
Daniel Leitner and Otmar Scherzer

Numerical Methods for the
Solution of Differential

Equations

Lecture Notes
Winter 2015/16

Warning: The lecture notes are subject to
change during the semester

Computational Science Center
University of Vienna

A-1090 Vienna, Austria

Contents

1 Examples of ODEs 1
1.1 Falling Body . 1
1.2 Separation of Variables at the Example of Population Dynamics 2
1.3 Homogeneous ODEs . 7
1.4 Linear ODEs . 9

2 Ordinary Differential Equations 13
2.1 The Euler Method . 13
2.2 Taylor Method . 14
2.3 Runge-Kutta Method . 14
2.4 Single Step Runge-Kutta Methods 15
2.5 Ill-Conditioned ODE . 17
2.6 Stiff ODE’s . 18

2.6.1 Stiffness Ratio . 20
2.6.2 A-Stability . 22

2.7 Multi-Step Methods . 25
2.8 Step-Size Control for Runge-Kutta Methods 26

3 Boundary Value Problems 31
3.1 Singularly Perturbed Problems 35
3.2 Shooting Methods . 37

4 Interpolation 39
4.1 Lagrange Interpolation . 39
4.2 Trigonometric Interpolation 40
4.3 Fast Fourier Transform (FFT) 45
4.4 Spline Interpolation . 47
4.5 Linear Splines . 47
4.6 Cubic Splines . 48

2

CONTENTS 3

5 Modelling with PDEs 53
5.1 Heat equation . 53
5.2 Wave equation . 55
5.3 Nondimensionalisation . 56

6 Classification of Linear PDEs 59

7 Finite Difference Method 65
7.1 Elliptic Differential Equations 65
7.2 Parabolic Differential Equations 69
7.3 Hyperbolic Differential Equations 74

8 Finite Element Method 77
8.1 Weak solutions . 77
8.2 Galerkin approach . 79
8.3 Triangulations . 80
8.4 Stiffness Matrix . 82

4 CONTENTS

Chapter 1

Examples of ODEs

We present a few examples of ordinary differential equations first and indicate
some ways to solve them analytically.

1.1 Falling Body

We model the movement of a vertically falling body, which position at time
t is described by its height h(t).

Newton’s second law of motion implies that the acceleration of the body,
that is, the change of its speed, is proportional to the forces acting on the
body. That is,

F = ma ,

where F denotes the forces, m denotes the mass of the body, and a is its
acceleration. Note, that the units of F are Newton (N), of the mass is (kg)
and of a is m/s2 (meter over second squared). The acceleration on the other
hand is the change of the speed, which is itself the change of the position of
the body. Therefore

F = mḧ(t) . (1.1)

The main force F is gravity, which, for small heights h, equals approximately
mg, where g ≈ 9.81m/s2 is the gravitational acceleration at the earth’s sur-
face. The gravitation is acting downwards such that from (1.1) it follows
that

mḧ(t) = −mg .

1

2 CHAPTER 1. EXAMPLES OF ODES

If either the body is very light or it is falling fast, it is necessary to
take into account air friction, which slows down the downwards movement
of the body. One possibility is to model air friction as a force proportional
to the square of the body’s velocity. Because friction always works against
the current movement, the sign of the corresponding force will be opposite
to the sign of ḣ. Thus we obtain the refined model

mḧ(t) = −c sgn(ḣ(t)) ḣ(t)2 −mg ,

where c is some material constant describing the drag of the body.
In order to obtain a complete description of the movement of the body,

we will need in addition a description of the state of the body at some initial
time t0, where we begin our considerations. More precisely, we will need its
initial position h0 and its initial velocity v0. Then, assuming this model is
correct, the movement of the body is completely described by the differential
equation

mḧ(t) = −c sgn(ḣ(t)) ḣ(t)2 −mg ,
h(t0) = h0 ,

ḣ(t0) = v0 .

1.2 Separation of Variables at the Example

of Population Dynamics

Now consider a simple model that describes the evolution of a population
over some period of time. That is, we know the population p0 at some given
time t0, and we want to obtain an estimate p(t) of the population at some
future time t > t0.

As a basic model, we assume that the rate of change of the population is
given by some function N(t, p) that depends only on the time and the size
of the population. Then the function p that describes the population solves
the differential equation

ṗ(t) = N
(
t, p(t)

)
, p(t0) = p0 . (1.2)

One very simple model assumes that the number of births and deaths within
a certain amount of time is proportional to the size of the population that
is,

N
(
t, p(t)

)
= (R− S)p(t) ,

1.2. SEPARATION OF VARIABLES AT THE EXAMPLE OF POPULATION DYNAMICS3

with R, S are the birth and death rates, respectively. Thus (1.2) becomes

ṗ(t) = (R− S) p(t) .

Using the initial state p(t0) = p0, we obtain with this model the population
dynamics

p(t) = p0e
(R−S)(t−t0) .

That is, depending on the sign of R − S, either the population increases or
decreases exponentially.

Now we try to introduce the effects of overpopulation into the model by
assuming that the death rate depends on the size of the population. That
is, instead of assuming a constant death rate S > 0, we assume that S
is a function of p. The simplest model is to assume the death rate being
proportional to p, setting

S(p) = σ p

for some constant σ > 0. Then we obtain the equation (the logistic differen-
tial equation)

ṗ(t) =
(
R− σp(t)

)
p(t) . (1.3)

In the following, we will compute the analytic solution of this equation.
We note first that the derivative of p is positive if R > σp (and the population
p is positive, which we tacitly assume), while it is negative if R < σp. In
other words, the population increases as long as p < R/σ, while it decreases
for p > R/σ. In particular, this implies that the long term behavior of the
population will be stagnating at the value p = R/σ.

In order to solve the logistic differential equation, we define

ρ := R/σ ,

and rewrite the equation as

1

(ρ− p(t)) p(t)
dp(t)

dt
= σ .

Integrating both sides of this equation with respect to t, we obtain∫ t̂

t0

1

(ρ− p(t)) p(t)
dp(t)

dt
dt =

∫ t̂

t0

σ dt .

4 CHAPTER 1. EXAMPLES OF ODES

Now, we make a change of variables t→ p := p(t), such that formally

dp(t)

dt
dt = dp .

Using this identity we obtain the equation∫ p(t̂)

p(t0)

1

(ρ− p)p
dp = σt̂ , ∀t̂ ≥ t0 . (1.4)

Now note that∫ p(t̂)

p(t0)

1

(ρ− p)p
dp

=
1

ρ

∫ p(t̂)

p(t0)

1

ρ− p
+

1

p
dp

=
1

ρ

(− ln
∣∣ρ− p(t̂)∣∣+ ln

∣∣p(t̂)∣∣)− (− ln |ρ− p(t0)|+ ln |p(t0)|
)︸ ︷︷ ︸

=:C


=

1

ρ
ln

∣∣∣∣ p(t̂)

ρ− p(t̂))

∣∣∣∣− C .

This, together with (1.4) shows that the function p satisfies:

1

ρ
ln

∣∣∣∣ p(t)

ρ− p(t)

∣∣∣∣ = σt+ C , ∀t ≥ 0 .

Multiplying the equation with ρ and taking the exponential, it follows that∣∣∣∣ p(t)

ρ− p(t)

∣∣∣∣ = eρσt+ρC = eρσt eρC ,

which is equivalent to ∣∣∣∣ρ− p(t)p(t)

∣∣∣∣ = e−ρσt e−ρC , (1.5)

Now we define a new constant

D := ±e−ρC ,

1.2. SEPARATION OF VARIABLES AT THE EXAMPLE OF POPULATION DYNAMICS5

where D > 0 if ρ− p(t) > 0 and else otherwise.
Then this last equation reads as

ρ

p(t)
− 1 = De−ρσt ,

which in turn implies that

p(t) =
ρ

1 +De−ρσt
.

This is the general form of a solution of the differential equation (1.3). The
specific solution satisfying p(t0) = t0 is determined by determining D from

p0 = p(t0) =
ρ

1 +De−ρσt0
.

The method, which we applied in the last example is called separation of
variables :

Definition 1.1. An ODE that can be transformed into the form

f(y(t))ẏ(t) = g(t) , (1.6)

where the function f : R → R only depends on y and not on t, and the
function g : R≥0 → R only depends on t and not on y, is called ordinary
differential equation (of first order) with separable variables.

The general strategy for solving such differential equations is to substitute
t→ y := y(t). Since

ẏ =
dy

dt
, (1.7)

we can formally multiply (1.6) with dt and obtain the formal equation

f(y) dy = g(t) dt .

Now we can apply indefinite integrals to both sides and obtain the equation∫
f(y) dy =

∫
g(t) dt+ C ,

where C ∈ R is some constant that appears due to the indefinite integration.
Note, that the first integration is with respect to y and the right hand side
reveals an integration with respect to t.

6 CHAPTER 1. EXAMPLES OF ODES

If it is possible to compute the integrals of f and g analytically, we obtain
an equation the solution necessarily has to satisfy. If, in addition, it is possible
to solve this equation for y, we indeed obtain an analytic (general) solution
of the differential equation.

Example 1.2. Consider the ODE

(T 2 − t2) ẏ + ty = 0 ,

where T > 0 is some given constant. This equation is not in a separable form
(1.6), but can be brought into such. We rewrite the equation to

ẏ

y
= − t

T 2 − t2
,

which is possible for y 6= 0 and t 6= ±T . We rewrite this formally as

dy

y
= − t

T 2 − t2
dt .

Now, integration of both sides of the equation leads to

ln |y| = 1

2
ln
∣∣T 2 − t2

∣∣+ C .

Taking the exponential of the equation, we obtain

|y| = eC
√
|T 2 − t2| .

Replacing the constant eC > 0 by the constant D ∈ R also encoding the sign
of y, we get

y(t) = D
√
|T 2 − t2| . (1.8)

The constant D ∈ R still has to be determined using the initial condition
y(t0) = y0. Inserting this condition into the general solution, we see that

y0 = y(t0) = D
√
|T 2 − t20| ,

and therefore

D =
y0√
|T 2 − t20|

. (1.9)

1.3. HOMOGENEOUS ODES 7

Note that we have assumed during the computation of the solution of the
ODE that y0 6= 0 and t 6= ±T . It can be easily seen, however, that the
derivation above also covers the situation where y0 = 0 and t0 6= ±T . There,
the constant function y = 0 is the unique solution of the ODE, at least until
the time reaches one of the values ±T .

The case t0 = ±T , however, is different. Then, if y0 = 0, for every con-
stant D ∈ R the function (1.8) satisfies the ODE and therefore is a solution.
If, however, y0 6= 0, then the ODE has no solution at all– the ODE and the
initial conditions are inconsistent.

Finally, note that all the solutions are valid only locally; that is, there
exists at least a time interval [t0, t0 + ε) for some ε > 0 on which the solution
exists and can be written as (1.8) with D given by (1.9). For general ODEs,
this is all that can be said about the solution. In this special case, one can
specify the length of the interval on which the solution looks like (1.8): If t0 >
T , then the formula (1.8) is valid on [t0,+∞). If, however, −T < t0 < T ,
then the solution is

y(t) =

{
D1

√
|T 2 − t2| if t ∈ [t0, T] ,

D2

√
|T 2 − t2| if t ∈ [T,+∞) ,

with

{
D1 = y0/

√
T 2 − t20 ,

D2 ∈ R arbitrary.

In particular, the solution is only unique up to time T . Similarly, if t0 < −T ,
then

y(t) =


D1

√
|T 2 − t2| if t ∈ [t0,−T] ,

D2

√
|T 2 − t2| if t ∈ [−T, T] ,

D3

√
|T 2 − t2| if t ∈ [T,+∞) ,

with


D1 = y0/

√
T 2 − t20 ,

D2 ∈ R arbitrary,

D3 ∈ R arbitrary.

1.3 Homogeneous ODEs

Definition 1.3. An ODE of the form

ẏ = f
(y
t

)
, (1.10)

with f : R→ R, is called of homogeneous type.

If we are given an ODE of homogeneous type, we can solve it by starting
with the substitution

z(t) =
y(t)

t
.

8 CHAPTER 1. EXAMPLES OF ODES

For the right hand side of (1.10) we are left with the term f(z). For the left
hand side of (1.10) we use the product rule and obtain

ẏ =
dy

dt
=
d(tz)

dt
= z + t

dz

dt
= z + tż .

Thus we have for the variable z the differential equation

z + tż = f(z) .

Now it is easy to see that this ODE is of separable type: We can bring it in
the form

ż

f(z)− z
=

1

t
.

This ODE can now be solved by separation of variables, and we obtain a
solution z(t). At the end, we obtain the solution y by y(t) = tz(t).

Example 1.4. Consider the ODE

ẏ =
(y
t

)2

.

It is easy to see that this ODE is homogeneous with f(y/t) = (y/t)2. Using
the substitution y = tz we obtain

z + tż = z2

and therefore
ż

z2 − z
=

1

t
.

Separation of variables (1.7) shows that

1

z2 − z
dz =

1

t
dt .

Integrating this equation, we obtain the indefinite integral equation∫
1

z2 − z
dz =

∫
1

t
dt+ C

or by calculating the integrals

ln

∣∣∣∣z − 1

z

∣∣∣∣ = ln |t|+ C .

1.4. LINEAR ODES 9

Now, assuming that t > 0 and z ≥ 1, which depends on the initial condition,
we get

z − 1

z
= Dt

for some constant D = exp(C) ∈ R+ depending on the initial value. Solving
for z we obtain

z(t) =
1

1−Dt
(note that z is greater than 1) and, after substitution of y = tz

y(t) =
t

1−Dt
.

1.4 Linear ODEs

Definition 1.5. An ODE that can be written as

ẏ + f(t)y = g(t)

for some functions f : R → R and g : R → R is called linear ODE of first
order.

Here, first order means that the highest derivative of the unknown func-
tion y that appears in the equation is the first one. Linear means that all
the expressions are linear in the unknown y and its derivatives.

As in the case of linear algebraic equations, the linearity of an equation
has some implications on the structure of its solutions. To that end we
consider the homogeneous equation1

ẏ + f(t)y = 0 .

If we are given two solutions y1 and y2 of this equation (with possibly different
initial conditions), then

ẏ1 + f(t)y1 = 0 ,

ẏ2 + f(t)y2 = 0 .

Consequently also

d

dt
(y1 + y2) + f(t)(y1 + y2) = ẏ1 + f(t)y1 + ẏ2 + f(t)y2 = 0 ,

1Homogeneous means that the right hand side of the equation is zero, that is, g = 0

10 CHAPTER 1. EXAMPLES OF ODES

which shows that also y1 + y2 is a solution of the ODE. More general, if y1

and y2 solve the ODE and c1, c2 ∈ R, then the linear combination c1y1 + c2y2

is also a solution.

