Exercise Sheet 1

1. We define the Sobolev space $H^1([a, b])$ as the set of all functions $f : [a, b] \to \mathbb{R}$ of the form

$$f(x) = \sum_{k=-\infty}^{\infty} f_k e^{\frac{2\pi}{b-a}ikx}$$

with $(f_k)_{k\in\mathbb{Z}} \in \ell^2(\mathbb{C})$ and $(ikf_k)_{k\in\mathbb{Z}} \in \ell^2(\mathbb{C})$. Let $\Delta = (x_i)_{i=0}^l$ be a mesh on [a, b].

(a) Show that a step function

$$f: [a,b] \to \mathbb{R}, \quad f(x) = \sum_{i=1}^{l} s_i \chi_{[x_{i-1},x_i)}(x)$$

is in $H^1([a, b])$ if and only if it is a constant function. So, the spline space $S_{0,\Delta}$ is not a subspace of $H^1([a, b])$.

(b) Let Λ_i , $i \in \{0, \ldots, l\}$, be the continuous function which is linear on every interval $[x_{k-1}, x_k]$, $k = 1, \ldots, l$, and has the values $\Lambda_i(x_j) = \delta_{ij}$, $j = 0, \ldots, l$. Show that

$$\Lambda_i \in H^1([a,b])$$

and conclude that

$$S_{1,\Delta} \subset H^1([a,b]).$$

2. We consider the function

$$f: [-1,1] \to \mathbb{R}, \quad f(x) = x^2.$$

Find the interpolating and the best approximating linear spline $s \in S_{1,\Delta}$ of f on the mesh $\Delta = (-1, 0, 1)$.

3. Let $\Delta = (x_i)_{i=0}^l$ be a mesh on [a, b], and let $f \in H^1([a, b])$. We define the step function $s \in S_{0,\Delta}$ by

$$s(x) = \sum_{i=1}^{l} s_i \chi_{[x_{i-1}, x_i]}(x), \quad s_i = f\left(\frac{x_{i-1} + x_i}{2}\right), \quad i = 1, \dots, l.$$

Prove the error estimate

$$||f - s||_{L^2([a,b])} \le ||f'||_{L^2([a,b])} \max_{i \in \{1,\dots,l\}} (x_i - x_{i-1}).$$

4. Show that for every non-constant function $f \in C^1([a, b])$, there exists a constant c > 0 such that we have for every mesh $\Delta = (x_i)_{i=0}^l$ on [a, b] the estimate

$$||f - s||_{L^2([a,b])} \ge c \min_{i \in \{1,\dots,l\}} (x_i - x_{i-1}) \text{ for all } s \in S_{0,\Delta}.$$

- 5. We consider the interval [-2, 2] with the mesh $\Delta = (-2, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 2)$. We define the step function $\beta_0 = \chi_{[-\frac{1}{2}, \frac{1}{2}]} \in S_{0,\Delta}$. Show that the convolution $\beta_0 * \beta_0$ is a linear spline and that $\beta_0 * \beta_0 * \beta_0 * \beta_0$ is a cubic spline on this mesh. Sketch the shape of these splines.
- 6. Write a program which calculates for a given mesh $\Delta = (x_i)_{i=0}^l$ and given values $(y_i)_{i=0}^l$ the moments $(\gamma_j)_{j=1}^{l-1}$ of the natural cubic spline $s \in S_{3,\Delta}$ with $s(x_i) = y_i, i = 0, \ldots, l$.