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Chapter 1

Transforms

1.1 Distributions

Definition 1.1. D := C∞0 (Rn;C) denotes the space of test functions.
The linear functional

T : D(Rn)→ C
is called a distribution if

1. T (φ1 + φ2) = Tφ1 + Tφ2 , ∀φ1, φ2 ∈ D,

2. T (λφ) = λTφ , ∀φ ∈ D and λ ∈ C,

3. If φj → φ in D, then Tφj → Tφ. Convergence means that the supports
of (φj) are contained in a compact set, and ∇kφj → ∇kφ for every
n-tupel k.

The space of distributions is denoted by D′.
Example 1.2. 1. Regular distribution: Let f be locally integrable on Rn

- that is on every compact set K ⊆ Rn we have f ∈ L1(K;C). Then
Tf defined by

Tfφ =

∫
Rn
f(x)φ(x) dx

is a distribution on Rn.

Sometimes it is also convenient to write this in a complex L2-inner
product form:

Tfφ =

∫
Rn
f(x)φ(x) dx =

〈
f, φ
〉
.
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8 CHAPTER 1. TRANSFORMS

2. The Dirac distribution Tδ is defined as follows:

Tδφ = φ(0) .

Note that Tδ is not a regular distribution and δ is not a function.

Nevertheless it is common to notionally identify Tδ with a function δ,
or in other words use the notional identification

Tδφ =

∫
Rn
δ(x)φ(x) dx =

〈
δ, φ
〉
.

The δ-distribution has a series of properties:

• Let x, α ∈ R. Then

δ(αx) =
1

|α|
δ(x) . (1.1)

• Let x ∈ R. Then

δ′(x) = −δ(x)

x
. (1.2)

3. Let a ∈ Rn and k = (k1, . . . , kn) ∈ {0, 1, . . . , |k|}n with |k| =
∑n

i=1 ki.
Then

T∇kδφ = ∇kφ(a)

is a distribution. Here, for a |k|-times continuously differentiable func-
tion f we have

∇kf(x) =
∂k1

∂xk11

. . .
∂kn

∂xknn
f(x) .

An equivalent definition of a distribution is that T is a linear functional
on D such that for every compact set K ⊆ Rn there exists a constant CK
and an integer m satisfying

|〈T, φ〉| ≤ CK
∑
|k|≤m

sup
∣∣Dkφ

∣∣ ,∀φ ∈ D with supp(φ) ⊆ K .

Remark 1.3. Distributions are often also called generalized functions. Note
that by the Riesz’s theorem every function in L2 can be identified with a linear
operator on L2. In contrast to that the linear operators cannot be identified
with functions anymore.
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1.2 Fourier transform

Definition 1.4. The one-dimensional Fourier transform of a function f :
R→ C is defined as

F [f ](ω) :=
1√
2π

∫ ∞
−∞

eiωtf(t) dt , ω ∈ R . (1.3)

The integral in the definition of the Fourier transform (1.3) is considered an
improper integral.

The n-dimensional Fourier transform of a function f : Rn → C is defined
as

F [f ](ω) :=
1√
2π

n

∫
Rn
eiω·xf(x) dx , x ∈ Rn . (1.4)

There are many different notations for the Fourier-transform. For the
one-dimensional Fourier transform we use also the abbreviation

f̂(ω) := F [f ](ω) , ω ∈ R . (1.5)

Later on, it will be convenient to specify the coordinate transformation in-
duced by the Fourier transform: Then F [f ] is also written as

F [f ] := F(x1,...,xn)→(ω1,...,ωn)[f ] . (1.6)

The definitions of the Fourier-transform are not unique: Sometimes instead
of the factor 1√

2π
the factor 1 or the factor 1

2π
is used, respectively. Moreover,

in the definition of the Fourier-transform instead of eiωt it is also common to
use the term e−iωt instead. The Fourier-transform can also be written as an
inner product:

√
2πf̂(ω) =

∫ ∞
−∞

eiωtf(t) dt =
〈
f, e−iω·〉 . (1.7)

The Fourier-transform has remarkable properties:

Lemma 1.5. Linearity: Let f, g : Rn → C be functions and a, b ∈ C. Then

F [af + bg](ω) = aF [f ](ω) + bF [g](ω) .
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Differentiation of the n-dimensional Fourier-transform:

∇αF [f(x)](ω) = i|α|F [xαf(x)](ω) ,

F [∇αf(x)](ω) = (−i)|α|ωαF [f ](ω) .
(1.8)

Proof. We do the proof in 1D and for α = 1. For all other cases it
follows by induction.

• From the definition of the Fourier transform it follows:

d

dω
F [f(x)](ω) =

1√
2π

∫ ∞
−∞

ixeiωxf(x) dx = iF [xf(x)](ω) .

• With integration by parts we get

F [f ′(x)](ω) =
1√
2π

∫ ∞
−∞

eiωxf ′(x) dx

= − 1√
2π

∫ ∞
−∞

iωeiωxf(x) dx

= −iωF [f ](ω) .

Sign change:

F [g(−·)](ω) =
1√
2π

∫ ∞
−∞

eiωtg(−t) dt

=︸︷︷︸
τ=−t, −dτ=dt

− 1√
2π

∫ −∞
∞

e−iωτg(τ) dτ

=
1√
2π

∫ ∞
−∞

ei(−ω)τg(τ) dτ

=F [g](−ω) .

(1.9)

Fixed point: Let φ(x) = 1√
2π
n e−

‖x‖2
2 (n-dimensional Gauß-distribution).

Then
F [φ](x) = φ(x) .

In particular φ is an eigenfunction of the Fourier-transform with eigen-
value 1.
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We do the proof in one space dimension. In higher dimensions it is
proven by integrating each dimension separately: We have

d

dx
φ(x) = −xφ(x) . (1.10)

Application of the Fourier transform on both sides gives:

−iωF [φ](ω) =︸︷︷︸
(1.8)

F
[
d

dx
φ

]
(ω)

= −F [xφ(x)](ω)

=︸︷︷︸
(1.8)

−1

i

d

dω
F [φ](ω) .

Thus we have

−ωF [φ](ω) =
d

dω
F [φ](ω) .

Thus F [Phi] and φ satisfy the same differential equation (cf. (1.10)).
The unique solution of this ordinary differential equation is ω → φ(ω).

Symmetry:
F [F [f ]](x) = f(−x) , ∀x ∈ Rn .

Inversion: The operator

F−1[f ](x) :=
1√
2π

n

∫
Rn
e−iω·xg(ω) dω , x ∈ Rn (1.11)

is the inverse of the Fourier-transform. That means

F−1[F [f ]](x) = f(x) and F [F−1[g]](ω) = g(ω) . (1.12)

Convolution:

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy , ∀x ∈ Rn

denotes the convolution of f and g. Then

F [f ∗ g](x) =
√

2π
n
F [f ](x)F [g](x) . (1.13)
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Example 1.6. We summarize a few examples of Fourier transforms: Let
a ∈ R be a parameter, then the Fourier-transform of the following functions
are again functions:

f(t) f̂(ω) Comment

e−at
2/2 1√

a
e−ω

2/(2a)

χ(−0.5,0.5)(at)
1√

2π|a|sinc
(
ω

2πa

)
sinc(x) = sin(x)

x

e−a|t|
√

2
π

a
ω2+a2

1
t2+a2

√
π
2

1
a
e−a|ω|

t−n inωn−1
√

π
2

1
(n−1)!

sgn(ω)

sgn(t)
√

2
π

i
ω

The Fourier transform of t→ t−n is calculated explicitly as follows:

• First, we note that by (1.8)

F [t−n](ω) = −iωF
[
− 1

n− 1
t−(n−1)

]
(ω) ,

and thus by induction

F [t−n](ω) = (iω)n−1 1

(n− 1)!
F
[
t−1
]

(ω) ,

• We apply the residue theorem:

Theorem 1.7. Let ω > 0 and z → h(z) := eiωzg(z) be analytic in C
outside of finitely many poles. Moreover, we assume that g does have
only simple poles {x1, . . . , xm} on the real axis and it satisfies for some
M and R

|g(z)| ≤ M

|z|
, ∀=z ≥ 0 and |z| ≥ R .