In order to solve the (inhomogeneous) equation

ẏ + f(t)y = g(t) (1.11)

we first observe that (1.11) is equivalent to

h(t)ẏ + h(t)f(t)y = h(t)g(t) , (1.12)

at least, if h : R→ R is a function that is different from zero.
Now the idea is to choose the function h in such a way that the left hand

side of (1.12) is itself a derivative. More precisely, we try to find h : R → R
such that

h(t)ẏ + h(t)f(t)y =
d

dt
(hy) = ḣy + hẏ . (1.13)

If (1.13) holds, then the equation (1.12) reads as follows,

d

dt
(hy) = h(t)g(t) ,

which after integration becomes:

h(t)y(t) =

∫ t

g(s)h(s) ds+ C . (1.14)

For this reason, a function h satisfying (1.13) is called an integrating factor
for the ODE (1.11).

Thus, (1.13) is satisfied, if h satisfies

h(t)f(t)y = ḣ(t)y .

Dividing this equation by y, we see that h has to satisfy the ODE

ḣ = f(t)h .

This ODE can be solved by separation of the variables, and we obtain the
integrating factor

h(t) = D exp
(∫ t

f(s) ds
)
.

1.4. LINEAR ODES 11

Inserting this integrating factor in (1.14), we obtain

y(t) =

∫ t[
g(s)D exp

(∫ s
f(r) dr

)]
ds+ C

D exp
(∫ t

f(s) ds
) ,

or, setting C̃ := C/D,

y(t) =

∫ t[
g(s) exp

(∫ s
f(r) dr

)]
ds+ C̃

exp
(∫ t

f(s) ds
) .

The following example provides a relation between ordinary and partial
differential equations.

Example 1.6. Let u(x, t), −1 ≤ x ≤ 1, be the temperature distribution at
time t in a slab of length l = 2. Assuming constant conductivity σ = 1, u
satisfies the heat conduction equation:

ut = σuxx = uxx , −1 < x < 1 , 0 < t < T . (1.15)

This is now a partial differential equation because it depends on derivatives
of at least two variables x, t. By discretization of the x variable we can
transform the partial differential equation in a system of ordinary differential
equations.

Let v : [−1, 1]→ R be an arbitrary function satisfying v(−1) = v(1) = 0,
then we get by integration by parts∫ 1

−1

ut(t, x)v(x) dx =

∫ 1

−1

uxx(t, x)v(x) dx = −
∫ 1

−1

ux(t, x)vx(x) dx . (1.16)

Assume that the temperatures u(−1, t) := u0(t) and u(1, t) := u1(t) are mea-
sured, then, for every t > 0, u(t, x) can be approximated by a linear spline in
space over the grid ∆ = {−1 = x0 < x1 < ... < xν = 1}, that is

u(t, x) =
ν∑
î=0

yî(t)Λî(x) , (1.17)

where Λî is a linear hat function with peak at xî. Taking into account the
boundary conditions we see that y0 = u0(t) and yν = u1(t). All other functions
yî are unknown.

12 CHAPTER 1. EXAMPLES OF ODES

Inserting (1.17) in (1.16) we get a system of differential equations for y1, ..., yν−1:

ν∑
î=0

(yî)t(t)

∫ 1

−1

Λî(x)v(x) dx = −
ν∑
î=0

yî(t)

∫ 1

−1

(Λî)x(x)vx(x) dx ,

where we choose v(x) ∈
{

Λĵ(x) : ĵ = 1, ..., ν − 1
}

- this means that v is a

hat function, which satisfies homogenous boundary conditions.
Denote by

G := [
〈
Λî,Λĵ

〉
]1≤î,ĵ≤ν−1 =

h

6



4 1 0 · · · · · · 0

1 4 1 0
. . . 0

0
.

...
. 1 4 1

... . . 0 1 4


and

A := [
〈
Λî
′,Λĵ

′〉]1≤î,ĵ≤ν−1 = h



2 −1 0 · · · · · · 0

−1 2 −1 0
. . . 0

0
.

...
.

...
. −1 2 −1

...
. 0 −1 2


we get a compact description of the system

Gy′(t) + Ay(t) = b(t) , (1.18)

where b is an appropriate vector, which depends on u0 and u1.
To completely specify the system (1.18) we need initial values for

y1, ..., yν−1, which are typically determined from interpolation of the initial
temperature u(0, x). Note however, that this is a system of equations (the
solution y is vector valued).

Chapter 2

Ordinary Differential Equations

In this chapter we study the numerical solution of ordinary differential equa-
tions

y′ = f(t, y), t ∈ [0, T] with the initial condition y(0) = y0 . (2.1)

Here y is a vector valued function with respect to time t. We call (2.1) a
system of first order.

We use the following convention:

y ∈ Rν±1

x ∈ Rν+1

î, ĵ Index for x, y
i, j Index of iterations of numerical method
yi, ti iterate yi approximating y(ti)

2.1 The Euler Method

The (explicit) Euler-method approximates y on a uniform grid

∆ = {0 = t0 < t1 < t2 < ... < tn} ⊆ I

with the recursive formula

yi+1 = yi + (ti+1 − ti)f(ti, yi) .

The implicit Euler-method approximates the solution by

yi+1 = yi + (ti+1 − ti)f(ti+1, yi+1) . (2.2)

13

14 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

Thereby in each step an equation has to be solved. This method is stable in
a sense which has to be specified afterward. However, the method is rather
slow.

2.2 Taylor Method

Let for the sake of simplicity of presentation ν = 1. That is, we do not
consider vector valued ODEs here and y : [0, T]→ R.

If the existence of all higher order partial derivatives is assumed for y at
t = t0, then by Taylor series the value of y at any neighboring point t0 + h
can be written as

y(t0 + h) = y(t0) + hy′(t0) +
h2

2!
y′′(t0) +

h3

3!
y′′′(t0) +

Similarly higher derivatives of y at t0 also can be computed by making use
of the relation y′ = f(t, y):

y′′ = ft + fyy
′ = ft + fyf ,

y′′′ = ftt + 2ftyy
′ + fyy(y

′)2 + fyy
′′

= ftt + 2ftyf + fyyf
2 + fy(ft + fyf) ,

and so on. Hence:

y(t0+h) = y(t0)+hf+
h2

2!
(ft+fyy

′)+
h3

3!
(ftt+2ftyy

′+fyy(y
′)2+fyy

′′)+O(h4) .

The Taylor’s method then reads as

yi+1 =yi + hf(ti, yi) +
h2

2!
(ft(ti, yi) + fy(ti, yi)y

′(ti, yi))+

h3

3!

(
ftt(ti, yi) + 2fty(ti, yi)f(ti, yi) + fyy(ti, yi)

+f 2(ti, yi) + fy(ti, yi)(ft(ti, yi) + fy(ti, yi)f(ti, yi))

)
.

2.3 Runge-Kutta Method

The disadvantage of both Euler-methods is the slow convergence (in depen-
dence of the time discretization). Faster convergence can be obtained with

2.4. SINGLE STEP RUNGE-KUTTA METHODS 15

an ansatz

yi+1 = yi + h
s∑
j=1

bjf(ti + cjh, ηj) ,
s∑
j=1

bj = 1 , (2.3)

where ηj is an approximation for y(ti + cjh).
Such methods are called Runge-Kutta-methods of degree s. In particular:

• The explicit Euler method is with s = 1 and c1 = 0, η1 = yi.

• For the implicit Euler method we have s = 1, c1 = 1, η1 = yi+1.

Because in (2.3) one calculates and approximation yi+1 ≈ y(ti+1) starting
from yi ≈ y(ti) the method is called single step method. If other previous
approximations yi−1, ... are used to determine yi+1, then the method is called
multi-step method.

2.4 Single Step Runge-Kutta Methods

We assume that yi = y(ti), then by the fundamental theorem of differential
calculus

y(ti+1)− yi+1 =︸︷︷︸
y(ti)=yi

y(ti+1)− y(ti)− h
s∑
j=1

bjf(ti + cjh, nj)

=

∫ ti+1

ti

y′(t) dt− h
s∑
j=1

bjf(ti + cjh, nj)

=︸︷︷︸
ODE

∫ ti+1

ti

f(t, y(t)) dt − h
s∑
j=1

bjf(ti + cjh, nj) .

We see that the local error gets small if

h
s∑
j=1

bjf(ti + cjh, nj) ≈
∫ ti+1

ti

f(t, y(t)) dt .

This suggest to take quadrature formulas for choosing {bj}, {cj} and {ηj}.

16 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

Example 2.1. • Using the midpoint rule we get

yi+1 = yi + hf(ti +
h

2
, η1) , (2.4)

where ideally η1 = y(ti + h
2
). Because this value of the solution y is

not known we are looking for an approximation: The method of Runge
(1895) used the approximation

η1 = y(ti) +
h

2
y′(ti) ≈ yi +

h

2
f(ti, yi) .

• With the trapezoidal rule we find

yi+1 = yi +
h

2
f(ti, yi) +

h

2
f(ti+1, η̃1) ,

where η̃i ≈ y(ti + h). If we proceed as in the Runge method and if we
use the approximation

η̃1 = yi + hy′(ti) ,

then we get the method of Heun.

The Runge-Kutta methods rely on the following choice of coefficients:

ηj ≈ y(ti + cjh) = y(ti) +

∫ ti+cjh

ti

y′(t) dt = y(ti) +

∫ ti+cjh

ti

f(t, y(t)) dt .

(2.5)
For the approximate evaluation there are used again quadrature formulas
which, for the evaluation of f(t, y), use the same nodal values f(ti + cjh, ηj),
j = 1, ..., s, as they are used for calculating yi+1. Thus we make the following
ansatz:

ηj = yi + h
s∑

k=1

ajkf(ti + ckh, ηk) ,
s∑

k=1

ajk = cj . (2.6)

The coefficients {ajk, bj, cj} are summarized in a quadratic tableau (Runge-
Kutta Abc or Butcher-tableau):

c A
bT

=

c1 a1,1 a1,s

c2 a2,1 a2,2
c3 a3,1 a3,2
...
cs as,1 as,s−1 as,s

b1 b2 ... bs−1 bs

2.5. ILL-CONDITIONED ODE 17

where A = [aj,k] ∈ Rs×s, b = [b1, ..., bs]
T ∈ Rs and c = [c1, ..., cs]

T ∈ Rs.

Example 2.2. For the explicit and implicit Euler method we have the fol-
lowing tableau, respectively:

0 0
1

1 1
1

The method of Runge requires to add a trivial equation to transform it into
the general scheme:

η0 = yi + h
∑1

k=0 0 · f(ti + ckh, ηk)
η1 = yi + h

2
f(ti + h

2
, η0)

yi+1 = yi + hf(ti + h
2
, η1) .

The tableau then reads as follows:

0 0 0
1/2 1/2 0

0 1

2.5 Ill-Conditioned ODE

There exist ODEs for which error and noise significantly influence the so-
lution. Such problems are called ill–conditioned, and cannot be cured by a
numerical approach. As an illustration we consider the system

u′1 = 2u2 and u′2 = 2u1

for which the general solution is

u1 = ae2t + be−2t and u2 = ae2t − be−2t .

Taking the initial conditions

u1(0) = 3 and u2(0) = −3

we have
a+ b = 3 and a− b = −3 ,

and therefore a = 0 and b = 3, and the solution of the system is

u1 = 3e−2t and u2 = −3e−2t .

18 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

However, if we put

u1(0) = 3 + ε and u2(0) = −3 ,

(assume that ε is some noise), then we have

a+ b = 3 + ε and a− b = −3 ,

which gives a = ε
2

and b = 3 + ε
2
, and therefore the solution is

u1 =
ε

2
e2t + (3− ε)e−2t and u2 =

ε

2
e2t −

(
3− ε

2

)
e−2t .

For fixed ε > 0 the term ε
2
e2t gets dominant for large t.

Ill-conditioning can also occur for a single first-order ODE: Consider for
example

y′ = 3y − t2

for which the general solution is

y = Ce3t +
t2

3
+

2t

9
+

2

27
.

If we take as initial condition y(0) = 2
27

+ ε, then C = ε. Again, the term
Ce3t gets dominant for large t. Thus for every small error ε the error term
will dominate the exact solution.

Ill-conditionedness is a property of the equation and cannot be cured with
numerical algorithms.

2.6 Stiff ODE’s

Stiffness is a phenomenon rather than a definition in a rigorous mathematical
setting. The terminology stiff probably originates from chemical reaction
problems which exhibit tight coupling of various reactions of different scales.

Since there is no rigorous mathematical definition of stiffness, we can only
describe it phenomenologically.

2.6. STIFF ODE’S 19

Example 2.3. Consider the differential equation

y′(t) = −15y(t) , t ≥ 0 , y(0) = 1 . (2.7)

The exact solution is
y(t) = e−15t ,

which satisfies y(t)→ 0 for t→∞.
Numerically we see a completely different behavior for various methods.

1. The Euler method with a step size of h = 1/4 oscillates and the solution
blows up very rapidly. The iterates yi, i = 0, . . . , 10,

[1,−3, 8,−21, 57,−157, 433,−1189, 3271,−8995, 24736]T .

While the exact solution is

[1, 0.0235, 0.0006, 0, 0, 0, 0, 0, 0, 0, 0]T .

2. The iterates with Euler’s method with step size h = 1/8 are bounded:

[1,−0.8750, 0.7656,−0.6699, 0.5862,−0.5129,

0.4488,−0.3927, 0.3436,−0.3007, 0.2631,−0.2302,

0.2014,−0.1762, 0.1542,−0.1349, 0.1181,−0.1033,

0.0904,−0.0791, 0.0692]T .

The exact solution is

[1, 0.1534, 0.0235, 0.0036, 0.0006, 0.0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

3. The trapezoidal method, defined by,

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi+1))

=
2− 15h

2 + 15h
yi

gives with step size h = 1/8

[1, 0.0323, 0.0010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,

which is monotonically decreasing.

20 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

Example 2.4. One of the most prominent examples of a stiff ODEs is a
system that describes the chemical reaction of Robertson:

y′1 = −4.10−2y1 + 104y2y3 ,

y′2 = 4.10−2y1 − 104y2y3 − 3.107y2
2 ,

y′3 = 3.107y2
2 .

(2.8)

On a short time interval the numerical solution of the system does not make
problems, however for large t (let us say 1011) it does.

2.6.1 Stiffness Ratio

Consider the linear inhomogeneous system

y′(t) = Ay(t) + f(t) , (2.9)

where y = y(t), f = f(t) ∈ Rν and A ∈ Rν×ν is symmetric with eigenvalues
λî ∈ C and eigenvectors yî, î = 1, . . . , ν. We assume that the matrix A can
be diagonalized: That is, there exists a matrix Y = (y1, . . . , yν), consisting
of the columns of yî, such that

A = Y ΛY −1 ,

where Λ is the diagonal-matrix consisting of eigenvalues of A, and yî, î =
1, . . . , ν forms an orthonormal basis of Rν [2]. So, if A can be diagonalized,
then with

z(t) = Y −1y(t) and g(t) = Y −1f(t) (2.10)

we get

z′(t) = Y −1y′(t) = ΛY −1y(t) + Y −1f(t) = Λz(t) + g(t) , (2.11)

or in other words
z′
î
(t) = λîzî(t) + gî(t) . (2.12)

The solution of this system is determined by the method of variations of
constants : This procedure makes use of the ansatz

zî(t) = cî(t)e
λît . (2.13)

Then
z′
î
(t) = c′

î
(t)eλît + cî(t)λîe

λît .

