Exercise Sheet 5 (Sequence Spaces)

Markus Haltmeier

Exercise 21. For $1 \le p < \infty$, let

$$\ell^p(\mathbb{N}) := \left\{ x := (x_1, x_2, \dots) \subset \mathbb{R} : \sum_{j=1}^{\infty} |x_j|^p < \infty \right\}$$

denote the set of all real valued sequences x with $\sum_{j=1}^{\infty} |x_j|^p < \infty$. Moreover denote by

$$\mathbb{R}^{(\mathbb{N})} := \left\{ x = (x_1, x_2, \dots) \subset \mathbb{R} : \{ j \in \mathbb{N} : x_j \neq 0 \} \text{ is finite } \right\}$$

the set of all terminateing sequences.

(a) Show that $\ell^p(\mathbb{N})$ (with pointwise addition and scalar multiplication) is a Banach space with norm $||x||_p := \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{1/p}$.

<u>Hint:</u> To show that $\|\cdot\|_p$ is a norm, use that $\left(\sum_{j=1}^N |x_j|^p\right)^{1/p}$ is a norm on \mathbb{R}^N . To show that $\ell^p(\mathbb{N})$ is complete first show that any Cauchy sequence (x^k) in $\ell^p(\mathbb{N})$ converges pointwise to a sequence x and then verify $\lim_k ||x^k - x||_p = 0$.

(b) Show that $\mathbb{R}^{(\mathbb{N})}$ is dense in $(\ell^p(\mathbb{N}), \|\cdot\|_p)$.

Exercise 22. Let

$$\ell^{\infty}(\mathbb{N}) := \{ x := (x_1, x_2, \dots) \subset \mathbb{R} : \sup\{ |x_j| : j \in \mathbb{N} \} < \infty \}$$

denote the set of all bounded real valued sequences. Show that $\ell^{\infty}(\mathbb{N})$ is a Banach space with norm $||x||_{\infty} := \sup \{|x_j| : j \in \mathbb{N}\}$. Is $\mathbb{R}^{(\mathbb{N})}$ is dense in $(\ell^{\infty}(\mathbb{N}), ||\cdot||_{\infty})$?

Exercise 23. Denote

$$c(\mathbb{N}) := \left\{ x := (x_1, x_2, \dots) \subset \mathbb{R} : \lim_{j \to \infty} x_j < \infty \right\},\$$
$$c_0(\mathbb{N}) := \left\{ x := (x_1, x_2, \dots) \subset \mathbb{R} : \lim_{j \to \infty} x_j = 0 \right\}.$$

- (a) Show that $c(\mathbb{N})$ and $c_0(\mathbb{N})$ are a closed subspaces of $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$
- (b) Show that $c_0(\mathbb{N})$ is a closed subspaces of $(c(\mathbb{N}), \|\cdot\|_{\infty})$. What is the co-dimension of $c_0(\mathbb{N})$ in $c(\mathbb{N})$? (The co-dimension of Y in X is the dimension of the quotient X/Y.)
- (c) What is the closure of $\mathbb{R}^{(\mathbb{N})}$ in $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$?

Exercise 24. For $x = (x_1, x_2, \dots) \in \ell^1(\mathbb{N})$ define

$$\Phi_x: c_0(\mathbb{N}) \to \mathbb{R}: y = (y_1, y_2, \dots) \mapsto \langle x, y \rangle := \sum_j x_j y_j.$$

show that $\Phi : \ell^1(\mathbb{N}) \to c_0(\mathbb{N})^* : x \mapsto \Phi_x$ is well defined and an isometric isomorphism. Explain why this amounts to write $c_0(\mathbb{N})^* = \ell^1(\mathbb{N})$.

<u>Hint</u>: (1) First show that Φ is an isometry. To that end for verify that $\|\Phi_x\| \leq \|x\|_1$ and then find, for positive ϵ , an element $y \in \mathbb{R}^{(\mathbb{N})}$ with $\|\Phi_x(y)\| \geq \|x\|_1 - \epsilon$. Such an element is constructed by setting $y_j = \operatorname{sign}(x_j)$ for $j \leq n(\epsilon)$ for some proper chosen index $n(\epsilon)$. (2) To show that Φ is surjective show that for $\psi \in c_0(\mathbb{N})^*$ and $y = (\psi(e_j))_{j\geq 1}$ one has $\Phi_x(y) = \psi$. (Here e_j is the *j*-th standart basis vector, $(e_j)_k = \delta_{j,k}$).

Exercise 25. Let $1 < p, q < \infty$ with 1/p + 1/q = 1. Show that (in the sense of Exercise 24) one has $\ell^p(\mathbb{N})^* = \ell^q(\mathbb{N})$ and $\ell^1(\mathbb{N})^* = \ell^\infty(\mathbb{N})$

Exercise 26. Let $(\sigma_j)_{j \in \mathbb{N}}$ be a bounded sequence of real numbers. Show that $\Sigma : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ defined by $(\Sigma x)_j := \sigma_j x_j$ is well defined, linear and bounded. Find the adjoint of Σ . What is the inverse of Σ ? What happens if (σ_j) is unbounded? What if Σ is considered as a mapping on $\ell^p(\mathbb{N})$?