Denoting by {z1, . . . , zn} the poles in the upper half plane, we have∫ ∞
−∞

h(x) dx = 2πi
n∑
i=1

Res(h, zi) + πi
m∑
i=1

Res(h, xi) .
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Now, we apply this theorem to calculate the Fourier-transform of t →
t−1: We have √

2πF
[
t−1
]

(ω) =

∫ ∞
−∞

eiωtt−1 dt .

– Let ω > 0, then the residual theorem implies that∫ ∞
−∞

eiωtt−1 dt = πiRes
(
eiωtt−1, 0

)
= πi .

Thus we have

F [t−n](ω) = inωn−1 1

(n− 1)!

√
π

2
, ∀ω > 0 .

– Let ω < 0, then we substitute t̂ = −t:∫ ∞
−∞

eiωtt−1 dt =

∫ ∞
−∞

ei(−ω)(−t)t−1 dt

=

∫ −∞
∞

ei(−ω)t̂1

t̂
dt̂

= −
∫ ∞
−∞

ei(−ω)t̂1

t̂
dt̂ .

Now, we can apply again the residue theorem and get

√
2πF

[
t−1
]

(ω) = −
∫ ∞
−∞

ei(−ω)t̂1

t̂
dt̂

= −πiRes

(
ei(−ω)t̂1

t̂
, 0

)
= −πi .

Thus we have

F [t−n](ω) = −inωn−1 1

(n− 1)!

√
π

2
, ∀ω < 0 .

The one-dimensional Fourier-transform can, however, be also be defined
for generalized functions:
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Definition 1.8. The Schwartz space S consists of C∞(Rn;C) functions such
that

x→ xl∂kxφ(x) ∈ L∞(R;C) , ∀k, l ≥ 0 .

The space of tempered distributions is the dual space of S, S ′.

Remark 1.9. Because D ⊆ S we have S ′ ⊆ D′.

Theorem 1.10. The Fourier transform is an isomorphism of S.

Example 1.11. Let a ∈ R be a parameter, then the Fourier-transform of the
following functions are distributions:

f(t) f̂(ω)

eiat
√

2πδ(ω + a)
cos(at)

√
π
2
(δ(ω − a) + δ(ω + a))

sin(at) i
√

π
2
(δ(ω − a)− δ(ω + a))

tn in
√

2πdnδ(ω)

1.3 Mellin transform

Let
f : [0,∞)→ R

Then, the Mellin transform is defined by

M [f ](z) :=

∫ ∞
0

f(t)tz−1 dt , ∀z ∈ C .

There exists a backprojection formula:

f(x) =
1

2πi

∫ c+i∞

c−i∞
M [f ](z)x−z dz .

When substituting t = ex, then

M [f ](z) =

∫ ∞
−∞

f(ex)ex(z−1)ex dx

=

∫ ∞
−∞

f(ex)exz dx
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Thus

M [f ](is) =
√

2π
1√
2π

∫ ∞
−∞

f(ex)eisx dx

=
√

2πF [f(ex)](s) .

This show the relation between Fourier and Mellin transform.

1.4 Fourier cosine transform

Definition 1.12. Let f : [0,∞]→ R. Then

C[f ](ky) := Cy→ky [f ](ky) :=
1√
2π

∫ ∞
0

cos(kyy)f(y)dy , ∀ky ∈ R .

We summarize a few properties of the Fourier cosine transform:

• The function C[f ](ky) is symmetric with respect to 0.

• Extending f : [0,∞) → R by zero to (−∞, 0), and denoting the func-
tion by fe we have

C[f ](ky) =
1√
2π

∫ ∞
−∞

cos(kyy)fe(y)dy = <(F [fe])(ky) , ∀ky ∈ R .

• Let us denote by

fs(y) = fe(y) + fe(−y) , ∀y ∈ R .

Then

C[f ](ky) =
1√
2π

∫ ∞
0

cos(kyy)f(y)dy

=
1

2
√

2π

∫ ∞
−∞

cos(kyy)fs(y)dy

=
1

2
√

2π

∫ ∞
−∞

eikyyfs(y)dy

=
1

2
F [fs](ky) , ∀ky ∈ R .
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• For g : R→ R symmetric:

C−1[g](y) := C−1
ky→y[g](y)

:=

√
2

π

∫ ∞
−∞

cos(kyy)g(ky)dky ,

∀y ∈ (0,∞) .

(1.14)

is in fact the inverse of C.
To see this note that, because g is symmetric

C−1[g](y) = C−1
ky→y[g](y)

=

√
2

π

∫ ∞
−∞

cos(kyy)g(ky)dky

=

√
2

π

∫ ∞
−∞

(cos(−kyy) + i sin(−kyy))g(ky)dky

=

√
2

π

∫ ∞
−∞

e−ikyyg(ky)dky

= 2F−1[g](y) , ∀y ∈ (0,∞) .

Thus for g = C[f ] for f : (0,∞)→ R we have

C−1[C[f ]](y) = 2F−1[C[f ]](y)

= F−1[F [fs]](y)

= fs(y)

= f(y) , ∀y ∈ (0,∞) .

The proof that C[C−1[g]] = g for all g : R→ R symmetric is analogous.

1.5 Laplace transform

Definition 1.13. The Laplace transform is defined as

L[f ](p) :=

∫ ∞
0

f(t)e−pt dt = 〈f(·), ep·〉 , ∀p ∈ C . (1.15)

We identify f : [0,∞) → R with the function f : R → R with f(t) = 0 for
f < 0. The latter class of functions is called causal.
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Remark 1.14. Let f be causal, then for p = −iη and η ∈ R we have

L[f ](iη) :=

∫ ∞
−∞

f(t)eiηt dt =
√

2πF [f ](η) , ∀η ∈ R . (1.16)

Example 1.15. In the following we summarize the Laplace transform of
some functions:

Assumption f L[f ]
1 1

p
, <p > 0

tm m!
pm+1 , <p > 0

<α > 0, α ∈ C tα−1 Γ(α)
pα

, <p > 0

Heaviside function c ≥ 0 χ[c,∞)
1
p
e−cp , <p > 0

α ∈ C e−αt 1
p+α

for <p > <(−α)

a ∈ R sin(at) a
p2+a2

, <p > 0

a ∈ R cos(at) p
p2+a2

, <p > 0

The Laplace transform can also be defined for distributions. Thereby one
makes the following trick: Let T ∈ D′+ (support in [0,∞)). such that

e−ζ0tT ∈ S ′(R;C) .

Then also
e−ptT ∈ S ′(R;C) , ∀p ∈ C with <p ≥ ζ0 .