2.6. STIFF ODE’S 21

To satisfy the differential equation (2.12) we have to satisfy

c′
î
(t)eλît + cî(t)λîe

λît = cî(t)λîe
λît + gî(t) ,

or in other words
c′
î
(t) = e−λîtgî(t) .

Thus we get

cî(t)− c
(0)

î
=

∫ t

0

c′
î
(τ) dτ =

∫ t

0

gî(τ)e−λîτ dτ .

And thus
zî(t) = cî(t)e

λît

=

(∫ t

0

gî(τ)e−λîτ dτ + c
(0)

î

)
eλît

=

∫ t

0

gî(τ)eλî(t−τ) dτ + c(0)eλît ,

or in compact vector notation

z(t) =

∫ t

0

g(τ)eΛ(t−τ) dτ + c
(0)

î
eΛt ,

where here eΛ(t−τ) = [eλî(t−τ)]1≤î≤ν .
Thus, in total we have:

y(t) = Y z(t) =

∫ t

0

eΛ(t−τ)f(τ) dτ + eΛtY c(0) . (2.14)

Let us assume that

<(λî) < 0 , ∀î = 1, 2, . . . , ν . (2.15)

Let λ, λ ∈ {λî, i = 1, 2, . . . , n} be the maximal absolute eigenvalues:

−<λ =
∣∣<(λ)

∣∣ ≥ |<(λî)| ≥ |<(λ)| = −<(λ), i = 1, 2, . . . , n .

We now define the stiffness ratio as <(λ)
<(λ)

. The crux with the siffness ratio is

that it is severely affected by the smallest negative eigenvalue (equivalently
the one with highest absolute value). This one however, is the best behaving
analytically. Interestingly, it affects the numerics.

22 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

Remark 2.5. The solution of the homogenous equation according to (2.12)
(that is with gî ≡ 0) is given by

zî(t) = ceλît .

The name variations of constant for the ansatz (2.13) is due to the fact that
the constant c of the solution of the homogenuous system is replaced by the
function cî(t). That means that the constant is replaced by a function, that
is it is varied now.

Example 2.6. Also the Example 1.6 results into a system of stiff ODEs’ if
n is large.

2.6.2 A-Stability

The behavior of numerical methods on stiff problems can be analyzed by
applying these methods to the test equation

y′(t) = λy(t) with y(0) = 1 (2.16)

for some λ ∈ C− := {λ ∈ C : <(λ) < 0}. The solution of this equation is
y(t) = eλt. This solution is monotonically decreasing and approaches zero
for t→∞ when <(λ) < 0.

Definition 2.7. If the numerical method also exhibits the monotonicity be-
havior, then the method is said to be A-stable.

A-Stability is a property of the numerical method and not of the equation.
The test-equation (2.16) is behaving completely stable, but the outcome of

the algorithm might not.

Now, we return to Runge-Kutta methods and define the stability function:

Definition 2.8.

R : C\
{

1

σ
: 0 6= σ ∈ σ(A)

}
→ C ,

ζ → 1 + ζbT (1− ζA)−1

 1
...
1


The stability domain of a Runge-Kutta method is defined by

S := {ζ : |R(ζ)| ≤ 1} .

2.6. STIFF ODE’S 23

We mention that for the test-equation (2.16)

• yi = (R(hλ))i, which explodes if R(hλ) > 1. Thus one needs to choose
the step-size h in such a way that hλ ∈ S.

• Note also, that the stability function and stability domain only depend
on A and b, but not on c.

Theorem 2.9. A Runge-Kutta method is A-stable if for given

ζ ∈ C− :=
{
ζ = ζr + iζ i ∈ C : ζr ≤ 0

}
we have |R(ζ)| ≤ 1.

Example 2.10. For the explicit Euler method we have

R(ζ) = 1 + ζ ,

and thus it is not A-stable.
Because the set of ζ where

|R(ζ)|2 = |1 + ζ|2 = (1 + ζr)2 + (ζ i)2 ≤ 1

is a circle with center (−1, 0) and radius 1 in the complex plane, the explicit
Euler-method is only A-stable if the step-size h is chosen such that

|hλ− (−1, 0)| ≤ 1 .

• For Example 2.3 we can guarantee A-stability if h ≤ 1/15, which sup-
ports the numerical results of Example 2.3.

• If we are considering again a system of ODEs (2.9), where the matrix
A has eigenvalues λi = λri︸︷︷︸

≤0

+iλii : i = 1, . . . , ν

 ,

then for A-stability it is required that

(hλri + 1)2 + (hλii)
2 ≤ 1 .

24 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

Example 2.11. The implicit Euler method is A-stable, because here R(ζ) =
(1− ζ)−1 and

|1− ζ|2 = (1− ζr)2 + ζ i2 = 1− 2ζr + |ζ|2 ≥ 1 for ζr ≤ 0 .

The step size is not essential for A-stability.

Example 2.12. The tableau of the mid-point rule is defined by

c = 1/2 A = 1/2
bT = 1

and the Runge-Kutta method has the form

yi+1 = yi + hf(ti +
h

2
, η1) , η1 = yi +

h

2
f(ti +

h

2
, η1) . (2.17)

By combination of the two equations we get:

yi+1 = yi + hf(ti +
h

2
, (yi + yi+1)/2) .

According to the definition of the stability function we have:

R(ζ) = 1 + ζb(1− ζA)−1

= 1 + ζ

(
1− ζ

2

)−1

=
1 + ζ

2

1− ζ
2

= 1 + ζ + ζ2/2 + ζ3/4 + ... ,

which is a Möbius-function. This function satisfies

|R(ζ)|2 =

(
1 + ζr

2

)2
+
(
ζi

2

)2

(
1− ζr

2

)2
+
(
ζi

2

)2 ≤ 1 , ∀ζ = ζr + iζ i ∈ C− .

That is, the implicit midpoint rule is A-stable. Every choice of the step size
is feasible.

2.7. MULTI-STEP METHODS 25

2.7 Multi-Step Methods

The basic idea consists in approximating the integrand on the right hand
side of

y(ti+l) = y(ti−k) +

∫ ti+l

ti−k

y′(τ) dτ = y(ti−k) +

∫ ti+l

ti−k

f(τ, y(τ)) dτ

over an intervall [ti−k, ti+l]. Given some s ∈ N let

(tj, fj) := (tj, f(tj, yj)) for j = i− s, i− s+ 1, . . . , i ,

where yj ≈ y(tj), which we assume to be calculated already. The polynomial
of degree s interpolating these values is given by

Ps(τ) =
i∑

j=i−s

fjLj(τ) with Lj(τ) =
i∏

j 6=ĵ=i−s

τ − tĵ
tj − tĵ

.

The functions Lj are the basic Lagrange polynomials.
The s-th order multi-step method is defined by

yi+l = yi−k +

∫ ti+l

ti−k

Ps(τ) dτ .

The different methods depend on the choice of s, k and l.

• The s-th order Adams-Bashford methods is explicit and l = 1 and
k = 0.

• The s-th order Adams-Moulton method is implicit and l = 0 and k = 1.

We are only studying the first five members of the Adams-Bashford for con-
stant step-size:

Order s Interpolant Interpolation points
0 constant (ti, fi)
1 linear (ti, fi), (ti−1, fi−1)
2 quadratic (ti, fi), (ti−1, fi−1), (ti−2, fi−2)
2 cubic (ti, fi), (ti−1, fi−1), (ti−2, fi−2), (ti−3, fi−3)
4 quartic (ti, fi), (ti−1, fi−1), (ti−2, fi−2), (ti−3, fi−3), (ti−4, fi−4)

26 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

• If s = 0, l = 1 and k = 0 then the Adams-Bashfort method satisfies
P0 = f(ti, yi) and thus

yi+1 = yi + hif(ti, yi) with hi = ti − ti−1

is exactly the Euler method.

• If s = 1, l = 1 and k = 0 we have

P1(τ) = fi−1 +
fi − fi−1

hi−1

(τ − ti−1) .

Thus we obtain∫ ti+1

ti

f(τ, y(τ)) dτ ≈
∫ ti+1

ti

(
fi−1 +

fi − fi−1

hi−1

(τ − ti−1)

)
dτ

=
hi
2

(
hi + 2hi−1

hi−1

fi −
hi
hi−1

fi−1

)
.

In particular if h = hi = hi−1, then

yi+1 = yi +
h

2
(3fi − fi−1) .

The derivation of higher order methods is analogous. Here only the results
for constant step-size are summarized:

Order s Adam-Bashfort
0 yi+1 = yi + hfi
1 yi+1 = yi + h

2
(3fi − fi−1)

2 yi+1 = yi + h
12

(23fi − 16fi−1 + 5fi−2)
3 yi+1 = yi + h

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3)

4 yi+1 = yi + h
720

(1901fi − 2774fi−1 + 2616fi−2 − 1274fi−3 + 251fi−4)

2.8 Step-Size Control for Runge-Kutta Meth-

ods

For the implementation of a single-step Runge-Kutta method it requires to
choose an optimal step-length h. The larger h can be chosen, the less com-
putational effort is required to calculate y at a given time T .

2.8. STEP-SIZE CONTROL FOR RUNGE-KUTTA METHODS 27

Runge-Kutta methods of order q with a step-size h have a local error
(error in each iteration step) O(hq+1) and a global error O(hq).

A common way of step-length control is by using a control method, which
is a method of higher order than q and the same stability properties. Let ŷi
denote the iterates of the control method. Because it is of higher order we
can expect that

‖ŷi − y(ti)‖2 << ‖yi − y(ti)‖2 ,

such that

δi := ‖yi − ŷi‖2 ≈ ‖yi − y(ti)‖2 .

This means that δi provides a quantitative figure for O(hq+1).
Assuming that the Runge-Kutta method is of order q and the control

method is of order q + 1, the modification of the step-size is determined
based on the error estimates:

yi+1 − y(ti+1) = hq+1ωi +O(hq+2) and ŷi+1 − y(ti+1) = O(hq+2) ,

with an, in general, unknown ωi. Thus we have

δi+1 = δi+1(h) = ‖yi+1 − ŷi+1‖2 =
∥∥hq+1ωi +O(hq+2)

∥∥
2
≈
∥∥hq+1ωi

∥∥
2
.

With a different step-size h̃ we get

δi+1(h̃) ≈
∥∥∥h̃q+1ωi

∥∥∥
2

=

(
h̃

h

)q+1

hq+1 ‖ωi‖2 =

(
h̃

h

)q+1

δi+1(h) .

As a consequence

h̃ = τ

(
ε

δi(h)

)1/(q+1)

h (2.18)

Guozhi: maybe

h̃ = τ

(
ε

δi+1(h)

)1/(q+1)

h (2.19)

is the largest step-size (typically used in the next iteration based on the
step-size h of the current iteration) such that, with τ = 1, δi+1(h̃) ≤ ε. In
practice one chooses a relaxation parameter τ ≈ 0.8 to maintain a trade-off
between accuracy and computational effort.

28 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

In practical realization one uses a control Runge-Kutta with the same
slope f(ti + cjh, ηj). Therefore, the Runge-Kutta method and its control
method read as follows:

yi+1 = yi + h

s∑
j=1

bjf(ti + cjh, ηj) ,

ŷi+1 = yi + h
s∑
j=1

b̂jf(ti + cjh, ηj) .

(2.20)

where

ηj = yi + h
s∑

ν=1

ajνf(ti + cνh, ην) , j = 1, . . . , s .

Most Runge-Kutta methods are constructed in such a ways that they are
optimal with respect to convergence order. This means that there is no
freedom to construct the control method with the same slopes {ηj}. The
Fehlberg-trick deals with this problem and is explained for an example.

Example 2.13. We choose as the control-method the classical Runge-Kutta
method with s = q = 4, which has tableau

c A

b̂T
=

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

2.8. STEP-SIZE CONTROL FOR RUNGE-KUTTA METHODS 29

In concrete terms the classical Runge-Kutta method reads as follows:

η1 = yi ,

η2 = yi +
h

2
f(ti, η1)

= yi +
h

2
f(ti, y1) ,

η3 = yi +
h

2
f

(
ti +

h

2
, η2

)
= yi +

h

2
f

(
ti +

h

2
, yi +

h

2
f(ti, y1)

)
,

η4 = yi + hf

(
ti +

h

2
, η3

)
= yi + hf

(
ti +

h

2
, yi +

h

2
f

(
ti +

h

2
, yi +

h

2
f(ti, y1)

))
,

and

yi+1 = yi+h

(
1

6
f(ti, η1) +

1

3
f

(
ti +

h

2
, η2

)
+

1

3
f

(
ti +

h

2
, η3

)
+

1

6
f (ti + h, η4)

)
.

Now, we are looking for an embedded Runge-Kutta method with weights
bj, j = 1, . . . , 4, which satisfy

4∑
j=1

bj = 1 ,
4∑
j=1

bjcj =
1

2
,

4∑
j=1

bjc
2
j =

1

3
and

4∑
j=1

bj

4∑
ν=1

ajνcν =
1

6
.

This conditions actually guarantee that the method is of third order.
Guozhi: why it is third order? I still can not understand, maybe
a reference?

Inserting the coefficients from the control-method (because the slopes should
be identical) we get the equation

1 1 1 1
0 1/2 1/2 1
0 1/4 1/4 1
0 0 1/4 1/2



b1

b2

b3

b4

 =


1

1/2
1/3
1/6

 .

This matrix is regular and thus b = b̂. That means that there does not exist
any Runge-Kutta methods of order 3 with the same slopes.

30 CHAPTER 2. ORDINARY DIFFERENTIAL EQUATIONS

The Fehlberg-trick adds a fifth column to the Runge-Kutta tableau: Let

b̂5 = 0 and η5 = ŷi+1 = yi + h
4∑
j=1

b̂jf(ti + cjh, ηj) .

The order conditions result in the equation


1 1 1 1 1
0 1/2 1/2 1 1
0 1/4 1/4 1 1
0 0 1/4 1/2 1/2



b1

b2

b3

b4

b5

 =


1

1/2
1/3
1/6

 .

The rank of the matrix is again 4 and the null-space consists of vectors
spanned by [0, 0, 0, 1,−1]t. A possible parameter choice for for (2.20) is there-
fore

b = [1/6, 1/3, 1/3, 0, 1/6]t and b̂ = [1/6, 1/3, 1/3, 1/6, 0]t .

It can actually be shown that the embedded method is in fact of order q = 3.
Guozhi: again, why it is order 3 here?

