^2([0,1])$ for some positive function $a \in C^3([0,1])$ and some function $f \in C^2([0,1])$.

What is the order of consistency of the finite difference method

$$-D_{\frac{h}{2}}[aD_{\frac{h}{2}}[u]](x_i) = f(x_i), \quad i = 1, \dots, n-1,$$
$$u(x_0) = u(x_n) = 0$$

on the uniform mesh $(x_i)_{i=0}^n$ on [0,1] with step size $h = \frac{1}{n} \in (0,\frac{1}{2})$? (Here,

$$D_{\frac{h}{2}}[v](x) = \frac{v(x+\frac{h}{2}) - v(x-\frac{h}{2})}{h}, \quad x \in [\frac{h}{2}, 1-\frac{h}{2}],$$

denotes the central difference quotient of a function $v: [0,1] \to \mathbb{R}$.)

2. We consider the finite difference method

$$-\frac{u_{i+1}-2u_i+u_{i-1}}{h^2}+b(x_i)\frac{u_{i+1}-u_i}{h}+c(x_i)u_i=f(x_i), \quad i=1,\ldots,n-1,$$
$$u_0=u_n=0$$

for the boundary value problem

$$-u''(x) + b(x)u'(x) + c(x)u(x) = f(x), \quad x \in (0,1),$$
$$u(0) = u(1) = 0$$

for given functions $b, c, f \in C^2([0,1])$ with $c(x) \ge 0$ for all $x \in [0,1]$ on the uniform mesh $(x_i)_{i=0}^n$ on [0,1] with step size $h = \frac{1}{n} \in (0, \frac{1}{2})$.

- (a) Prove that this finite difference method is for every h stable if $b(x) \leq 0$ for all $x \in [0, 1]$.
- (b) Show that this is no longer necessarily true if the function b can also take positive values.

- 3. Let $A \in \mathbb{R}^{n \times n}$ be a real matrix with $A_{ij} \leq 0$ for all $i \neq j$. Prove the equivalence of the following statements:
 - (i) A is an M-matrix,
 - (ii) there exists a vector $v \in \mathbb{R}^n$ with $v_i > 0$ and $(Av)_i > 0$ for all i such that

$$||A^{-1}||_{\infty} \le \frac{||v||_{\infty}}{\min_{1 \le i \le n} (Av)_i},$$

(iii) setting A = D - N, where D shall be the diagonal matrix with the entries $D_{ii} = A_{ii}$ for all i, we have that $D_{ii} > 0$ for all i and that the spectral radius

 $\rho(D^{-1}N) = \max\{|\lambda| \mid \lambda \text{ is an eigenvalue of } D^{-1}N\}$

of the matrix $D^{-1}N$ is strictly less than one.

4. Consider the problem

$$u''(x) = \gamma u(x), \quad x \in (0,1)$$

 $u(0) = 1,$
 $u(1) = 0$

for some constant $\gamma > 0$. We define the function $F : \mathbb{R} \to \mathbb{R}$ by $F(\alpha) = v_{\alpha}(1)$ where $v_{\alpha} \in C^{2}([0, 1])$ is the solution of the initial value problem

$$v''_{\alpha}(x) = \gamma v_{\alpha}(x), \quad x \in (0,1),$$

$$v'_{\alpha}(0) = \alpha,$$

$$v_{\alpha}(0) = 1.$$

Determine for given $\varepsilon > 0$ the maximal error $\delta > 0$ so that

$$|F(\alpha)| < \varepsilon$$
 for all $\alpha \in (F^{-1}(0) - \delta, F^{-1}(0) + \delta).$

What does this mean for the shooting method for this problem if γ is large?

5. Let us consider the non-linear boundary value problem

$$u''(x) + u(x)u'(x) = -1, \quad x \in (0, 1),$$
$$u(0) = u(1) = 0$$

for the function $u \in C^2([0,1])$. We define the map $F : \mathbb{R} \to \mathbb{R}$ by $F(\alpha) = v_{\alpha}(1)$ where v_{α} is defined as the solution of the initial value problem

$$v_{\alpha}^{\prime\prime}(x) + v_{\alpha}(x)v_{\alpha}^{\prime}(x) = -1, \quad x \in (0, 1),$$
$$v_{\alpha}^{\prime}(0) = \alpha,$$
$$v_{\alpha}(0) = 0.$$

(a) Show that $F'(\alpha) = w_{\alpha}(1)$ where w_{α} is a solution of the initial value problem

$$w''_{\alpha}(x) + v_{\alpha}(x)w'(x) + v'_{\alpha}(x)w_{\alpha}(x) = 0, \quad x \in (0,1),$$
$$w'_{\alpha}(0) = 1,$$
$$w_{\alpha}(0) = 0.$$

- (b) Rewrite the second order initial value problems for v_{α} and w_{α} as a system of first order initial value problems.
- (c) Write a program that solves the boundary value problem by using the Newton method

$$\alpha_{k+1} = \alpha_k - \frac{F(\alpha_k)}{F'(\alpha_k)}, \quad k \in \mathbb{N}_0,$$

for a given starting point $\alpha_0 \in \mathbb{R}$ to find a zero of the function F. (Pick your favourite Runge-Kutta method to solve the system of first order initial value problems obtained in part (b).)