Moreover, let α ∈ C∞(R;C) with supp(α) ⊆ [c,∞) and α ≡ 1 in [0,∞).
Then t→ α(t)ept ∈ S(R) for all p ∈ C with <p < 0. Therefore〈

e−ζ0tT, α(t)e(−p+ζ0)t
〉

exist, commonly abbreviated as
〈
T, e−pt

〉
for <p > ζ0.

Example 1.16. In the following we summarize the Laplace transform of
some functions: Let a > 0

f L[f ]
δ 1
dmδ pm , p ∈ C

δ(· − a) e−ap , p ∈ C
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The Laplace transform has also remarkable properties Let f and g have
support in [0,∞), then

•
L[f ∗ g] = L[f ]L[g] . (1.17)

•
L[f ′](p) = pL[f ](p)− f(0) , ∀<p < ζ0 (1.18)

under the assumption that e−ζt |f(t)| is integrable for ζ < ζ0 and
suppf ⊆ [0,∞).

In the following we derive the inversion formula for the Laplace transform:
Let f : R → C with f(t) = 0 for all t < 0 and e−ζtf(t) ∈ L1(R;C) for all
ζ > ζ0. Then

L[f ](ζ + iη) =
1√
2π

∫ ∞
0

√
2πf(t)e−ζte−iηt dt , ∀ζ > ζ0 .

If, for some ζ, η → L[f ](ζ + iη) ∈ L1(R;C), then by taking the Fourier
transform, it follows

√
2πf(t)e−ζt =

1√
2π

∫ ∞
−∞
L[f ](ζ + iη)eiηt dη .

Thus

f(t) =
1

2π

∫ ∞
−∞
L[f ](ζ + iη)e(ζ+iη)t dη =

1

2πi

∫ ζ+i∞

ζ−i∞
L[f ](p)ept dp .

Definition 1.17. We call the operator L−1 by

g → 1

2πi

∫ ζ+i∞

ζ−i∞
g(p)ept dp .

Note, that it can be considered just a left inverse.

Example 1.18. Given some 0 < α < 1, and f with support in [0,∞) we are
solving the Abel integral equation∫ t

0

(t− τ)α−1φ(τ) dτ = f(t) , ∀t ≥ 0 , (1.19)
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for some φ with support in [0,∞). Then, by using the Heaviside-function
χ[0,∞) we can rewrite this equation to∫ t

0

(t− τ)α−1φ(τ) dτ =︸︷︷︸
φ(τ)=0 ∀τ<0

∫ t

−∞
(t− τ)α−1φ(τ) dτ

=

∫ ∞
−∞

χ[0,∞)(t− τ)(t− τ)α−1︸ ︷︷ ︸
=:ζ(t−τ)

φ(τ) dτ

= (ζ ∗ φ) (t) , ∀t ≥ 0.

Taking the Laplace transforms then gives, taking into account Example 1.15

L[f ](p) = L [ζ ∗ φ] (p) =︸︷︷︸
(1.17)

L[ζ](p)L [φ] (p)

= L[tα−1](p)L [φ] (p)

=︸︷︷︸
Example 1.15

Γ(α)

pα
L [φ] (p) , ∀p ≥ 0 .

Thus

L [φ] (p) =
pαL[f ](p)

Γ(α)
=

(pL[f ](p))pα−1

Γ(α)

=︸︷︷︸
(1.18)

(L[f ′](p) + f(0))pα−1

Γ(α)

=
1

Γ(α)

(
L[f ′](p)pα−1χ[0,∞)(p) + f(0)pα−1χ[0,∞)(p)

)
, ∀p ≥ 0 .

Taking the inverse Laplace transform gives

φ(t) =
1

Γ(α)

(
L−1 [L[f ′]] ∗ L−1[pα−1χ[0,∞)(p)]

)
(t) +

f(0)

Γ(α)
L−1[pα−1χ[0,∞)(p)]

=︸︷︷︸
Example 1.15

1

Γ(1− α)Γ(α)

(
f ′ ∗ (·)−α

)
(t) +

f(0)

Γ(1− α)Γ(α)
t−α

=︸︷︷︸
Γ(1−α)Γ(α)=

sin(πα)
α

sin(πα)

α

(∫ t

0

f ′(τ)

(t− τ)α
dτ + f(0)t−α

)
.
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1.6 Hilbert transform

The Hilbert-transform is defined as

H[f ](z) :=
1

π
PV

∫
R

f(ζ)

ζ − z
dζ , ∀z ∈ R , (1.20)

where the integral exists as Cauchy principal value, meaning,

PV

∫
R

f(ζ)

ζ − z
dζ = lim

ε→0+

∫
|ζ−z|>ε

f(ζ)

ζ − z
dζ

In the following we will always omit the PV in front of the integral to simplify
the notation.

The Hilbert transform can be rewritten as a convolution (cf. (1.5)):

H[f ](z) =
1

π
f(z) ∗ 1

z
, ∀z ∈ R . (1.21)

Then from (1.13) it follows that

F [H[f ]](ω) =

√
2π

π
F [f ](ω)F

[
1

z

]
(ω) = iSign(ω)F [f ](ω) , ∀ω ∈ R .

In other word

H[f ](z) = F−1[iSign(ω)F [f ](ω)](z) . (1.22)

1.6.1 Kramers-Kronig relation

Let χ : R→ R be a real and causal function. That is 0 = =χ(t) =: χ=(t) and
χ(t) = 0 for t < 0. Let, χ̂ = F [χ], then, the first assumption provides that

χ̂<(−ω) = χ̂<(ω) (even), χ̂=(−ω) = −χ̂=(ω) (odd),

and the second, tells that χ̂ is an analytic function in the upper half plane.
Then, from the Cauchy integral theorem, we obtain the Kramers-Kronig
relation

χ̂(ω) =
1

iπ

∫
R

χ̂(ω′)

ω′ − ω
dω′ , (1.23)
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which holds if χ̂ vanishes at least as fast as 1/ |ω|. Writing the Kramers-
Kronig relation in component form, we have

χ̂<(ω) =
1

π

∫
R

χ̂=(ω′)

ω′ − ω
dω′ = H[χ̂=](ω) ,

χ̂=(ω) = − 1

π

∫
R

χ̂<(ω′)

ω′ − ω
dω′ = H−1[χ̂<](ω) ,

(1.24)

where H−1 = −H. The Kramers-Kronig relation is widely used in Physics
to extend real or imaginary parts to the respective other part of a function.
However, in the above form, the K-K relations are not useful, since we have
to consider negative frequencies!! Thus, we rewrite them in the following
form, using the properties of χ̂,

χ̂<(ω) =
2

π

∫ ∞
0

ω′χ̂=(ω′)

ω′2 − ω2
dω′ ,

χ̂=(ω) = −2ω

π

∫ ∞
0

χ̂<(ω′)

ω′2 − ω2
dω′.

(1.25)

1.7 Fractional integrals and differentials

Theorem 1.19. The n-th primitive fn of a function f : R → R, which
satisfies f(t) = 0 for t < 0 is given by

fn(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ , ∀t > 0 , n ∈ N . (1.26)

fn is extended by 0 for t < 0.

Proof. The proof is done by induction:

• For n = 1, (1.26) means

f1(t) =

∫ t

0

f(τ) dτ , ∀t ∈ R ,

which is actually the definition of the first primitive.
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• For n→ n+ 1, we assume that (1.26) is true for n and we prove it for
n+ 1: By integration by parts it follows that

1

n!