Chapter 3

Boundary Value Problems

For motivating purposes we study first boundary value problems for ordinary
differential equations at hand of a simple test example:

L[u] = −u′′ + bu′ + cu = f in (0, 1) ,

u(0) = u(1) = 0 .
(3.1)

b, c, and f can be functions on (0, 1).
It can be shown that this differential equation has a unique solution pro-

vided that
c(x) ≥ 0 , ∀x ∈ (0, 1) .

This will always be assumed in the following.
For the simplicity of presentation we consider an equidistant grid

∆h = {xi = ih : i = 1, . . . , n− 1, h = 1/n} ⊆ (0, 1) . (3.2)

We denote by
~u = (u(x1), . . . , u(xn−1))t ∈ Rn−1 (3.3)

the vector of the exact solution u of (3.1) on the grid ∆h (3.2). In addition,
we assume Dirichlet boundary conditions

0 = u(x0) = u(xn) = 0 .

For the numerical solution we look for an approximating vector

~uh = (u1, . . . , un−1)t ∈ Rn−1 . (3.4)

For this purpose we discretize L from (3.1) by approximating the derivatives
of u at the positions x = xi via difference quotients. Thereby we have several
alternatives:

31

32 CHAPTER 3. BOUNDARY VALUE PROBLEMS

• One-sided forward-difference operator:

D+
h [u](x) =

u(x+ h)− u(x)

h
∼ u′(x) .

• One-sided backward-difference operator:

D−h [u](x) =
u(x)− u(x− h)

h
∼ u′(x) .

• Central difference quotient:

Dh[u](x) =
u(x+ h)− u(x− h)

2h
∼ u′(x) . (3.5)

Moreover, the second derivative can be approximated by a central difference
quotient

D2
h[u](x) =

u(x+ h)− 2u(x) + u(x− h)

h2
∼ u′′(x) . (3.6)

Example 3.1. We study a simple situation of (3.1) with b, c ≡ 0, that is
−u′′ = f . We approximate u′′ by D2

h[u] at the nodal points ∆h. Taking
into account the Dirichlet boundary conditions u(x0) = u(xn) = 0 we get the
discretized equation:

f(x1)
f(x2)

...
f(xn−1)


︸ ︷︷ ︸

=:~f

= −


u′′(x1)
u′′(x2)

...
u′′(xn−1)

 ∼ h−2


2 −1 0

−1 2
. . .

. −1
0 −1 2


︸ ︷︷ ︸

=:Lh


u(x1)
u(x2)

...
u(xn−1)


︸ ︷︷ ︸

~u

.

Because ~u should be approximated by ~uh, we will use the following linear
equation to determine ~uh:

Lh~uh = ~f . (3.7)

The Eigenvalues of Lh are 4h−2 sin2(khπ/2)4, k = 1, . . . , n−1. The function

sinc(x) := sin(x)
x

is monotonically decreasing in [0, π/2] such that

sinc(x) ≥ sinc
(π

2

)
=

2

π
, ∀x ∈ [0, π/2] ,

33

which implies that:∥∥L−1
h

∥∥
2

=
1

λmin(Lh)
= max

1≤k≤n−1

h2

4 sin2(khπ/2)
≤ 1

4
.

Consequently,

‖~u− ~uh‖2 =
∥∥∥L−1

h (Lh~u− ~f)
∥∥∥

2

≤
∥∥L−1

h

∥∥
2

∥∥∥Lh~u− ~f
∥∥∥

2

≤ 1

4

∥∥∥Lh~u− ~f
∥∥∥

2
.

(3.8)

If
∥∥∥Lh~u− ~f

∥∥∥
2

converges to 0 for h→ 0, then Lh is called consistent. If there

exists an estimate of the form (3.8), then consistency implies stability.

In the following we determine error estimates for difference quotients:

Lemma 3.2. Let u ∈ C2[0, 1] and x ∈ [h, 1 − h]. Then, for one-sided
difference quotients we have the estimate∣∣D±h [u](x)− u′(x)

∣∣ ≤ 1

2
‖u′′‖∞ h .

For a central difference quotient and u ∈ C3[0, 1] we even have:

|Dh[u](x)− u′(x)| ≤ 1

6
‖u′′′‖∞ h

2 .

For D2
h we have: Let u ∈ C4[0, 1] and x ∈ [h, 1− h], then:∣∣D2

h[u](x)− u′′(x)
∣∣ ≤ 1

12
‖u′′′′‖∞ h

2 . (3.9)

Proof. We prove exemplary the assertion for the central difference quotient.
Let u ∈ C3[0, 1], then it follows from Taylor expansion around x ∈ (0, 1):

u(x+ h) = u(x) + hu′(x) +
1

2
h2u′′(x) +

1

6
h3u′′′(ζ+) ,

u(x− h) = u(x)− hu′(x) +
1

2
h2u′′(x)− 1

6
h3u′′′(ζ−) ,

for some ζ± satisfying x− h < ζ− < x < ζ+ < x+ h. Therefore

u(x+ h)− u(x− h) = 2hu′(x) +
1

6
h3(u′′′(ζ+) + u′′′(ζ−)) ,

34 CHAPTER 3. BOUNDARY VALUE PROBLEMS

and thus∣∣∣∣u(x+ h)− u(x− h)

2h
− u′(x)

∣∣∣∣ ≤ 1

6
h2 sup {|u′′′(ζ)| : ζ ∈ [0, 1]} ,

which gives the assertion.

Example 3.3. Applied to the differential equation (3.1) we find that, pro-
vided the solution of the differential equation is 4× continuously differen-
tiable, that ∥∥∥∥∥∥∥ Lh︸︷︷︸

=−D2
h

~u− ~f

∥∥∥∥∥∥∥
∞

≤ 1

12
‖u′′′′‖∞ h

2 =
1

12
‖f ′′‖∞ h

2 .

In the following we discretize the operator L defined in (3.1). We use the
discretization D2

h[u] for approximating u′′. Moreover, the first derivative is
approximated by either one of the difference quotients D+

h [u], D−h [u], Dh[u].
Using different difference quotients gives different diagonal matrices:

Lh = h−2


d1 s1 0

r2 d2
. . .

. sn−2

0 rn−1 dn−1

 ∈ R(n−1)×(n−1) , (3.10)

where for

• D+
h :

di = 2− hb(xi) + h2c(xi) ,

ri = −1 ,

si = −1 + hb(xi) ,

(3.11)

• D−h :
di = 2 + hb(xi) + h2c(xi) ,

ri = −1− hb(xi) ,
si = −1 ,

(3.12)

• Dh:
di = 2 + h2c(xi) ,

ri = −1− hb(xi)/2 ,
si = −1 + hb(xi)/2 .

(3.13)

3.1. SINGULARLY PERTURBED PROBLEMS 35

The approximate solution is determined as the solution of the linear system
(3.7).

Definition 3.4. A difference method has order of consistence q if∥∥∥Lh~u− ~f
∥∥∥
∞

= max |(Lh~u)i − fi| ≤ Chq .

Note, that in this definition ~u is the vector of the solution of the infinite
dimensional problem at the nodal points.

Theorem 3.5. Let the solution of the boundary value problem (3.1) be 4×
continuously differentiable (which is for instance the case if b, c, f are 2×
continuously differentiable). Then the difference method (3.7) has the order
of consistency q:

• q = 2, if the central difference quotient Dh is used for approximating
u′;

• q = 1, if forward or backward difference quotients D±h are used for
approximating u′.

3.1 Singularly Perturbed Problems

We start with an example:

Example 3.6. Let ε > 0 be small. We investigate the solution of

−εu′′ + u′ = 1 in (0, 1) , u(0) = u(1) = 0 . (3.14)

The exact solution is

uε(x) = x− vε(x) , vε(x) =
ex/ε − 1

e1/ε − 1
. (3.15)

Using the difference method with central difference quotient for u′ results in
a linear equation

Lh~uh =
ε

h2


2 −1 + h

2ε
0

−1− h
2ε

2
. . .

. −1 + h
2ε

0 −1− h
2ε

2

 = ~f .

36 CHAPTER 3. BOUNDARY VALUE PROBLEMS

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

2

4

6

8

10

exact solution
approximated solution

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

0.5

1

1.5

2

exact solution
approximated solution

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

0.2

0.4

0.6

0.8

1

1.2

1.4

exact solution
approximated solution

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

0

0.2

0.4

0.6

0.8

1

exact solution
approximated solution

Figure 3.1: Plot of the exact solution and numerical approximation
with different step size. We choose ε = 1/28, and the step sizes are
1/22, 1/24, /1/26, 1/28 from left to right and from up to down respectively.

For h > 2ε there occur significant oscillations. Intuitively this is the result
of overdetermined boundaries. If ε = 0, then it is a ordinary differential
equation, which is fully determined by one initial condition. The solution of

u′ = 1 in (0, 1) , u(0) = 0 (3.16)

is given by u(x) = x.

Now, we consider the more general equations

L[u] = −εu′′ + bu′ + cu = f in (0, 1) , u(0) = u(1) = 0 . (3.17)

To avoid oscillations one can uses up-wind scheme, where one uses a forward
difference scheme if b(xi) > 0 and a backward scheme if b(xi) < 0. This
results in the system

Lh~uh =
1

h2


d1 s1 · · · 0

r2 d2
. . .

...
.

...
0 · · · rn dn

 = ~f .

3.2. SHOOTING METHODS 37

with
di = 2ε+ h |b(xi)|+ h2c(xi) ,

ri = −ε− hb+
i (xi) ,

si = −ε+ hb−i (xi) .

3.2 Shooting Methods

We are concerned with the boundary value problem

u′′ = f(x, u, u′) in (0, 1) , u(0) = u(1) = 0 . (3.18)

Let us assume that we know α = u′(0), then the solution of (3.18) is also a
solution of the initial value problem

v′′ = f(x, v, v′) in (0, 1) , v(0) = 0 and v′(0) = α . (3.19)

Shooting methods are rather intuitive: There is selected an initial guess α
and (3.19) is solved. Then α is optimized as long as v(1) ≈ u(1) = 0.

This problem is then formulated as a nonlinear equation

F (α) = 0 , (3.20)

where F : R → R with F (α) = v(1). The solution of (3.19) then solves
(3.18).

The nonlinear equation (3.20) can be determined with a gradient of New-
ton’s method for instance. For this purpose we need the derivative of F .

Lemma 3.7. F ′(α) = wα(1), where wα solves the initial value problem

w′′ = fu(x, vα, v
′
α)w + fu′(x, vα, v

′
α)w′ ,

w(0) = 0 , w′(0) = 1 .
(3.21)

Note that this linear equation can be solved with Runge-Kutta method.

Example 3.8. We study the example

u′′ + uu′ = −1 , u(0) = u(1) = 0 .

Newton’s method reads as follows:

αk+1 = αk − F (αk)/F
′(αk) , k = 0, 1,

38 CHAPTER 3. BOUNDARY VALUE PROBLEMS

In every iteration step we have to evaluate the initial value problems (3.19)
and (3.21):

v′′ + vv′ = −1 , v(0) = 0 , v′(0) = αk ,

w′′ + vw′ + v′w = 0 , w(0) = 0 , w′(0) = 1 ,
(3.22)

which gives
F (αk) = v(1) and F ′(αk) = w(1) .

The two differential equations are coupled and therefore we are required to
solve a system of four differential equations of first order for four functions
y1 = v, y2 = v′, y3 = w and y4 = w′:

y′1 = y2 , y1(0) = 0 ,

y′2 = −1− y1y2 , y2(0) = αk ,

y′3 = y4 , y3(0) = 0 ,

y′4 = −y1y4 − y2y3 , y4(0) = 1 .

(3.23)

Chapter 4

Interpolation

We study the problem of interpolation of function samples y0 = y(x0), . . . , yl =
y(xl) from a function y : [a, b]→ R on the grid

∆ = {a = x0 < x1 < . . . < xl = b} . (4.1)

The grid size is defined by

h := max
i=1,...,l

hi , hi = xi − xi−1 .

Notation: m is the degree of the polynomial, l + 1 is the number of
interpolation points.

4.1 Lagrange Interpolation

Historically, the first interpolation methods are based on polynomials:

Definition 4.1. Πm denotes the space of polynomials of degree ≤ m.

Polynomial interpolation consists in determining a polynomial p ∈ Πm

such that
p(xi) = yi , i = 0, . . . ,m . (4.2)

Definition 4.2. We denote by

w(x) :=
m∏
i=0

(x− xi) ∈ Πm+1

39

40 CHAPTER 4. INTERPOLATION

the nodal polynomial at ∆. The polynomial

li(x) :=
w(x)

(x− xi)w′(xi)
=

m∏
j=0,j 6=i

x− xj
xi − xj

∈ Πm, x 6= xi (4.3)

is called Lagrange-polynomial.

The Lagrange-polynomial satisfies

li(xj) = δij . (4.4)

The polynomial

p(x) =
m∑
i=0

yili(x) .

satisfies p(xj) =
∑m

i=0 yili(xj) = yj, that is the interpolation exercise. The
polynomial is unique in the space of functions in Πm.

Example 4.3. Every function f(x) is interpolated at nodal points a and b
by the linear polynomial

p(x) = f(a)− f(b)− f(a)

b− a
(x− a) .

4.2 Trigonometric Interpolation

Here we consider the grid

∆ =

{
t0 = 0 < t1 =

2π

l
< . . . < tl−1 = (l − 1)

2π

l

}
, (4.5)

which equally subdivides the interval [0, 2π) into l subintervals.
The goal is to interpolate sample values {y0, y1, . . . , yl−1} at ∆ with a

function of the form

y(t) =
a0

2
+

m∑
j=1

aj cos(jt) +
m∑
j=1

bj sin(jt) .

Such functions are called trigonometric polynomial of degree m.

4.2. TRIGONOMETRIC INTERPOLATION 41

We restrict attention to the case that l = 2m + 1, in which case we can
expect that we can solve the trigonometric interpolation exercise uniquely
(2m + 1 nodal values and 2m + 1 interpolation values): The interpolation
exercise reads as follows:

Given {y0, y1, . . . , y2m} determine a0, {a1, . . . , am} , {b1, . . . , bm} such that

yk =
a0

2
+

m∑
j=1

aj cos(jtk) +
m∑
j=1

bj sin(jtk) , ∀k = 0, 1, . . . , 2m . (4.6)

The coefficients {ai, bi} can be determined analytically: For this purpose we
use the following expression of the sums of cos and sin:

l−1∑
k=0

cos(ĵtk) cos(jtk) =


0 for j 6= ĵ and j, ĵ ∈

{
0, 1, . . . , l−1

2

}
,

l
2

for j = ĵ ∈
{

1, . . . , l−1
2

}
,

l for j = ĵ = 0 ,

l−1∑
k=0

cos(ĵtk) sin(jtk) = 0 for j, ĵ ∈
{

0, 1, . . . ,
l − 1

2

}
,

l−1∑
k=0

sin(ĵtk) sin(jtk) =


0 for j 6= ĵ and j, ĵ ∈

{
0, 1, . . . , l−1

2

}
,

l
2

for j = ĵ ∈
{

1, . . . , l−1
2

}
,

0 for j = ĵ = 0 .

