Lineare Algebra – Übungsteil 12

WS 2010/2011

M. Grasmair

- 150. Sei $\mathcal{A}: X \to X$ eine lineare Abbildung. Für ein $k \geq 1$ gelte, dass $\mathcal{N}(\mathcal{A}^k) = \mathcal{N}(\mathcal{A}^{k+1})$. Zeigen Sie, dass dann auch die Gleichheit $\mathcal{N}(\mathcal{A}^k) = \mathcal{N}(\mathcal{A}^m)$ für alle $m \geq k$ gilt.
- 151. Ein *Minimalpolynom* für eine Matrix $A \in \mathbb{C}^{n \times n}$ ist ein nichttriviales Polynom p minimalen Grades, für das p(A) = 0 gilt. Zeigen Sie, dass jedes Minimalpolynom von A das charakteristische Polynom χ_A teilt. Zeigen Sie weiters, dass das Minimalpolynom einer Matrix eindeutig ist, wenn man zusätzlich fordert, dass der Koeffizient bei der höchsten Potenz gleich 1 ist.

Hinweis: Verwenden Sie den Satz von Cayley–Hamilton und dividieren Sie χ_A mit Rest durch ein Minimalpolynom p.

- 152. Finden Sie eine Matrix $A \in \mathbb{C}^{n \times n}$, deren (normiertes) Minimalpolynom ein echter Teiler des charakteristischen Polynoms χ_A ist.
- 153. Sei $A \in \mathbb{C}^{n \times n}$ eine Matrix, die die Gleichung $A^k = I$ für ein $k \geq 1$ erfüllt. Zeigen Sie, dass A diagonalisierbar ist.
- 154. Sei $A \in \mathbb{C}^{n \times n}$ eine nicht-invertierbare Matrix. Zeigen Sie, dass eine Matrix $B \in \mathbb{C}^{n \times n}$ mit $B \neq 0$ existiert, sodass AB = BA = 0 gilt.
- 155. Bestimmen Sie alle möglichen Jordan'schen Normalformen von nilpotenten 4×4 und 5×5 Matrizen.
- 156. Sei \mathcal{P}_3 der lineare Raum aller komplexen Polynome vom Grad kleiner gleich 3 und bezeichne $\mathcal{D} \colon \mathcal{P}_3 \to \mathcal{P}_3$ die Differentiation, also $\mathcal{D}p = p'$. Bestimmen Sie die Jordan'sche Normalform von \mathcal{D} .
- 157. Bestimmen Sie die Jordan'sche Normalform der Matrix

$$A := \begin{pmatrix} 3 & 2 & -3 \\ 4 & 10 & -12 \\ 3 & 6 & -7 \end{pmatrix} .$$

Geben Sie zusätzlich eine Transformationsmatrix an, die die Matrix A in Jordan'sche Normalform überführt.

- 158. Zeigen Sie, dass jede Matrix $A \in \mathbb{C}^{n \times n}$ ähnlich ihrer Transponierten ist.
- 159. Prüfen Sie nach, dass die 1-Norm und die Maximumsnorm auf \mathbb{R}^n (bzw. \mathbb{C}^n) tatsächlich Normen sind.
- 160. Die Schurnorm oder Frobeniusnorm auf $\mathbb{R}^{n\times n}$ (bzw. $\mathbb{C}^{n\times n}$) ist definiert als

$$||A|| := \left(\sum_{j,k=1}^n a_{j,k}^2\right)^{1/2}.$$

Zeigen Sie, dass diese Norm submultiplikativ und mit der euklidischen Norm auf \mathbb{R}^n (bzw. \mathbb{C}^n) verträglich ist.

161. Die Spaltensummennorm in $\mathbb{R}^{n\times n}$ (bzw. $\mathbb{C}^{n\times n}$) ist definiert als

$$||A||_1 := \max_{1 \le k \le n} \sum_{j=1}^n |a_{j,k}|.$$

Zeigen Sie, dass diese Norm durch die 1-Norm in \mathbb{R}^n (bzw. \mathbb{C}^n) induziert ist.