∫ t

0

(t− τ)nf(τ) dτ =
1

n!

∫ t

0

n(t− τ)n−1f1(τ) dτ

=
1

(n− 1)!

∫ t

0

(t− τ)n−1f1(τ) dτ

= (f1)n−1(t)

= fn(t) ∀t > 0; .

Because (n − 1)! = Γ(n) an extension of the definition (1.26) to α ∈ R+

is as follows:

Definition 1.20 (Fractional integral of order α > 0:). For a causal function
f : R→ R we define

Jα[f ](t) := fα(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ , ∀t > 0 , α ∈ R+ .

(1.27)
Again fα is extended by 0 for t < 0.

We summarize a few basic properties of the fractional integral:

1. Note that Γ(n) = (n− 1)! such that fn = Jn[f ].

2. JαJβ = Jα+β for all α, β ≥ 0.

3. Power functions:

Jα[tγ](t) =
Γ(γ + 1)

Γ(γ + 1 + α)
tγ+α , α > 0 , γ > −1, t > 0 . (1.28)

[6].

4. Denote by

Φα(t) :=
tα−1
+

Γ(α)
, α > 0 . (1.29)

Then
Jα[f ](t) = (Φα ∗ f)(t) , α > 0 .
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In the following we define fractional derivatives. First of all we note that

DnJn = I ,

where Dn denotes differentiation. However, in general, JnD
n 6= I. That

means that Dn is a left inverse. In fact we have

JnD
n[f ](t) = f(t)−

n−1∑
k=0

f (k)(0+)
tk

k!
, ∀t > 0 .

We also desire that Dα is a left inverse of Jα.

Definition 1.21 (Fractional derivative of order α > 0:). Let m−1 < α ≤ m,
then

Dα[f ](t) := DmJm−α[f ](t) , ∀t > 0 .

Taking into account the definition of Jm−α it follows that

Dα[f ](t) =

{
dm

dtm

[
1

Γ(m−α)

∫ t
0

f(τ)
(t−τ)α+1−m dτ

]
, m− 1 < α < m ,

dm

dtm
[f ](t) , α = m .

(1.30)

Moreover, we define D0 = I0 = I.

We summarize a few basic properties of the fractional integral:

1. DαJα = I.

2.

Dαtγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α , α > 0 , γ > −1, t > 0 .

3. Note that for γ = 0 the above formula provides:

Dα1 =
1

Γ(1− α)
t−α , α ≥ 0 , t > 0 .

Note that according to (1.30) this applies only when α 6= m.

Remark 1.22. The Abel integral equation (1.19) can be written as

Γ(α)Jα[φ](t) = f(t) .

Thus the Abel integral equation determines the α-th derivative of a function
f .

Evaluating Jα[φ] (differentiating φ) we call the forward problem. Solving
the Abel equation is the inverse problem.

We emphasize that integration is stable and differentiation is unstable.
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1.7.1 The Caputo Derivative

The Caputo derivative is slightly different defined as the fractional derivative:

Definition 1.23 (Caputo derivative of order α > 0:).

Dα
∗ [f ](t) =

{
1

Γ(m−α)

∫ t
0

dmf(τ)
(t−τ)α+1−m dτ , m− 1 < α < m ,

dm

dtm
[f ](t) , α = m .

(1.31)

We just summarize a few properties which highlight the differences of the
derivatives:

• In general

Dαf(t) := DmJm−αf(t) 6= Jm−αD
mf(t) = Dα

∗ f(t) .

• Dα
∗ 1 ≡ 0 for all α > 0.

• Even more, we have Dα
∗ t
α−1 ≡ 0, for all α > 0 and t > 0.

Remark 1.24. The different transforms are very useful in many inverse
problems, because of the giant tables of explicit solutions.

1.8 Abel transform

Definition 1.25. The Abel transform A[ψ] of a smooth function ψ : R+ →
R, which decays sufficiently fast to zero at ∞, is defined by

A[ψ](y) =

∫ ∞
−∞

ψ(
√
x2 + y2) dx y ≥ 0. (1.32)

From the definition of the Abel transform it follow that for given y ≥ 0

A[ψ](y) =

∫ ∞
−∞

ψ(
√
x2 + y2) dx = 2

∫ ∞
0

ψ(
√
x2 + y2) dx .

Then, for x, y > 0 we substitute r =
√
x2 + y2. This implies that

x =
√
r2 − y2 and dr =

x√
x2 + y2

dx =

√
r2 − y2

r
dx .
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Thus

A[ψ](y) = 2

∫ ∞
0

ψ(
√
x2 + y2) dx = 2

∫ ∞
y

rψ(r)√
r2 − y2

dr .

Next, we express the Abel transform in reciprocal coordinates y = 1
t

and find
that

A[ψ]

(
1

t

)
= 2

∫ ∞
1
t

rψ(r)√
r2 − 1

t2

dr = 2

∫ ∞
1
t

trψ(r)√
t2r2 − 1

dr .

Substitution r = 1
s
, and thus dr = − 1

s2
ds, it follows that

A[ψ]

(
1

t

)
= 2

∫ t

0

t1
s
ψ
(

1
s

)√
t2

s2
− 1

1

s2
ds = 2

∫ t

0

tψ
(

1
s

)
s2
√
t2 − s2

ds . (1.33)

Now, we use, what follows from (1.32) that for all y ≥ 0

(A[ψ])′(y) =

∫ ∞
−∞

ψ(
√
x2 + y2)

y√
x2 + y2

dy .

Therefore it holds for all v ≥ 0∫ ∞
−∞

(A[ψ])′(
√
u2 + v2)√

u2 + v2
du

=

∫ ∞
−∞

1√
u2 + v2

∫ ∞
−∞

√
u2 + v2

ψ′(
√
x2 + u2 + v2)√
x2 + u2 + v2

dx du

=

∫ ∞
−∞

∫ ∞
−∞

ψ′(
√
x2 + u2 + v2)√
x2 + u2 + v2

du dx .

(1.34)

Substituting x =
√
ρ2 − v2 cos(ϕ) and u =

√
ρ2 − v2 sin(ϕ). we get

dx

dρ
=

ρ√
ρ2 − v2

cos(ϕ) ,
dx

dϕ
= −

√
ρ2 − v2 sin(ϕ)

and
du

dρ
=

ρ√
ρ2 − v2

sin(ϕ) ,
du

dϕ
=
√
ρ2 − v2 cos(ϕ) .

Thus
dudx = ρdϕdρ .
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Using that x2 + u2 + v2 = ρ2 it follows from (1.34) that∫ ∞
−∞

(A[ψ])′(
√
u2 + v2)√

u2 + v2
du = 2π

∫ ∞
v

ψ′(ρ) dρ = −2πψ(v).

Then, by using the definition of the Abel transform, it follows that:

A
[

(A[ψ])′(·)
·

]
(v) = −2πψ(v).