(4.7)

These equalities are determined from the summation formulas

cos(jtk) cos(ĵtk) =
1

2

(
cos((j − ĵ)tk) + cos((j + ĵ)tk)

)
=

1

2
Re
(
ei(j−ĵ)tk + ei(j+ĵ)tk

)
,

cos(jtk) sin(ĵtk) =
1

2

(
sin((j + ĵ)tk)− sin((j − ĵ)tk)

)
=

1

2
Im
(
ei(j+ĵ)tk − ei(j−ĵ)tk

)
,

sin(jtk) sin(ĵtk) =
1

2

(
cos((j − ĵ)tk)− cos((j + ĵ)tk)

)
=

1

2
Re
(
ei(j−ĵ)tk − ei(j+ĵ)tk

)
.

We only show the first identity of (4.7), the others are left as exercises:

42 CHAPTER 4. INTERPOLATION

Theorem 4.4.

l−1∑
k=0

cos(ĵtk) cos(jtk) =


0 for j 6= ĵ and j, ĵ ∈

{
0, 1, . . . , l−1

2

}
,

l
2

for j = ĵ ∈
{

1, . . . , l−1
2

}
,

l for j = ĵ = 0 ,

Proof: Denoting

q+ = ei(j+ĵ) 2π
l and q− = ei(j−ĵ) 2π

l ,

it follows that

l−1∑
k=0

cos(ĵtk) cos(jtk) =
1

2
Re

l−1∑
k=0

(
ei(j−ĵ)tk + ei(j+ĵ)tk

)
=

1

2
Re

(
l−1∑
k=0

qk− +
l−1∑
k=0

qk+

)
.

Let us denote by ∑
:=

l−1∑
k=0

qk− +
l−1∑
k=0

qk+ .

• If j = ĵ = 0, then q+ = q− = 1. therefore∑
:= 2l .

Thus in turn
l−1∑
k=0

cos(ĵtk) cos(jtk) = l .

• If j = ĵ ∈
{

1, . . . , l−1
2

}
, then q− = 1, and

∑l−1
k=0 q

k
− =

∑l−1
k=0 1 = l.

Because j + ĵ = 2j ∈ {2, . . . , l − 1} we see that q+ 6= 1.

The second term of
∑

is a geometric sum, that is

l−1∑
k=0

qk+ =
1− ql+
1− q+

=
1− ei(j+ĵ)2π

1− q+

= 0 .

Therefore
l−1∑
k=0

cos(ĵtk) cos(jtk) =
1

2
Re(0 + l) =

l

2
.

4.2. TRIGONOMETRIC INTERPOLATION 43

• if j 6= ĵ, then 0 6= j − ĵ and j + ĵ ∈ {1, . . . , l − 2}. Therefore, both
l(j ± ĵ)2π

l
are multipliers of 2π, and thus ql± = 1, which means that∑

= 0. Therefore

l−1∑
k=0

cos(ĵtk) cos(jtk) = 0 .

2

Now, we continue with determining the coefficient {aj, bj}. Thereby we use
three types of equalities (4.7) above :

• From (4.6) it follows that by taking into account that cos(0tk) =
cos(0) = 1,

l−1∑
k=0

yk = l
a0

2
+

m∑
j=1

aj

l−1∑
k=0

cos(0tk) cos(jtk)︸ ︷︷ ︸
(1.in (4.7) with ĵ=0)=0

+
m∑
j=1

bk

l−1∑
k=0

cos(0tk) sin(jtk)︸ ︷︷ ︸
(2.in (4.7) with ĵ=0)=0

.

That is

a0 =
2

l

l−1∑
k=0

yk .

• Let ĵ ∈
{

1, . . . , l−1
2

}
. Then, by multiplication of (4.6) with cosine

44 CHAPTER 4. INTERPOLATION

functions and summation gives

l−1∑
k=0

yk cos(ĵtk)

=
a0

2

l−1∑
k=0

cos(ĵtk)︸ ︷︷ ︸
(1.in (4.7) with j=0)=0

+
m∑
j=1

aj

l−1∑
k=0

cos(jtk) cos(ĵtk)︸ ︷︷ ︸
(1.in (4.7))= l

2
δj,ĵ

+
m∑
j=1

bj

l−1∑
k=0

sin(jtk) cos(ĵtk)︸ ︷︷ ︸
(2.in (4.7))=0

,

=
l

2
aĵ . ∀1 ≤ ĵ <

l

2
.

That is

aĵ =
2

l

l−1∑
k=0

yk cos(ĵtk) . (4.8)

• Let ĵ ∈
{

1, . . . , l−1
2

}
. Multiplication of (4.6) with sine functions and

summation gives

l−1∑
k=0

yk sin(ĵtk)

=
l−1∑
k=0

(
a0

2
+

m∑
j=1

aj cos(jtk) +
m∑
j=1

bj sin(jtk)

)
sin(ĵtk) ,

=
l

2
bĵ .

Or in other words:

bĵ =
2

l

l−1∑
k=0

yk sin(ĵtk) . (4.9)

4.3. FAST FOURIER TRANSFORM (FFT) 45

It is common to change to a complex number notation:

cĵ = aĵ + ibĵ =
2

l

l−1∑
k=0

yk(cos(ĵtk) + i sin(ĵtk)) =
2

l

l−1∑
k=0

yk exp(iĵtk) . (4.10)

Definition 4.5. The discrete Fourier transform (DFT) of a set of n complex
data values {yk : k = 0, . . . , l − 1}, which are evenly spaced in [0, 2π) is the
set {

cĵ =
l−1∑
k=0

yk exp(iĵtk) : ĵ = 0, 1, . . . , l − 1

}
.

Note, that in comparison with (4.10) the prefactor 2
l

is left out.

4.3 Fast Fourier Transform (FFT)

Is an algorithm for fast evaluation of the DFT.
Let

ω = ωl = exp

(
i
2π

l

)
.

With this notation the DFT becomes{
cĵ =

l−1∑
k=0

ykω
ĵk : ĵ = 0, 1, . . . , l − 1

}
.

We explain the FFT for a 4 × 4 system, that is for l = 4. In this case
ω = exp

(
i2π

4

)
= i. The linear relation of the DFT is as follows:

ω0y0 + ω0y1 + ω0y2 + ω0y3 = c0 ,

ω0y0 + ω1y1 + ω2y2 + ω3y3 = c1 ,

ω0y0 + ω2y1 + ω4y2 + ω6y3 = c2 ,

ω0y0 + ω3y1 + ω6y2 + ω9y3 = c3 .

Let

F4 :=


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

46 CHAPTER 4. INTERPOLATION

be the Fourier -matrix.
Thus the system in matrix vector notation reads as follows:

F4


y0

y1

y2

y3

 =


c0

c2

c1

c3

 .

The matrix F4 can be factorized as follows:

F4 =


1 0 1 0
0 1 0 i
1 0 −1 0
0 1 0 −i




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The last matrix puts the odd indices in front of the even ones. The middle
matrix consists of two Fourier matrices of half size. In general we have

F2n =

[
In Dn

In −Dn

] [
Fn 0
0 Fn

]


1 0
0 1 0

0 1 0

0 1 0
0 1 0

0 1 0


,

where In is the n-dimensional unitary matrix and Dn = diag(1, ω, . . . , ωn−1)
with ω = ωn = exp(2πi/n). The last matrix puts the odd lines on the top of
the matrix and shuffles the even to the end. See Strang [4].

We calculate matrix vector multiplications after the factorization:

• We have to perform and index renumbering. Since there are no multi-
plications needed it does not count to the complexity.

• we need to perform two times the Fourier matrix multiplication of size
n/2.

• We need n multiplications, when multiplying with the diagonal matri-
ces DnFn.

4.4. SPLINE INTERPOLATION 47

Thus we have the recursive complexity

e(2n) = 2e(n) +O(n) .

O(n) here refers to the fact that at most order n operations, such as mul-
tiplications with ω are performed. Let n = 2p (in our example n = 4 and
p = 2). From the master theorem it follows that e(n) = O(n log2(n)).

4.4 Spline Interpolation

Let ∆ = {a = x0 < x1 < . . . < xl = b} be a grid on the interval [a, b]. A step
function is a function, which satisfies

s(x) = si , xi−1 ≤ x < xi , i = 1, . . . , l .

The set of all step functions is denoted by S0,∆. It is a vector space of
dimension l. As basis functions we use the characteristic functions χi =
χ[xi−1,xi), i = 1, . . . , l. Thus

s(x) =
l∑

i=1

siχi(x) .

Remark 4.6. Let f : [a, b] → R. The step function s(x) =
∑l

i=1 siχi(x)
with

si =
1

hi

∫ xi

xi−1

f(x) dx , i = 1, . . . , l (4.11)

is the best approximating step function with respect to the norm ρ→
√∫ b

a
ρ2(x) dx.

That is the functional

ρ ∈ S0,∆ →
∫ b

a

(f(x)− ρ(x))2 dx

is minimal for s.

4.5 Linear Splines

Definition 4.7. A spline of degree n is a function s, which is (n− 1)–times
differentiable in (a, b) and on every interval [xi−1, xi) a polynomial of degree
n. The space of splines of order n is denoted by Sn,∆.

48 CHAPTER 4. INTERPOLATION

Of particular importance are the linear splines (n = 1) and cubic splines
(n = 3).

Remark 4.8. • Sn,∆ is an (n+ l)-dimensional space. Thus, in order to
determines a spline of degree n, we have to specify the values at l nodal
points and n additional conditions.

• A basis for S1,∆ are formed by the hat functions Λi, i = 0, 1, . . . , l,
which are continuous, piecewise linear, and satisfy

Λi(xj) = δij , i, j = 0, . . . , l . (4.12)

• (4.12) allows for an easy computation of the interpolating spline: Let
y0, . . . , yl sample values. Then, s =

∑l
i=0 yiΛi ∈ S1,Λ is the unique

spline, which satisfies

s(xi) = yi , i = 0, . . . , l .

4.6 Cubic Splines

Cubic splines, that are the elements of S3,∆, are used frequently in computer
graphics.

We summarize some basic facts:

1. a cubic spline is two times differentiable.

2. A cubic spline is determined from (l+3) measurements and conditions.

3. If s ∈ S3,∆, then s′′ ∈ S1,∆. Thus

s′′ =
l∑

i=0

γiΛi , (4.13)

where γi = s′′(xi) , i = 0, . . . , l ,. γi are called moments of s.

In the following we derive the conditions for determining a cubic spline. First,
we need some auxiliary result: For an arbitrary function ρ, which is twice

4.6. CUBIC SPLINES 49

differentiable in [xi−1, xi], we have:

ρ(x)− ρ(xi)

=

∫ x

xi

ρ′(t) · 1 dt

=︸︷︷︸
Integration by parts

ρ′(t)(t− x)|xt=xi −
∫ x

xi

ρ′′(t)(t− x) dt

=− ρ′(xi)(xi − x)−
∫ x

xi

ρ′′(t)(t− x) dt .

(4.14)

Moreover, for an arbitrary t ∈ [xi−1, xi] we have

s′′(t) = γi−1Λi−1(t) + γiΛi(t)

= γi−1
xi − t

xi − xi−1

+ γi
t− xi−1

xi − xi−1

= −γi−1

hi
(t− xi) +

γi
hi

(t− xi−1)

=
γi − γi−1

hi
(t− xi) + γi ,

(4.15)

which implies that for every x ∈ [xi−1, xi)

s(x)− s(xi) + s′(xi)(xi − x)

=︸︷︷︸
(4.14)

−
∫ x

xi

s′′(t)(t− x) dt

=︸︷︷︸
(4.15)

− γi − γi−1

hi

∫ x

xi

(t− xi)(t− x) dt− γi
∫ x

xi

t− x dt

=︸︷︷︸
Integration by parts

γi − γi−1

2hi

∫ x

xi

(t− xi)2 dt

+
γi − γi−1

2hi
(t− xi)2(t− x)

∣∣∣∣x
t=xi

− γi
2

(t− x)2
∣∣∣x
t=xi

=
γi − γi−1

hi

(x− xi)3

6
+ γi

(x− xi)2

2
.

(4.16)

50 CHAPTER 4. INTERPOLATION

Using the abbreviations we get

si = s(xi) and s′i = s′(xi) for i = 0, . . . , l .

Thus from (4.16) it follows that for every x ∈ [xi−1, xi) and i = 1, . . . , l

s(x) = si + s′i(x− xi) + γi
(x− xi)2

2
+
γi − γi−1

hi

(x− xi)3

6
. (4.17)

In particular for i = 1, . . . , l we have

si−1 = si − s′ihi +
γih

2
i

2
− (γi − γi−1)h2

i

6

= si − s′ihi +
h2
i

6
(2γi + γi−1) ,

s′i−1 = s′i −
hi
2

(γi−1 + γi) .

(4.18)

Combinations of these equations shows

si+1 − si
hi+1

− si − si−1

hi

=s′i+1 − γi
hi+1

6
− γi+1

hi+1

3
− s′i + γi−1

hi
6

+ γi
hi
3

=(γi + γi+1)
hi+1

2
− γi

hi+1

6
− γi+1

hi+1

3
+ γi−1

hi
6

+ γi
hi
3

=
1

6
(hi+1γi+1 + 2γi(hi + hi+1) + γi−1hi) .

4.6. CUBIC SPLINES 51

Writing this system in matrix notation we get

1

6


h1 2(h1 + h2) h2 0

h2 2(h2 + h3)
. . .

. hl−1

hl−1 2(hl−1 + hl) hl


︸ ︷︷ ︸

∈R(l−1)×(l+1)


γ0

γ1
...

γl−1

γl



=−


−h−1

1 h−1
1 + h−1

2 −h−1
2 0

−h−1
2 h−1

2 + h−1
3

. . .
. −h−1

l−1

−h−1
l−1 h−1

l−1 + h−1
l −h−1

l


︸ ︷︷ ︸

∈R(l−1)×(l+1)


s0

s1
...

sl−1

sl

 .

(4.19)

The matrices in (4.19) have dimension (l − 1) × (l + 1), and thus are
underdetermined. Thus, additional conditions are required: For a natural
cubic spline we request in addition that

s′′(a) = s′′(b) = 0 . (4.20)

However, (4.13) then shows, that

γ0 = s′′(a) = 0 and γl = s′′(b) = 0 . (4.21)

Thus the system (4.19) simplifies to

1

6


2(h1 + h2) h2 0

h2 2(h2 + h3)
. . .

. hl−1

hl−1 2(hl−1 + hl)


︸ ︷︷ ︸

:=G∈R(l−1)×(l−1)

 γ1
...