In other word this means that if we denote by A−1[ψ] the inverse Abel trans-
form of a function ψ : R+ → R that

A−1[ψ](y) = − 1

2πy
(A[ψ])′(y). (1.35)

For further expressing the inverse Abel transform we use that

(A[r2ψ(r)])′(y) = ∂y

(∫ ∞
−∞

(x2 + y2)ψ(
√
x2 + y2)dx

)
= ∂y

(
y2A[ψ](y)

)
+ ∂y

(∫ ∞
−∞

x2ψ(
√
x2 + y2)dx

)
= ∂y

(
y2A[ψ](y)

)
+

∫ ∞
−∞

x2y√
x2 + y2

ψ′(
√
x2 + y2)dx

= ∂y
(
y2A[ψ](y)

)
+ y

∫ ∞
−∞

x

(
x√

x2 + y2
ψ′(
√
x2 + y2)

)
dx

With integration by parts it then follows that

(A[r2ψ(r)])′(y) = ∂y
(
y2A[ψ](y)

)
− y

∫ ∞
−∞

ψ(
√
x2 + y2)dx

= ∂y
(
y2A[ψ](y)

)
− yA[ψ](y)

= 2yA[ψ](y) + y2∂y
(
A[ψ](y)

)
− yA[ψ](y)

= y
(
A[ψ](y) + y∂y

(
A[ψ](y)

))
= y∂y

(
yA[ψ](y)

)
.

Using (1.35) we then have

−2πyA−1[r2ψ(r)](y) = (A[r2ψ(r)])′(y) = y∂y
(
yA[ψ](y)

)
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or in other words

A−1[r2ψ](y) = − 1

2π
∂y
(
yA[ψ](y)

)
. (1.36)

The Abel-transform can be rewritten as the fractional integral J1/2.

Lemma 1.26.

A[ψ](t−1/2) = t1/2J1/2[τ−3/2ψ(τ−1/2)](t) . (1.37)

Proof. Using (1.33) it follows by the substitution s2 = τ, 2s ds = dτ that

A[ψ]

(
1

t

)
= 2

∫ t

0

tψ
(

1
s

)
s2
√
t2 − s2

ds = t

∫ t2

0

τ−3/2ψ(τ−1/2)√
t2 − τ

dτ .

Thus, by putting t̂ = t2 it follows that

A[ψ]

(
1√
t̂

)
= t̂1/2

∫ t̂

0

τ−3/2ψ(τ−1/2)√
t̂− τ

dτ = t̂1/2J1/2[τ−3/2ψ(τ−1/2)](t̂) .

Remark 1.27. The identity (1.37) states that evaluation A[ψ] is equivalent
to 1/2 integration and solution of the Abel integral equation is 1/2- times
differentiation.
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Chapter 2

The Radon transform

We consider reconstructing f : R2 → R given the values of integrals of f
along lines. Thus the problem is to determine f from the Radon Transform

R[f ](t, θ) :=

∫
Lt,θ

fds =

∫ ∞
s=−∞

f

(
t

(
cos θ

sin θ

)
+ s

(
− sin θ

cos θ

))
ds , (2.1)

where t ≥ 0 and θ ∈ [0, 2π) and

Lt,θ =

{(
t

(
cos θ

sin θ

)
+ s

(
− sin θ

cos θ

))
: s ∈ R

}
.

Because

R[f ](−t, θ) = R[f ](t, θ + π) ,

We can extend the Radon transform for t ∈ R and θ ∈ R.

2.1 Back-projection

Fundamental formulas for inverting the Radon transform are based on back-
projection. Suppose we select a point

(
x1
x2

)
= t
(

cos θ
sin θ

)
, t > 0, then the vector

~n =
(

cos θ
sin θ

)
is orthogonal to the line Lt,θ.

The first step in recovering f from the values of the Radon transform is
the back-projection, which consists in calculating the average of all values of
line integrals where the lines pass through

(
x1
x2

)
.

29
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Definition 2.1. (back-projection) Let h := h(t, θ) be a function in polar
coordinates. The back-projection of h at a point ~x =

(
x1
x2

)
is defined by

B[h]

(
x1

x2

)
:=

1

π

∫ π

θ=0

h(x1 cos θ + x2 sin θ, θ) dθ .

Note that t := x1 cos θ+x2 sin θ
(

cos θ
sin θ

)
is the projection of x on the normal

vector
(

cos θ
sin θ

)
of the Line Lt,θ. See Figure 2.1. In particular the back-projection

Lt,θ

x

θ

t= x cos   + x sin θ θ
1 2

Figure 2.1: Visualization of back-projection

of the Radon transform is given by:

B[R[f ]]

(
x1

x2

)
=

1

π

∫ π

θ=0

R[f ](x1 cos θ + x2 sin θ, θ) dθ .

In general just application of B to Radon data R[f ] provides already an
approximation of 2f , however, it is not identical:
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Example 2.2. • Let

f = χ{~x:1/4≤|~x|≤3/4} .

Then, again, for every line L0,θ through the origin, we have R[f ](0, θ) =
1. Consequently 1 = B[R[f ]](0, 0) 6= 2f(0, 0) = 0 .

The Radon transform of the function

f = χB1(0) .

is given by

R[f ](τ, θ) =

∫
Lτ,θ

f(~x) ds(~x)

=

{
2
√

1− τ 2 if |τ | ≤ 1 ,
0 else.

Therefore,

R[f ](x1 cos θ + x2 sin θ, θ)

=

∫
Lx1 cos θ+x2 sin θ,θ

f(~x) ds(~x)

=

{
2
√

1− (x1 cos θ + x2 sin θ)2 if |x1 cos θ + x2 sin θ| ≤ 1 ,
0 else.

For
(
x1
x2

)
in the support of f we have that |x1 cos θ + x2 sin θ| ≤ 1.

Now, we apply back-projection and get

B[R[f ]]

(
x1

x2

)
=

1

π

∫ π

θ=0

R[f ](x1 cos θ + x2 sin θ, θ) dθ

=
1

π

∫ π

θ=0

2
√

1− (x1 cos θ + x2 sin θ)2 dθ .

Plotting f and B[R[f ]] reveals that the later is a smooth approximation.

Note also, that for every line L0,θ through the origin, we have R[f ](0, θ) =
2. Consequently B[R[f ]](0, 0) = 2 = 2f(0, 0).

back-projection is a basic approximative algorithm for inverting the Radon
transform.
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2.2 Fourier slice theorem

Recall from (1.4) that the 2D Fourier transform of a function f : R2 → R is
defined as

F(x1,x2)→(ω1,ω2)[f ]

(
ω1

ω2

)
=

1

2π

∫
R2

ei(ω1x1+ω2x2)f(x1, x2) dx1 dx2 . (2.2)

Note that this is a composition of a Fourier transform from t → ω1 and a
Fourier transform from s → ω2. All of the above integrals are, in general,
understood as principal values.

The following fundamental relation between the Fourier transform and
Radon transform is fundamental for exact inversion formulas:

Theorem 2.3. (Central slice theorem)

F(x1,x2)→(ω1,ω2)[f ]

(
ω cos θ

ω sin θ

)
=

1√
2π
Ft→ω[R[f ]](ω, θ) . (2.3)

Proof. The 2D Fourier transform gives

F(x1,x2)→(ω1,ω2)[f ]

(
ω cos θ

ω sin θ

)
=

1

2π

∫
R2

f

(
x1

x2

)
eiω(x1 cos θ+x2 sin θ) dx1 dx2 . (2.4)

We make the change of variables(
x1

x2

)
= t

(
cos(θ)

sin(θ)

)
+ s

(
− sin(θ)

cos(θ)

)
.

The determinant of the transformation matrix[
∂x1
∂t

∂x1
∂s

∂x2
∂t

∂x2
∂s

]
.

is one, such that

dx1 dx2 = ds dt .
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Thus from (2.4) it follows that

F(x1,x2)→(ω1,ω2)[f ]

(
ω cos θ

ω sin θ

)
=

1

2π

∫
R2

f

(
t cos θ − s sin θ

t sin(θ) + s cos(θ)

)
eiωt ds dt

=
1

2π

∫
R

(∫
R
f

(
t cos θ − s sin θ

t sin(θ) + s cos(θ)

)
ds

)
eiωt dt

=
1

2π

∫
R
R[f ](t, θ)eiωt dt

=
1√
2π
Ft→ω[R[f ]](ω, θ) .

(2.5)

This shows the assertion.

2.3 Filtered back-projection

The following theorem provides an exact formula for inverting of the Radon
transform:

Theorem 2.4. (Filtered back-projection)

f

(
x1

x2

)
=

1

2
B
(
F−1
ω→t (|ω| Ft→ω[R[f ]](ω, θ))

)(x1

x2

)
. (2.6)

Proof. We use that F(x1,x2)→(ω1,ω2) and F−1
(ω1,ω2)→(x1,x2) are inverse to each

other. Thus

f

(
x1

x2

)
=F−1

(ω1,ω2)→(x1,x2)

[
F(x1,x2)→(ω1,ω2)[f ]

](x1

x2

)
=

1

2π

∫
R2

F(x1,x2)→(ω1,ω2)[f ]

(
ω1

ω2

)
e−i(x1ω1+x2ω2) dω1 dω2

Using the change of variables(
ω1

ω2

)
= ω

(
cos θ

sin θ

)
for ω ∈ R, θ ∈ [0, π) ,
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we get
dω1 dω2 = |ω| dω dθ .

Thus by the central slice theorem

f

(
x1

x2

)
=

1

2π

∫ π

0

∫
R
F(x1,x2)→(ω1,ω2)[f ]

(
ω cos θ

ω sin θ

)
e−iω(x1 cos θ+x2 sin θ) |ω| dω dθ

=
1

(2π)3/2

∫ π

0

∫
R
Ft→ω[R[f ]](ω, θ)e−iω(x1 cos θ+x2 sin θ) |ω| dω dθ

=
1

(2π)

∫ π

0

F−1
ω→t (|ω| Ft→ω[R[f ]](ω, θ)) (x1 cos θ + x2 sin θ, θ) dθ

=
1

2
B
(
F−1
ω→t (|ω| Ft→ω[R[f ]](ω, θ))

)(x1

x2

)
.

(2.7)

The name filtered back-projection is due to its close relation to back-
projection, which misses out just the |ω| term. The multiplication by |ω| can
be interpreted as a filtering of the data, which becomes more clear by the
below calculations:

Let f : R→ R, then because of (1.8) we have

Ft→ω[f ′](ω) = −iωFt→ω[f ](ω) , (2.8)

and therefore, in particular,

Ft→ω
[
∂

∂t
R[f ]

]
(ω, θ) = −iωFt→ω[R[f ]](ω, θ) .

Thus

iSign(ω)Ft→ω
[
∂

∂t
R[f ]

]
(ω, θ) = |ω| Ft→ω[R[f ]](ω, θ) .

Consequently it follows from (2.7)

f

(
x1

x2

)
=

1

2
B
[
F−1
ω→t

[
iSign(ω)Ft→ω

[
∂

∂t
R[f ]

]
(ω, θ)

]](
x1

x2

)
. (2.9)

Recall from (1.22) that the operator in the middle of the right hand side

H[g](t) = F−1
ω→t (iSign(ω)Ft→ω[g](ω)) (t)
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is the Hilbert transform. With this (2.9) rewrites to

f

(
x1

x2

)
=

1

2
B
[
H
[
∂

∂t
R[f ]

]](
x1

x2

)
. (2.10)

This is the original Radon inversion formula [11].
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Chapter 3

Wave equation and spherical
means

We consider the initial value problem for the wave equation

∂ttu−∆u = 0 in Rn × (0,∞) ,

u = g, ∂tu = h in Rn × {t = 0} .
(3.1)

Definition 3.1. Let x ∈ Rn and r ≥ 0. The spherical mean operator in Rn

of an integrable function f : Rn → R is defined by

Mn[f ](x; r) =
1

|Sn−1|

∫
Sn−1

f(x+ rθ)ds(θ), (3.2)

where |Sn−1| denotes the area of the unit sphere Sn−1 in Rn, and ds(θ) denotes
the surface measure.

Lemma 3.2. Let

F (x; r) =
1

|∂B(x, r)|

∫
∂B(x,r)

f(y) ds(y) for n = 2, 3, . . . .

Then
F (x; r) =Mn[f ](x; r) .

Proof. Introducing the coordinate transformation

Ψ : Sn−1 → ∂B(x, r) ⊆ Rn ,

θ → x+ rθ

37
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we then find that

∇Sn−1Ψ(θ) = rI .

and consequently

|det∇Sn−1Ψ(θ)| = rn−1 .

Consequently it follows by change of variables:

F (x; r) =
1

|∂B(x, r)|

∫
∂B(x,r)

f(y) ds(y)

=
1

rn−1 |Sn−1|

∫
Sn−1

f(x+ rθ) |det∇Ψ(θ)| ds(θ)

=Mn[f ](x; r) .

We have the following relation between the solution u of (3.1) and the
spherical means of the initial data g and h (see [5]):

• For n = 2:

u(x; t) =
1

2π

∂t
∫

B(x,t)

g(y)√
t2 − |y − x|2

dy


+

∫
B(x,t)

h(y)√
t2 − |y − x|2

dy

 .

(3.3)
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In particular, if h ≡ 0 in (3.1) it follows that

u(x; t) =
1

2π
∂t

∫
B(x,t)

g(y)√
t2 − |y − x|2

dy


=

1

2π
∂t

∫ t

0

∫
∂B(x,τ)

g(y)√
t2 − |y − x|2

ds(y) dτ


=

1

2π
∂t

(∫ t

0

1√
t2 − τ 2

∫
∂B(x,τ)

g(y) ds(y) dτ

)
=

1

2π
∂t

(∫ t

0

2πτ√
t2 − τ 2

1

2πτ

∫
∂B(x,τ)

g(y) ds(y) dτ

)
=︸︷︷︸

Lemma3.2

∂t

(∫ t

0

τ√
t2 − τ 2

M2[g](x, τ) dτ

)
.

(3.4)

Defining
g̃x(

1
r
) := r3M2[g](x, r)

we get an expression for the solution of the wave equation in terms of
the Abel transform:

u(x; t) = ∂t

(∫ t

0

τM2[g](x; τ)√
t2 − τ 2

dτ

)
= ∂t

(∫ t

0

τ 3M2[g](x; τ)

τ 2
√
t2 − τ 2

dτ

)
= ∂t

(∫ t

0

g̃x
(

1
τ

)
τ 2
√
t2 − τ 2

dτ

)

= ∂t

(
1

2t

(
2

∫ t

0

tg̃x
(

1
τ

)
τ 2
√
t2 − τ 2

dτ

))

=︸︷︷︸
(1.33)

∂t

(
1

2t
A[g̃x](

1
t
)

)
.

(3.5)

• For n = 3:

u(x; t) =
1

4π

[
∂t

(
1

t

∫
∂B(x,t)

g(y) ds(y)

)
+

1

t

∫
∂B(x,t)

h(y) ds(y)

]
= ∂t (tM3[g](x; t)) + tM3[h](x; t) .