γl−1



=

 d1
...

dl−1

 ,

(4.22)

52 CHAPTER 4. INTERPOLATION

where

di =
si+1 − si
hi+1

− si − si−1

hi
=
si+1

hi+1

− si
(

1

hi
+

1

hi+1

)
+
si−1

hi−1

,

i = 1, . . . , l − 1 .

(4.23)

Example 4.9. We consider an equidistant grid with step size h. For given
j = 1, . . . , l − 1 we determine the natural cubic spline s which satisfies

s(xi) = si = δij , i = 0, . . . , l . (4.24)

The system (4.22), (4.23) reads as follows:

1

6


4 1 0

1 4
. . .

. 1
0 1 4


 γ1

...
γl−1



=− 1

h2


2 −1 0

−1 2
. . .

. −1
0 −1 2


 s1

...
sl−1



=− 1

h2


2 −1 0

−1 2
. . .

. −1
0 −1 2





0
...
0
1
0
...
0



=
1

h2



0
...
0
1
−2
1
0
...
0


.

(4.25)

Chapter 5

Mathematical Modelling using
Partial Differential Equations

Many processes that are studied in the natural sciences are described by the
change of a variable over time in dependence of the change of the variable
in space. Such an equation is called a partial differential equation (PDE).
In the following two examples are presented for motivating the methods for
numerical solution of PDEs.

5.1 Heat equation

We consider the distribution of heat over time in a thin conductor that is
fully isolated. The internal energy per unit volume Q in a small spatial region
is given by

Q = cρu(x, t),

where c is the specific heat capacity, ρ is the mass density of the material
and u(x, t) is the temperature at position x at time t. The change in internal
energy over time is

(2Adx)
∂

∂t
cρu(x, t) = AJ(x− dx, t)− AJ(x+ dx, t),

where A is the cross section of the conductor, 2dx is the length of the control
element, i.e. 2Adx is the volume of the element. The change in internal
energy over time equals the flux into and out of the control element, where

53

54 CHAPTER 5. MODELLING WITH PDES

J(x, t) is the heat flux (heat energy surface flux) at position x and at time
t. Assuming c, and ρ are time independent for dt→ 0 this yields

cρ
∂

∂t
u(x, t) = lim

dx→0

J(x− dx, t)− J(x+ dx, t)

2dx

= − ∂

∂x
J(x, t).

(5.1)

Fouriers law states that the heat flux J(x, t) is proportional to the change in
temperature, i.e.

J(x, t) = −k ∂
∂x
u(x, t).

Inserting into Eqn (5.1) and assuming constant k and cρ > 0, the heat
equation in one dimension is given by

∂

∂t
u(x, t) =

k

cρ

∂2

∂x2
u(x, t). (5.2)

If we want to solve a PDE over time we need to know

1. the PDE including the spatial domain Ω

2. the initial conditions u(x, 0) = u0(x), x ∈ Ω

3. what happens at the boundaries of the domain x ∈ δΩ for t > 0

In the example of the 1-dimensional heat equation the domain Ω is any
interval [L,R]. The initial heat distribution must be known in this interval,
u(x, 0) = u0(x), x ∈ [L,R]. The boundary conditions specify the behaviour
at the left and right end of the conductor. The most important boundary
conditions are

1. to set the temperature at the boundaries, i.e. u(L, t) = uL(t) at the
left, and (or) u(R, t) = uR(t) at the right boundary. This is called a
Dirichlet boundary condition.

2. to set the heat flux into or out of the domain, i.e. cρ∂u
∂x

(L, t) = JL(t)
at the left, and (or) cρ∂u

∂x
(R, t) = JR(t) at the right boundary. This is

called a Neumann boundary condition.

5.2. WAVE EQUATION 55

The heat equation in two or three dimension can be modelled in a similar
way

cρ
∂

∂t
u = ∇ · (k∇u) for t > 0, x ∈ Ω

u(x, 0) = u0(x) for t = 0, x ∈ Ω

cρ∇u · n = J(x, t) for t > 0, x ∈ δΩ

(5.3)

where n := n(x) is the outward normal of the boundary surface.

Remark 5.1. The Nabla operator is defined as ∇ = (∂/∂x, ∂/∂y [, ∂/∂z])T

in two and three dimensions, and ∇u denotes the gradient of u, ∇ · u the
divergence of u. The Laplace operator is written as ∆ = ∇ · ∇ = ∂2/∂x2 +
∂2/∂y2 [+∂2/∂z2] and for constant k, c, and ρ the heat equation is often
written as

∂

∂t
u =

k

cρ
∆u.

5.2 Wave equation

We describe an elastic string that is fixed at the same vertical position at
the right and left end (Ω = [L,R]). Starting point is Newton’s law of motion
stating force F is mass m times acceleration a, i.e.

F = ma.

The mass of a control volume from x to x+ dx is given by m = ρAdx, where
A is the cross section of the elastic string, and ρ the material density.

If u(x, t) describes the vertical displacement of the string from its equi-
librium position, the acceleration is given by a = ∂2

∂t2
u(x, t).

The force per cross section is the net vertical component of the tension:

F

A
= T sin θ2 − T sin θ1

≈ T (θ2 − θ1)

= T

(
∂u

∂x
(x+ dx, t)− ∂u

∂x
(x, t)

)
,

where the tension T is constant within the string, and θ1 and θ2 are the angles
of the tangents in points u(x, t) and u(x+ dx, t) respectively for a fixed t.

56 CHAPTER 5. MODELLING WITH PDES

Putting these all together yields

ρAdx
∂2

∂t2
u(x, t) = AT

(
∂u

∂x
(x+ dx, t)− ∂u

∂x
(x, t)

)
and if make the control volume small, i.e. dx → 0, we obtain the wave
equation

∂2

∂t2
u(x, t) = c2 ∂

2

∂x2
u(x, t) (5.4)

where c2 = T
ρ
.

Dirichlet boundary conditions are used stating that there is no displace-
ment at the suspension, i.e. u(L, t) = 0 and u(R, t) = 0 for all t.

As the PDE is second order in time one equation of describing the initial
displacements, and one the initial velocities is needed:

u(x, 0) = u0(x) x ∈ [L,R]

∂

∂t
u(x, 0) = ut,0(x) x ∈ [L,R]

In two or three dimension the wave equation is given by

∂2

∂t2
u = c2∆u.

5.3 Nondimensionalisation

In contrast to mathematical equations, in the modelling of physical processes
variables and coefficients have units, since their values describe physical quan-
tities. If two expressions are compared by some relation it is essential that
they have the same units (e.g. it makes no sense to compare a meter to
a second). Note that the physical units are completely independent of the
spatial dimensions of the model.

While units can help to understand model variables and parameters, we
need a dimensionless equation for a mathematical analysis. This is achieved
by scaling the variables

u = [u]u∗,

where [u] is the scale (with units) and u∗ is the dimensionless variable. As
an simple example the following ODE is nondimensionalised:

dN

dt
= −λN, with N(0) = N0,

5.3. NONDIMENSIONALISATION 57

with t = [t]t∗ and N = [N]N∗ this becomes

dN∗

dt∗
= −{[t]λ}N∗, with N∗(0) = {N0/[N]},

where all terms (including the expressions in curly brackets) are dimension-
less. Choosing the scales [N] = N0 and [t] = 1/λ the equation simplifies
to

dN∗

dt∗
= −N∗, with N∗(0) = 1.

Remark 5.2. By picking the right scales the heat equation without dimen-
sions is given by

∂

∂t
u = ∆u

and the wave equation by
∂2

∂t2
u = ∆u.

In more complicated examples some parameters might not vanish by scal-
ing, but turn into dimensionless parameters, that determine the behaviour
of the PDE. Examples of such dimensionless numbers are Reynolds number,
Peclet number, or Darcy number.

58 CHAPTER 5. MODELLING WITH PDES

Chapter 6

Classification of Second Order
Linear Partial Differential
Equations

In this chapter we present how to classify linear PDEs, and restrict our
attention to partial differential equations of second order in two variables.
Generally, such an equation for a function u = u(x, y) reads as :

Auxx + 2Bxy + Cuyy +Dux + Euy + Fu+G = 0 . (6.1)

Here A = A(x, y), . . . , G = G(x, y) are again functions.

Definition 6.1. A PDE (6.1) is called

• elliptic if AC −B2 > 0 ,

• parabolic if AC −B2 = 0 , and

• hyperbolic if AC −B2 < 0 .

Example 6.2.

The wave equation
1

c2
uxx − uyy = 0

(note we changed the notation from t to y) is of the form (6.1) with

A = c−2, B = 0, C = −1 .

59

60 CHAPTER 6. CLASSIFICATION OF LINEAR PDES

Because
AC −B2 = −c−2 < 0 ,

the equation is hyperbolic.

The Laplace equation
uxx + uyy = 0

is of the form (6.1) with

A = 1, B = 0, C = 1 .

Because
AC −B2 = 1 ≥ 0 ,

the equation is elliptic.

The heat equation
ux − uyy = 0

(note we changed the notation from t to x and x to y) is of the form (6.1)
with

A = 0, B = 0, C = −1 .

Because
AC −B2 = 0 ,

the equation is parabolic.

These three PDE are the archetypical equations presenting each problem
class.

Remark 6.3.

1. For the classification on the main symbol

Auxx + 2Buxy + Cuyy

is relevant. These are the terms of the differential equation of highest
order (in our case this is 2).

2. AC −B2 is the determinant of the symmetric matrix

M =

(
A B
B C

)
.

61

Denoting by m11 = A, m12 = m21 = B, m22 = C and x1 = x, x2 = y
the main symbol reads as follows

2∑
i,j=1

mij
∂2u

∂xi∂xj
.

This acts as a basis for a classification in higher dimensions.

3. If the coefficients A,B,C are not constant, but functions which depend
on x and y in a non-trivial manner, then the type of the partial differ-
ential equation can be different at various points (x, y). For instance
the differential equation

xuxx + uyy = 0

is elliptic for x > 0, parabolic for x = 0, and hyperbolic for x < 0.

4. The terminology elliptic, parabolic and hyperbolic is motivated from
conic sections. A curve (X, Y (X)), which satisfies the equation

AX2+2BXY+CY 2+DX+EY+F = 0 (with constant coefficients)

is either an ellipsis, parabola, or an hyperbola, depending on the sign
of AC −B2. For instance

(a) A = C = 1, B = D = E = 0, F = −1 leads to X2 + Y 2 = 1, a
circle.

(b) More general A = 1
a2

, C = 1
b2

, B = D = E = 0, F = −1 leads to
X2

a2
+ Y 2

b2
= 1, an ellipsis.

(c) A = F = 1, C = −1 and B = D = E = 0 lead to, y2 = x2 + 1,
which is an hyperbola.

(d) A = 1, B = C = D = F = 0, E = −1 leads to Y = X2, which is
a parabola.

The most important property of this classification is that it is invariant
under coordinate transformations, i.e. a coordinate transformation does not
change the type of the differential equation.

62 CHAPTER 6. CLASSIFICATION OF LINEAR PDES

We consider the change of coordinates:

L1(x, y) = ax+ by ,

L2(x, y) = cx+ dy , and therefore,

∂(u ◦ L)

∂x
(x, y) = a∂1u(L(x, y)) + c∂2u(L(x, y)) ,

∂(u ◦ L)

∂y
(x, y) = b∂1u(L(x, y)) + d∂2u(L(x, y)) .

Above notation is ugly, however, it should emphasize that on the right hand
side we differentiate with respect to the first component and not the x vari-
able.

The second order derivatives are given by

∂2(u ◦ L)

∂2x
(x, y) = a2∂2

1u(L(x, y)) + 2ac∂2
12u(L(x, y)) + c2∂2

2u(L(x, y)) ,

∂2(u ◦ L)

∂x∂y
(x, y) = ab∂2

1u(L(x, y)) + (ad+ bc)∂2
12u(L(x, y)) + cd∂2

2u(L(x, y)) ,

∂2(u ◦ L)

∂2y
(x, y) = b2∂2

1u(L(x, y)) + 2bd∂2
12u(L(x, y)) + d2∂2

2u(L(x, y)) .

This can be written now into compact matrix form:(
∂2(u◦L)
∂2x

(x, y) ∂2(u◦L)
∂x∂y

(x, y)
∂2(u◦L)
∂x∂y

(x, y) ∂2(u◦L)
∂2y

(x, y)

)
︸ ︷︷ ︸

=:C

=A

(
∂2

1u(L(x, y)) ∂2
12u(L(x, y))

∂2
12u(L(x, y)) ∂2

2u(L(x, y))

)
︸ ︷︷ ︸

=:U ′′

AT

with

A =

(
a c
b d

)
.

Thus, we have
(det(A))2 det(U ′′) = det(C) ,

and thus the determinants of C and A have equal signs. This shows that the
type does not change by linear transformations.

63

Remark 6.4. The characterisation can be loosely summarized as:

• elliptic - time independent,

• parabolic - time dependent and diffusive,

• hyperbolic - time dependent and wavelike with finite propagation speed.

64 CHAPTER 6. CLASSIFICATION OF LINEAR PDES

Chapter 7

Finite Difference Method

7.1 Elliptic Differential Equations

An one-dimensional elliptic PDE coincides with the BVP described in Chap-
ter 3.

In the following we study the Poisson equation in two dimensions with
Dirichlet boundary conditions:

−∆u(x, y) = −
(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y) for (x, y) ∈ Ω

u(x, y) = φ(x, y) for (x, y) ∈ δΩ
(7.1)

For simplicity the domain Ω under investigation is the unit square [0, 1] ×
[0, 1].

We discretise the domain Ω by a equidistant rectangular grid with mesh
size h = 1/N , and use the notation

xi,j = (xi, yj) := (ih, jh) with i, j ∈ 0 . . . N, and

ui,j = u(xi, yj) := u(ih, jh) with i, j ∈ 0 . . . N.

In this notation the one-sided forward and backwards difference operator,
as well as the second order central difference operator for inner grid points

65

66 CHAPTER 7. FINITE DIFFERENCE METHOD

are given by

D−x [uh] =
1

h
(ui,j − ui−1,j), D−y [uh] =

1

h
(ui,j − ui,j−1),

D+
x [uh] =

1

h
(ui+1,j − ui,j), D+

y [uh] =
1

h
(ui,j+1 − ui,j),

Dx[uh] =
1

2h
(ui+1,j − ui−1,j), Dy[uh] =

1

2h
(ui,j+1 − ui,j+1),

D2
x[uh] =

1

h2
(ui−1,j − 2ui,j + ui+1,j),

(7.2)

wbhere uh is the restriction of u to the grid points, i.e. uh(xi,j) = u(xi,j).
Therefore, Equation (7.1) is approximated by

−∆u(x, y) = f︸ ︷︷ ︸
L[u]=f

≈ −(D2
x[uh] +D2

y[uh]) = f(xi, yj)︸ ︷︷ ︸
Lh[uh]=fh

,

where L is the differential operator, and Lh is the corresponding discrete
differential operator. Therefore, the discrete Poisson equation is given by

1

h2
(4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1) = fi,j , (7.3)

for all inner points (xi, yj) with i, j = 1 . . . N − 1. For Dirichlet boundary
conditions the values at the boundaries are predetermined by

ui,j = φ(xi, xj) for i = {0, N}, j = 0 . . . N, top and bottom,

or i = 0 . . . N, j = {0, N}, left and right.