(3.6)
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In particular, if h ≡ 0 in (3.1) we have

u(x; t) = ∂t (tM3[g]) (x; t) . (3.7)

Remark 3.3. The spherical mean operator can be expressed in terms of a
1D − δ distribution:

Mn[g](x, r) =
1

|Sn−1|

∫
Rn
g(z)

δ(r − |z − x|)
|z − x|n−1 dz .

To see this, note that from Lemma 3.2 and the definition of the 1D − δ
distribution it follows that

Mn[g](x, r) =

∫ ∞
0

1

r̃n−1 |Sn−1|

∫
∂B(0,r̃)

g(x+ y) ds(y)δ(r̃ − r) dr̃

=
1

|Sn−1|

∫ ∞
0

∫
∂B(0,r̃)

1

r̃n−1
g(x+ y)δ(r̃ − r) dr̃ ds(y) .

Now, setting z = x+ y and noting that r̃ = |y| = |z − x| it follows that

M[g](x, r) =
1

|Sn−1|

∫
R3

1

|z − x|n−1 g(z)δ(|z − x| − r) dz .

The desired representation then follows from the property (1.1) of the δ-
distribution.



Chapter 4

Photoacoustic imaging

Definition 4.1. • Let p satisfy the wave equation

∂ttp−∆p = 0 in Rn × (0,∞) ,

p = p0, ∂tp = 0 in Rn × {t = 0} .
(4.1)

Photoacoustic imaging consists in determining the initial datum p0 in
the wave equation from the following measurements of p:

m(x, t) for x ∈ Γ and t > 0 .

• The inverse problem of integral geometry consists in determining g from
measurements of the spherical mean operatorMn[f ](x, t) for x ∈ Γ and
t > 0.

4.1 Point measurements along a line

Maybe the simplest reconstruction formulas can be derived for point detector
measurement along the real line axis for photoacoustic imaging in R2:

m(x, t) = p(x, 0, t) for x ∈ R , t > 0 .

We assume that the support of p0 is entirely above the x-axis, that is:

supp(p0) ⊂ {(x, y) : y > 0} . (4.2)

41
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Applying the Fourier transform to the Laplacian of p gives

F(x,y)→(kx,ky)[∆p](kx, ky, t)

=− (k2
x + k2

y)
1

2π

∫
R2

eikxx+ikyyp(x, y, t)dxdy

=−
∣∣∣~k∣∣∣2F(x,y)→(kx,ky)[p](kx, ky, t) ∀~k ∈ R2, t > 0.

Taking the Fourier-transform of the differential equation (4.1) with respect
to (x, y) it follows that

∂ttF(x,y)→(kx,ky)[p](kx, ky, t) +
∣∣∣~k∣∣∣2F(x,y)→(kx,ky)[p](kx, ky, t) = 0 ,

∀~k ∈ R2, t > 0.
(4.3)

This is an ordinary differential equation in t for v := F(x,y)→(kx,ky)[p], and has
the following solution:

F(x,y)→(kx,ky)[p](kx, ky, t) = C1(kx, ky)e
i|~k|t + C2(kx, ky)e

−i|~k|t ,
∀~k ∈ R2, t > 0.

(4.4)

At this point we incorporate the initial conditions. By taking the Fourier
transform of the initial conditions in (4.1) it follows

C1(kx, ky) + C2(kx, ky) = F(x,y)→(kx,ky)[p0](kx, ky) and

C1(kx, ky)− C2(kx, ky) = 0 ∀~k ∈ R2 .

Therefore

C1(kx, ky) = C2(kx, ky) =
1

2
F(x,y)→(kx,ky)[p0](kx, ky) , ∀~k ∈ R2 . (4.5)

Because,
1

2

(
ei|~k|t + e−i|~k|t

)
= cos

(∣∣∣~k∣∣∣ t) , (4.6)

it follows from (4.5) in (4.4) that

F(x,y)→(kx,ky)[p](kx, ky, t)

=
1

2
F(x,y)→(kx,ky)[p0](kx, ky)

(
ei|~k|t + e−i|~k|t

)
,

=F(x,y)→(kx,ky)[p0](kx, ky) cos
(∣∣∣~k∣∣∣ t)

∀~k ∈ R2, t ≥ 0.

(4.7)
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Taking the inverse Fourier transform F−1
(x,y)→(kx,ky) in (4.7) and evaluating the

result at (x, 0, t) for x ∈ R and t > 0 gives:

m(x, t) := p(x, 0, t)

= F−1
(kx,ky)→(x,y)[F(x,y)→(kx,ky)[p]](x, 0, t)

=
1

2π

∫
R2

e−ikxx− ikyy|y=0 cos
(∣∣∣~k∣∣∣ t)F(x,y)→(kx,ky)[p0](kx, ky)dkxdky

=
1

2π

∫
R2

e−ikxx cos
(∣∣∣~k∣∣∣ t)F(x,y)→(kx,ky)[p0](kx, ky)dkxdky

(4.8)
We use the one-to-one transformation

S : R2 → A := {(kx, ω) : |kx| ≤ |ω| , ω ∈ R} ,

(kx, ky)→
(
kx, ω := Sign(ky)

√
k2
x + k2

y

)
which has the inverse

S−1 : A→ R2 ,

(kx, ω)→
(
kx, ky = Sign(ω)

√
ω2 − k2

x

)
,∀(kx, ω) ∈ A .

Note that we have for all (kx, ω) ∈ A:

∣∣∣~k∣∣∣ = |ω| and dky =
Sign(ω)ω√
ω2 − k2

x

dω =
|ω|√
ω2 − k2

x

dω . (4.9)

We define

g : R2 → R

(kx, ω)→

{
F(x,y)→(kx,ky)[p0]

(
kx, Sign(ω)

√
ω2 − k2

x

)
|ω|√
ω2−k2x

for (kx, ω) ∈ A ,
0 else .
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Therefore

m(x, t)

=︸︷︷︸
(4.8)

1

2π

∫
R2

e−ikxx cos
(∣∣∣~k∣∣∣ t)F(x,y)→(kx,ky)[p0](kx, ky)dkxdky

=︸︷︷︸
(4.9)

1

2π

∫
A

e−ikxx cos(ωt)F(x,y)→(kx,ky)[p0](kx, Sign(ω)
√
ω2 − k2

x)
|ω|√
ω2 − k2

x

dωdkx

=
1

2π

∫
R2

e−ikxx cos(ωt)g(kx, ω)dωdkx

=︸︷︷︸
(1.9)

1

2
C−1
ω→t

[
F−1
kx→x[g]

]
(x, t) .

Thus we have shown that

g(kx, ω) = 2Ct→ω [Fx→kx [m]] (kx, ω) ,∀(kx, ω) ∈ R2 . (4.10)

Now, we note that

ω√
ω2 − k2

x

=

√
k2
x + k2

y

ky

and thus from (4.10) it follows that

F(x,y)→(kx,ky)[p0](kx, ky)

=2
|ky|√
k2
x + k2

y

Ct→ω [Fx→kx [m]] (kx, ω = Sign(ky)
√
k2
x + k2

y)

∀~k ∈ R2 .

In other words:

p0(x, y)

=2F−1
(kx,ky)→(x,y)

(
|ky|√
k2
x + k2

y

Ct→ω [Fx→kx [m]] (kx, ω = Sign(ky)
√
k2
x + k2

y)

)
.

∀(x, y) ∈ R2 .

(4.11)
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4.1.1 Stability estimates

In the following we cite some stability estimates for the spherical mean op-
erator and the wave operator.