Definition 7.1. The local truncation error ξh is the residuum of the exact
solution u∗ of L[u] = f plugged into the discrete operator, i.e. ξh := Lh[u

∗
h]−

fh. The asymptotic convergence order of the local truncation error when
h→ 0 is called the consistency order of the method.

Lemma 7.2. The discrete Poisson equation (Eqn 7.3) has a consistency
order of O(h2).

Proof. by Taylor expansion.

Note that discrete differential operators are often visualized by their sten-
cils, e.g.:

7.1. ELLIPTIC DIFFERENTIAL EQUATIONS 67

(
1
h
×
) (

1
h2
×
)

−(D2
x[u] +D2

y[u])D2
x[u]

−1

−1 4 −1

−1

−2 11

We solve Eqn (7.3) for all inner values uij i.e. there are (N−1)2 unknowns
and the same amount of equations. By sorting ui,j into a vector vk (e.g.
vk := ui,j with k := (i− 1)(N − 1) + j) we can put it as a linear equation

Av = b, (7.4)

where each row of the matrix describes Eqn (7.3) for a specific inner point
xi,j for i, j = 1 . . . N−1. This linear equation is reformulation of the discrete
equation Lh[uh] = fh.

More generally, the number of entries per row of A is exactly the num-
ber of neighbours considered in the stencil plus the node itself. The vector
b consists of the values fi,j together with the contribution of the Dirichlet
boundary conditions. Note that the matrix A is sparse and the linear system
must be solved using iterative methods.

In the case of Neumann boundary conditions the situation is slightly more
complicated. To achieve a consistency order of O(h2) we have to approximate
the boundary flux by central differences. Therefore, at the boundary the
point is calculated from the boundary condition. Generally, the Neumann
boundary condition for a flux φ is given by

∇u · n = φ.

In the case of the domain Ω = [0, 1] × [0, 1] the outward normals are given
by ntop = (0,−1)T , nbot = (0, 1)T , nleft = (−1, 0)T , nright = (0, 1)T . We

68 CHAPTER 7. FINITE DIFFERENCE METHOD

exemplify the approach for xij at the right boundary, i.e. j = N − 1,

∇u · nright = φ⇒ ∂

∂x
u = φ

≈ 1

2h
(ui,N−2 − ui,N) = φi,N−1

⇒ ui,N = uN−2 − 2hφi,N−1

Eqn (7.3) for the point xi,N−1 is given by

1

h2
(4ui,N−1 − ui+1,N−1 − ui,N−1 − ui,N − ui,N−2) = fi,N−1 ,

and inserting ui,N from above yields

1

h2
(4ui,N−1 − ui+1,N−1 − ui,N−1 − 2ui,N−2) = fi,N−1

1

2h
φi,N−1.

Therefore, the Neumann boundary condition changes the matrix A and (if
the flow is not equal zero) the right hand side b.

The proposed method has consistency order O(h2). Higher order methods
can be derived by using bigger stencils (i.e. using a bigger neighbourhood),
and or by additionally using a stencil for f . A 9-point finite difference scheme
with a consistency order of O(h4) is given by

(
1

6h2
×
) (

1
12
×
)

fu

−4

−4 20 −4

−4 −1−1

−1 −1

8 11

1

1

Again, this can be shown by Taylor expansion.

Definition 7.3. The global error is defined as εh := uh − u∗h, where uh is
the solution of discrete equation Lhuh = fh and u∗h is the exact solution at
the grid points. The asymptotic convergence order of the global error when
h→ 0 is called the convergence order of the method

7.2. PARABOLIC DIFFERENTIAL EQUATIONS 69

For a linear discrete operator local and global error are related by

Lhεh = −ξh,

therefore, the global error can be calculated from the local error

εh = −L−1
h ξh,

and the convergence order of εh is obtained by estimating

‖εh‖ ≤
∥∥L−1

h

∥∥ ‖ξh‖
in a suitable norm.

For Lh of the model problem (see Eqn 7.3) the eigenfunctions uk,lh and
corresponding eigenvalues λk,l > 0 are known

uk,lh (x, y) = sin(kπx) sin(lπy)

λk,l =
4

h2

(
sin2(kπ

h

2
) + sin2(lπ

h

2
)

)
,

for k, l = 1 . . . N − 1.

Lemma 7.4. For the inverse discrete operator L−1
h of the discrete Poisson

problem (Eqn 7.3) ∥∥L−1
h

∥∥
2
≤ 1

2π2
+O(h2)

Proof. The largest eigenvalue of L−1
h is 1

λmin
, where λmin is the smallest eigen-

value of Lh

λmin = λ1,1 =
4

h2

(
2 sin2(π

h

2
)

)
≥ 8

h2

(
π2h2

4
+O(h4)

)
.

7.2 Parabolic Differential Equations

In this section we study the numerical solution of parabolic initial value
problems exemplary for the model problem

ut = L[u] + f for t ≥ 0, x ∈ Ω ,

u(x, 0) = u0(x) for x ∈ Ω ,

u(x, t) = φ(x, t) for t ≥ 0, x ∈ δΩ ,

(7.5)

70 CHAPTER 7. FINITE DIFFERENCE METHOD

where t is time, x is the spatial variable, u(x, t) the unknown function, ut :=
∂u∂t, and f := f(x, t) a source or sink term.

Generally, an elliptic differential operator of second order has following
structure

L[u](x, t) = ∇ · (c(x)∇u(x, t))︸ ︷︷ ︸
diffusion

− p(x) · ∇u(x, t)︸ ︷︷ ︸
convection

− q(x)u(x, t)︸ ︷︷ ︸
reaction

. (7.6)

It is possible to use the same methods as in the elliptic case and leave
time continuous, yielding

duh
dt

(t) = Lh[uh(t)] + fh(t), (7.7)

which is an stiff ODE and can be solved with the methods presented in
the previous chapters. This approach is called (vertical) methods of lines,
because it reduces the PDE to a system of ordinary differential equations
with respect time.

Example 7.5. Consider the discrete heat equation in one dimension using
D2
x[uh] (see Eqn 7.2), then

u′i(t) =
1

h2
(ui−1 − 2ui + ui+1).

The simplest way of to discretise time is to use the explicit or implicit
Euler method applied to Eqn (7.7). The explicit Euler method is given by

uk+1
h − ukh
τ

= Ahu
k
h + fh(tk)

uk+1
h = (τAh + I)ukh + τfh(tk) ,

(7.8)

where τ is the time step, the superscript k of uh denotes the time index,
tk = kτ , and Ah is the matrix describing the discrete operator Lh. Implicit
Euler is given by

uk+1
h − ukh
τ

= Ahu
k+1
h + fh(tk+1)

(I − τAh)uk+1
h = τfh(tk) + ukh ,

(7.9)

where a linear system must be solved in each time step.

7.2. PARABOLIC DIFFERENTIAL EQUATIONS 71

Definition 7.6. Similar to the elliptic case the spatial local truncation error
ξh of a parabolic PDE is the residuum of the exact solution u∗ of ut = L[u]+f
plugged into the discrete operator at a fixed time tk, i.e.

ξkh := u∗′(tk)− Lh[u∗(tk)]− fh(tk).

The local truncation error of the full scheme is calculated plugging the exact
solution in the discrete operators regarding space and time

ζkh := Bh[u
∗](tk)− Lh[u∗](tk)− fh(tk).

Again, the asymptotic convergence order of the local truncation error when
h→ 0 is called the consistency order of the method.

Example 7.7. Consider the heat equation using D2
x[uh] and the explicit Eu-

ler, then
uk+1
i − uki
τ

=
1

h2
(uki−1 − 2uki + uki+1),

and more generally,

uk+1
h − ukh
τ

= Ahu
k
h + fh(tk).

The local truncation error is given by

ζkh =
u∗h(tk+1)− u∗h(tk)

τ
− Ahu∗h(tk)− fh(tk)

=
u∗h(tk+1)− u∗h(tk)

τ
− u∗h

′(tk)︸ ︷︷ ︸
=O(τ) (Taylor)

+u∗
′

h (tk)− Ahu∗h(tk)− fh(tk)︸ ︷︷ ︸
=‖ξkh‖=O(h2) for tk fixed

Therefore, the consistency order is of O(τ) + O(h2). For implicit Euler this
can be shown in the same way.

Definition 7.8. The global error is defined (as in Def 7.3) for each time tk
as

εkh := ukh − u∗h(tk).

Calculation of the global error from the local truncation error is more
complicated than in the elliptic case. For explicit and implicit Euler the
global error can be calculated by

εk+1
h − εkh
τ

= Ahε
k
h − ξh(tk) (7.10)

72 CHAPTER 7. FINITE DIFFERENCE METHOD

and
εk+1
h − εkh
τ

= Ahε
k+1
h − ξh(tk) , (7.11)

where ξh(tk) = O(τ) +O(h2) for central differences.

Definition 7.9. Stability of a finite difference equation: we call the finite
difference equation stable when two solution (uh and vh) that are close in the
beginning stay close, i.e. there is an estimation∥∥ukh − vkh∥∥ ≤ c1(tk)

∥∥u0
h − v0

h

∥∥+ c2(tk) sup
0≤l≤k

∥∥δlh∥∥
where c1(tk) and c2(tk) are functions that are independent of τ and h, δkh is
the perturbation at time tk.

Theorem 7.10. Consistency and stability implicate convergence: If the finite
difference equation is stable and consistent with order

∥∥ξkh∥∥ = O(hp)+O(τ q),
then the method is convergent with the same order, thus

∥∥εkh∥∥ = O(hp) +
O(τ q).

Proof. Take uh and vh := u∗h in the stability estimation. The perturbation
is exactly the local truncation error, and with u0

h = u∗h(0) convergence is
shown.

In the following we analyse the stability of the implicit and explicit Euler
method. For the explicit Euler we obtain a recursion for the global error
from Eqn (7.10)

εk+1
h = (I + τAh)ε

k
h + τξh(tk).

Stability depends on ‖I + τAh‖2. The matrix for 1D Poisson with D2
x[uh]

has eigenvalues

1 + τλl = 1− 4τ

h2
sin2(lπ

h

2
) ∈ [1− 4τ

h2
, 1],

thus,

‖I + τAh‖2 ≈ |1−
4τ

h2
| ≤ 1 for τ ≤ h2

2
,

otherwise ‖I + τAh‖2 ≥ 1 and the method becomes unstable.
For the implicit Euler we follow the same approach, from Eqn (7.11) we

obtain
εk+1
h = (I − τAh)−1(εkh + τξh(tk)).

7.2. PARABOLIC DIFFERENTIAL EQUATIONS 73

This method is unconditionally stable, since∥∥(I − τAh)−1
∥∥

2
≤ 1

1− τλ1

≈ 1

1 + τπ2
,

with λ1 = 4
h2

sin2(π h
2
) = π2 +O(h2).

New methods for time integration can be derived from linearly combina-
tion of implicit and explicit Euler. This method is called the θ-method:

uk+1
h − ukh
τ

= θAhu
k+1
h + (1− θ)Ahukh + fh(tk). (7.12)

The most common method is the Crank-Nicolson method, where θ = 1
2
. The

Crank-Nicolson method is unconditionally stable and has a convergence rate
of O(k2 + h2) using central differences in space. For θ = 0 the methods give
the explicit Euler method, for θ = 1 the implicit Euler method.

An example of an explicit scheme second order accurate in time is the
Dufort Frankel method. In 1-dimension this is given by

uk+1
i − uk−1

i

2τ
=

1

h2

(
uki−1 − 2ui + uki+1

)
with

ui :=
1

2

(
uk−1
i + uk+1

i

)
.

(7.13)

This method is stable as long as τ
h
→ 0, and second order in space and time

(as long as τ = ch2) by using two grids at time k and k − 1 to calculate the
new time step k + 1.

Summary of finite difference methods for the 1-dimensional heat equation:

Explicit Euler uk+1
i = uki + τ

h2

(
uki−1 − 2uki + uki+1

)
O(τ) +O(h2)

Implicit Euler uk+1
i = uki + τ

h2

(
uk+1
i−1 − 2uk+1

i + uk+1
i+1

)
O(τ) +O(h2)

Crank/Nicolson uk+1
i = uki + τ

2h2

(
uki−1 − 2uki + uki+1

)
+ τ

2h2

(
uk+1
i−1 − 2uk+1

i + uk+1
i+1

)
O(τ 2) +O(h2)

Dufort Frankel uk+1
i = 2τ

h2+2τ

(
uki−1 + uki+1

)
+ h2−2τ

h2+2τ
uk−1
i O(τ 2) +O(h2) +O(τ

2

h2
)

74 CHAPTER 7. FINITE DIFFERENCE METHOD

7.3 Hyperbolic Differential Equations

The simplest example of a hyperbolic equation is the linear transport equation
in one dimension:

∂u

∂t
+ a

∂u

∂x
= 0. (7.14)

Its analytic solution is given by

u∗(x, t) = u0(x− at), (7.15)

where u0(x) is the initial data at time t = 0. Therefore, initial data is
transported with velocity a from left to right. The equation can be used for
stability analysis of numerical schemes.

Other examples of hyperbolic equations are:

• Linear systems of scalar equations are given by

∂u

∂t
+ A

∂u

∂x
= 0,

where u := u(x, t) ∈ Rn, and A ∈ Rn×n diagonalizable. Note that such
systems of equations can be solved analytically by decoupling: Insert
A = XΛX−1, where Λ is a diagonal matrix. Multiplication with X−1

from the left yields the diagonalized system of equations that can be
solved for v := A−1u.

• The wave equation in one dimension is

∂2u

∂t2
− c2∂

2u

∂x2
= 0,

where c is the finite speed of wave propagation. The wave equation
can be transformed into a system of linear equations by introducing
v := ∂u

∂t
, yielding

∂v

∂t
+ c

∂u

∂x
= 0.

∂u

∂t
+ c

∂v

∂x
= 0.

7.3. HYPERBOLIC DIFFERENTIAL EQUATIONS 75

• The Euler equations are an example of a system of non-linear hyperbolic
equations

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p+ g

∇ · u = 0,

where u ∈ Rn represents the flow velocity, g ∈ Rn the gravitational
acceleration, p the pressure, and ρ0 the density.

Three frequently used explicit finite difference methods for the 1-dimensional
linear transport (Eqn 7.14) are given by

Lax Friedrich uk+1
i = 1

2
(uki+1 + uki−1)− a τ

2h
(uki+1 − uki−1) O(τ) +O(h2)

Euler Upwind uk+1
i = uki − a τh(uki − uki−1) for a > 0 O(τ) +O(h)
uk+1
i = uki − a τh(uki+1 − uki) for a < 0

Lax Wendroff u
n+1/2
i+1/2 = 1

2
(uni+1 + uni)− a τ

2h
(uni+1 − uni) O(τ 2) +O(h2)

u
n+1/2
i−1/2 = 1

2
(uni + uni−1)− a τ

2h
(uni − uni−1)

un+1
i = uni − a τh

(
u
n+1/2
i+1/2 − u

n+1/2
i−1/2

)
In the following we will analyse the stability of the Lax Friedrich and Eu-

ler upwind scheme. In order for any explicit scheme to work, the Courant-
FriedrichsLewy (CFL) condition must be satisfied. The CFL condition in
one dimension is given by ∣∣∣aτ

h

∣∣∣ < 1, (7.16)

where a is the velocity from Eqn (7.14). The CFL condition is a neces-
sary condition, ensuring that the range of dependence is large enough in the
numerical scheme.

Theorem 7.11. Lax Friedrich method is stable if the CFL condition is sat-
isfied.

Proof. We proof that ‖uk+1‖1 ≤ ‖uk‖1, where ‖ · ‖1 is the discrete L1 norm,
i.e. ‖uk‖1 = h

∑
i |ui|:

The Lax Friedrich scheme is given by

uk+1
i =

1

2
(uki+1 + uki−1)− a τ

2h
(uki+1 − uki−1)

76 CHAPTER 7. FINITE DIFFERENCE METHOD

Taking the absolute value, multiplying by h, and summation over all i yields

‖uk+1‖1 = h
∑
i

|1
2

(uki+1 + uki−1)− a τ
2h

(uki+1 − uki−1)|

≤ h

2

(∑
i

|(1− aτ

h
)uki+1|+

∑
i

|(1 +
aτ

h
)uki−1|

)

If the CFL condition holds 1− aτ
h
≥ 0 and 1 + aτ

h
≥ 0, therefore

‖uk+1‖1 ≤
h

2

(
(1− aτ

h
)
∑
i

|uki+1|+ (1 +
aτ

h
)
∑
i

|uki−1|

)
=

1

2

(
(1− aτ

h
)‖uk‖1 + (1 +

aτ

h
)‖uk‖1

)
= ‖uk‖1

Theorem 7.12. The Euler upwind scheme is stable if the CFL condition is
satisfied.

Proof. Again, we proof that ‖uk+1‖1 ≤ ‖uk‖1:
For a > 0 we obtain

‖uk+1‖1 = h
∑
i

|uki − a
τ

h
(uki − uki−1)|

= h
∑
i

|(1− aτ
h

)uki + a
τ

h
uki−1|

and with the CFL condition

‖uk+1‖1 ≤ h

(
(1− aτ

h
)
∑
i

|uki |+ a
τ

h

∑
i

|uki−1|

)
= (1− aτ

h
)‖uk‖1 + a

τ

h
‖uk‖1 = ‖uk‖1

The proof for a < 0 follows analogously.

Chapter 8

Finite Element Method

In this chapter we are considering finite element methods (FEM) for the
solution of elliptic differential equations. We restrict attention to space di-
mension two for simplicity. The domain Ω, on which we solve the differential
equation, has piecewise linear boundary Γ, is bounded and connected.

8.1 Weak solutions

The basis of finite element methods are weak solutions. We just give a short
sketch of the basics of this theory:

Definition 8.1. H1(Ω) denotes the space of square integrable functions with
square integrable derivatives and the inner product

〈u, v〉H1(Ω) =

∫
Ω

∇u · ∇v dx+

∫
Ω

uv dx .

The associated norm is denoted by ‖·‖H1(Ω) and the semi-norm is denoted by

|u|H1(Ω) =

∫
Ω

|∇u|2 dx .

Functions u ∈ H1(Ω) are not necessarily continuous in Ω, but it is still
possible to define boundary values. For us it is not really important how
they can be defined rigorously, we just do as if they point evaluations can be
done. Of particular importance are the set of zero-Dirichlet data:

H1
0 (Ω) =

{
u ∈ H1(Ω) : u|Γ = 0

}
,

77

78 CHAPTER 8. FINITE ELEMENT METHOD

which is a closed linear subspace of H1(Ω). For functions in H1
0 (Ω) the

Poincare-Friedrich inequality is valid:

γΩ ‖u‖H1(Ω) ≤ |u|H1(Ω) , ∀u ∈ H1
0 (Ω) . (8.1)

After this clarification of notation we are investigating now elliptic differential
equations first:

L[u] := −∇ · (σ∇u) + cu = f in Ω (8.2)

with Dirichlet boundary conditions

u = 0 on Γ . (8.3)

Aside from some smoothness conditions (which we do not discuss in detail)
essential conditions are the following:

0 < σ0 ≤ σ(x) ≤ σ∞ and 0 ≤ c(x) ≤ c∞ .

This conditions are essential for ellipticity. A classical solution (referring to
standard theory) is one, where the second derivative is continuous.

The basics of weak solutions are partial integration:∫
Ω

fv dx =︸︷︷︸
(8.2)

−
∫

Ω

∇ · (σ∇u)v dx+

∫
Ω

cuv dx

=

∫
Ω

σ∇u∇v dx+

∫
Ω

cuv dx−
∫

Γ

vσ
∂u

∂n
ds .

Definition 8.2. A weak solution of the homogenous Dirichlet-problem, that
is of (8.2) and (8.3), is a solution of∫

Ω

fv dx =

∫
Ω

σ∇u∇v dx+

∫
Ω

cuv dx , ∀v ∈ H1
0 (Ω) . (8.4)

Remark 8.3. The weak solution is unique.

The inhomogenous Dirichlet problem consists in solving (8.2) together
with boundary conditions:

u = g on Γ . (8.5)

We extend the function g from Γ to Ω and denote such an extension by u0.
With u0 we reduce (8.2), (8.5) to a homogenous Dirichlet problem. In fact
w := u− u0 solves the homogenous Dirichlet problem

L[w] = f − L[u0] , w|Γ = 0 .

8.2. GALERKIN APPROACH 79

The (in-)homogenous Dirichlet problem has a unique solution:
The Neumann problem consists in the solution of (8.2) with boundary

conditions:

σ
∂u

∂n
= g on Γ . (8.6)

The weak form of the equation is again derived by partial integration:∫
Ω

fv dx =︸︷︷︸
(8.2)

∫
Ω

∇ · (σ∇u)v dx+

∫
Ω

cuv dx

=

∫
Ω

σ∇u∇v dx+

∫
Ω

cuv dx−
∫

Γ

vσ
∂u

∂n
ds

=︸︷︷︸
(8.6)

∫
Ω

σ∇u∇v dx+

∫
Ω

cuv dx−
∫

Γ

vg ds .

Now, we consider a general strategy for solving elliptic differential equa-
tions: Let

a(u, v) :=

∫
Ω

σ∇u · ∇v dx+

∫
Ω

cuv dx ,

l(v) :=

∫
Ω

fv dx .

(8.7)

a is called bilinear form because it is linear in every component on V =
H1(Ω). Moreover, l is a linear operator on V . With this notation we have a
compact formulation of the differential equation (8.2), (8.3):

a(u, v) = l(v) , ∀v ∈ H1
0 (Ω) . (8.8)

Note, that the space H1
0 (Ω) is designed such that the solution satisfies ho-

mogenous Dirichlet conditions.

8.2 Galerkin approach

To determine an approximate solution we use a Galerkin-approach: We select
a finite dimensional subspace Vh ⊆ H1

0 (Ω) and determine uh ∈ Vh satisfying

a(uh, vh) = l(vh) , ∀vh ∈ Vh . (8.9)

If {φ1, . . . , φn} is a basis of Vh, then the ansatz

uh =
n∑
i=1

uiφi

80 CHAPTER 8. FINITE ELEMENT METHOD

results in the linear equation

A~uh = ~b with ~uh = (u1, . . . , un)T ,

A = [a(φi, φj)]ij ∈ Rn×n ,~b = [l(φj)]j ∈ Rn .
(8.10)

The matrix A is called stiffness matrix.

Example 8.4. We solve the following Dirichlet-problem by a Galerkin ap-
proach:

−u′′ = f in (0, 1) with u(0) = u(1) = 0 .

Let Vh be the space of linear splines on a equidistant grid:

∆h = {xi = ih : 0 ≤ i ≤ n, h = 1/n}

satisfying homogenous boundary data. The space of linear splines consists of
linear combinations of hat-functions Λi, i = 1, . . . , n− 1, which are equal to
1 at the nodal points i/n. That gives the stiffness matrix:

a(Λi,Λj) =

∫ 1

0

Λ′i(x)Λ′j(x) dx =


2/h i = j
−1/h |i− j| = 1

0 else

In this case the Galerkin method requires to solve the equation:

1

h


2 −1

−1 2
...

...
... −1
−1 2




u1

u2
...

un−1

 =


b1

b2
...

bn−1

 ,

where

bi =

∫ 1

0

f(x)Λi(x) dx , i = 1, . . . , n− 1 .

8.3 Triangulations

For realizing a Galerkin method we need an appropriate ansatz space Vh ⊆
H1(Ω). Typically finite Element methods are based on triangulations of the
domain Ω.

8.3. TRIANGULATIONS 81

Definition 8.5. A set of open triangles Γ = {T1, . . . , Tm} is called regular
triangulation of Ω, if

1. Ti ∩ Tj = ∅ ∀i 6= j ,

2.
⋃m
i=1 Ti = Ω ,

3. for i 6= j we have either

(a) Ti ∩ Tj = ∅,
(b) Ti ∩ Tj is a joint corner of Ti and Tj, or

(c) a common edge.

The corners of the triangle are called corners.

On a triangulation we define linear ansatz functions (in analogy to linear
splines).

Theorem 8.6. Let Γ be a regular triangulation of a polygonal domainΩ with
nodal points xi, i = 1, . . . , n. Then there exist continuous functions Λi : Ω→
R, i = 1, . . . , n, satisfying:

1. Λi(xj) = δij , i, j = 1, . . . , n ,

2. Λi(x) = βik + αik · x for x ∈ Tk with αik ∈ R2, βik ∈ R.

V Γ = span {Λ1, . . . ,Λn} consists of piecewise linear functions with respect to
Γ.

The gradient of an element V Γ is piecewise constant and we have V Γ ⊆
H1(Ω).

Definition 8.7. The tupel (Γ, V Γ) is called finite elements.

The analog of Lagrange interpolation for finite elements reads as follows:

Theorem 8.8. Let Γ be a regular triangulation of Ω ⊆ R2 with nodal points
{xi : i = 1, . . . , n}. Let be given {yi : i = 1, . . . , n}. Then ψ =

∑n
i=1 yiΛi ∈

V Γ and

ψ(xi) = yi , i = 1, . . . , n .

82 CHAPTER 8. FINITE ELEMENT METHOD

8.4 Stiffness Matrix

A finite element method is reduced to the solution of the linear matrix equa-
tion

A~uh = b , (8.11)

with stiffness matrix A, where

aij = a(φi, φj) =

∫
Ω

σ∇φi · ∇φj + cφiφj dx . (8.12)

We empghasize that the matrix is sparse.
For every triangle Tk ∈ Γ the matrix

Sk =

[∫
Tk

σ∇φi · ∇φj + cφiφj dx

]
ij

∈ Rn×n (8.13)

consists of all integrals over the triangle Tk. These matrices Sk are called
element stiffness matrices. Because of

a(φi, φj) =

∫
Ω

σ∇φi · ∇φj + cφiφj dx

=
m∑
k=1

∫
Tk

σ∇φi · ∇φj + cφiφj dx

we have

A =
m∑
k=1

Sk . (8.14)

To determine the element stiffness matrices one uses the transformation

Φ(s, t) = x1 + s(x2 − x1) + t(x3 − x1) , (8.15)

which maps the reference triangle

D =
{
z = (s, t)t : s > 0, t > 0, s+ t < 1

}
(8.16)

onto the triangle T ∈ Γ with corners xi = (ζi, ηi)
t, i = 1, 2, 3. Therefore, we

have

Φ′(s, t) = [x2 − x1 x3 − x1] =

[
ζ2 − ζ1 ζ3 − ζ1

η2 − η1 η3 − η1

]
.

8.4. STIFFNESS MATRIX 83

These two vectors are linear independent in a triangle which is not degener-
ate. Thus

d = detΦ′ = (ζ2 − ζ1)(η3 − η1)− (ζ3 − ζ1)(η2 − η1) 6= 0 .

Thus

Φ′−1(x) =
1

d

[
η3 − η1 ζ1 − ζ3

η1 − η2 ζ2 − ζ1

]
(x) .

Example 8.9. We are calculating the element stiffness matrix S = [sij] for
L[u] = −∆u and a triangle T ∈ Γ with corners x1, x2 and x3. We denote
by Λi, i = 1, 2, 3 the hut functions, with nodal value 1 at xi and 0 else,
respectively. Therefore,

sij =

∫
T

∇xΛi(x) · ∇xΛj(x) dx

=

∫
D

∇xΛi(Φ(z)) · ∇xΛj(Φ(z)) |detΦ′| dz

= |d|
∫
D

Φ′−t∇zΛi(Φ(z))) · (Φ′−t∇zΛj(Φ(z)) dz .

The function Λi(Φ(·)) is again an hat function over D with nodal value 1 at
zi and 0 else. Therefore,

G :=

 ∇z(Λ1(Φ(·))t
∇z(Λ2(Φ(·))t
∇z(Λ3(Φ(·))t

 =

 −1 −1
1 0
0 1

 .

Therefeore, the integrands sij are constant on D. Moreover, the area of D is
0.5. Consequently,

[sij]i,j =
|d|
2
GΦ′−1Φ′−tGt

=
1

2 |d|

 η2 − η3 ζ3 − ζ2

η3 − η1 ζ1 − ζ3

η1 − η2 ζ2 − ζ1

[η2 − η3 η3 − η1 η1 − η2

ζ3 − ζ2 ζ1 − ζ3 ζ2 − ζ1

]
∈ R3×3

84 CHAPTER 8. FINITE ELEMENT METHOD

References which were used to prepare this notes are [3, 1, 2].

Bibliography

[1] P. Deuflhard and A. Hohmann. Numerische Mathematik I. Eine algo-
rithmisch orientierte Einführung. De Gruyter, Berlin, 1993. 2., überarb.
Aufl.

[2] G. H. Golub and Ch. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, 1996. 3.

[3] M. Hanke. Grundlagen der Numerischen Mathematik und des Wis-
senschaftlichen Rechnens. Teubner, Stuttgart, Leipzig, Wiesbaden, 2002.

[4] G. Strang. Wavelet transforms versus Fourier transforms. Bull. Amer.
Math. Soc., 28(2):288–305, 1993.

85