Definition 4.2. The wave operator in Rn, Wn maps the initial datum p0

onto pΓ×(0,∞). That is
Wn[p0] = pΓ×(0,∞) , (4.12)

where p solves (4.1).

Definition 4.3. Let C be a bounded, open, and connected subset of Rn. We
denote by

Hs
0(C) := {f ∈ Hs(C) : supp(f) ⊂ C} ,

the Sobolev space of s-times differentiable functions which have support in C.
Let f : C × (0,∞)→ R, then

‖f‖2
Hs,ρ

0 (C) =

∫
C×(0,∞)

‖∇sf‖2 dx dt+

∫
C×(0,∞)

‖∂ρt f‖
2 dx dt .

Remark 4.4. In particular let Γ be a closed simply connected curve in Rn,
and let C̃ be a bounded open set in (0,∞). Then for Ĉ = Γ× C̃

Hs
0(Ĉ) :=

{
f ∈ Hs(Ĉ) : supp(f) ⊂ Ĉ

}
.

The following estimate from [2] concerns the spherical mean operator:

Theorem 4.5. (Proposition 21 in [2]) Let

C = B(0, 1− ε) ⊆ Rn ,Γ = ∂B(0, 1) , C̃ = (ε, 2− ε) , Ĉ = Γ× C̃ ,

and s ≥ 0 and ε > 0.
Then there exists a constant Cε such that for p0 ∈ Hs

0(C)

C−1
ε ‖Mn[p0]‖

H
s+(n−1)/2
0 (Ĉ)

≤ ‖p0‖Hs
0(C) ≤ Cε ‖Mn[p0]‖

H
s+(n−1)/2
0 (Ĉ)

. (4.13)
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4.2 Sectional Imaging

We assume that the laser pulse which illuminates the sample is perfectly
focused onto the plane

{x ∈ R3 : x3 = 0} .
In this case the initial pressure distribution p0 : R3 → R can be considered
to be of the form

p0(ξ, z) = p̂0(ξ)δ(z), ξ ∈ R2, z ∈ R, (4.14)

for some smooth function p̂0 : R2 → R and with δ denoting the 1D delta-
function. Let us denote by

x = (ξ, z) with ξ ∈ R2 , z ∈ R ,

then (4.1) reads as follows

∂ttp(ξ, z; t) = ∆ξ,zp(ξ, z; t),

∂tp(ξ, z; 0) = 0,

p(ξ, z; 0) = p0(ξ, z) = p̂0(ξ)δ(z) .

(4.15)

Here ∆ξ,z = ∂ξ1ξ1 + ∂ξ2ξ2 + ∂zz.
The goal of photoacoustic sectional imaging is to recover the function p̂0.

We assume that the detectors collect measurements on the boundary ∂Ω of
a convex domain Ω ⊂ R2 in the illumination plane, where we additionally
assume that p̂0 has compact support in Ω.

We will consider the following four different measurement setups and
derive reconstruction formulas.

Vertical Line Detectors: The measurement data are

m1(ξ; t) :=

∫ ∞
−∞

p(ξ, z; t)dz for all ξ ∈ ∂Ω, t > 0. (4.16)

Practically this is realized with line detectors which measure the overall
pressure along a line orthogonal to the illumination plane.

Point Detectors: The measurement data are

m2(ξ; t) := p(ξ, 0; t) for all ξ ∈ ∂Ω, t > 0. (4.17)

Practically this is realized with standard ultrasound detectors. This
measurement geometry is used in [9].
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For the other two measurement methods, we additionally impose that the
domain Ω ⊂ R2 is strictly convex and bounded.

Vertical Plane Detectors: The measurement data are

m3(θ; t) :=

∫
P (θ)

p(x; t)ds(x) for all θ ∈ S1, t > 0, (4.18)

where P (θ) ⊂ R3 denotes the tangential plane of the cylinder ∂Ω × R
orthogonal to the vector (θ, 0). Practically this is realized with planar
detectors which are moved tangentially to ∂Ω around the object and
measure the averaged pressure on the plane.

Horizontal Line Detectors: The measurement data are

m4(θ; t) :=

∫
T (θ)

p(ξ, 0; t)ds(ξ) for all θ ∈ S1, t > 0, (4.19)

where T (θ) ⊂ R2 denotes the tangential line of ∂Ω orthogonal to the
vector θ, see (4.20). This is a realization using line detectors which
measure the overall pressure on a line tangential to ∂Ω in the illumina-
tion plane, see [10]. (In these papers, they use for the reconstruction a
phenomenologically motivated formula whose structure is very similar
to the formula (4.28) which we derive for this sort of measurements.)

In those cases where the domain Ω is strictly convex and bounded, we
parametrize the boundary ∂Ω with the map ζ : S1 → ∂Ω which associates to
every unit vector θ ∈ S1 the point ζ(θ) ∈ ∂Ω where the outward unit normal
vector of ∂Ω coincides with θ, see Figure 4.1.

∂Ω ζ(θ)
θ .

ϑ

Figure 4.1: Definition of the point ζ(θ), θ = (cosϑ, sinϑ).
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Since the tangent line T (θ) of ∂Ω at ζ(θ) is orthogonal to θ, we can define
the family T (r, θ), r ∈ R, of lines parallel to the tangent T (θ) by

T (r, θ) = ζ(θ) + rθ+Rθ⊥ ⊂ R2, T (θ) = T (0, θ), ∀θ ∈ S1 , r ∈ R . (4.20)

Here, θ⊥ ∈ S1 denotes a unit vector orthogonal to θ.
Moreover, we introduce the family P (r, θ), r ∈ R, of planes parallel to

the tangent plane P (θ) of the cylinder ∂Ω× R at (ζ(θ), 0) by

P (r, θ) = (T (θ), 0) + (0,R) ⊂ R3, P (θ) = P (0, θ), (4.21)

for every θ ∈ S1 and r ∈ R.

4.2.1 Reconstruction Methods

In the following, we derive reconstruction formulas for photoacoustic sectional
imaging.

Measurements with Vertical Line Detectors

We introduce the function

p̃(ξ; t) =

∫ ∞
−∞

p(ξ, z; t)dz, ξ ∈ R2, t ≥ 0. (4.22)

Then the inital value problem (4.15) for the function p implies that the
function p̃ satisfies the two-dimensional wave equation

∂ttp̃(ξ; t) = ∆ξp̃(ξ; t) for all ξ ∈ R2, t > 0

with the initial conditions

∂tp̃(ξ; 0) = 0 for all ξ ∈ R2,

p̃(ξ; 0) = p̂0(ξ) for all ξ ∈ R2.

The initially three-dimensional reconstruction problem therefore reduces to
the two-dimensional problem of calculating p̂0(ξ) = p̃(ξ; 0), ξ ∈ R2, from the
measurement data

m1(ξ; t) = p̃(ξ; t), ξ ∈ ∂Ω, t > 0.
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Reconstruction Formulas Based on Series Expansions

For special domains Ω, explicit reconstruction formulas are known: see the
review [7] for Ω a circle and the half-space. The derivation for the ellipse is
published in [4].

If Ω is the half-space {ξ ∈ R2 : ξ2 > 0}, we get from (4.23) that

p̂0(ξ1, ξ2)

=2F−1
(kξ1 ,kξ2 )→(ξ1,ξ2)

 |kξ2|√
k2
ξ1

+ k2
ξ2

Ct→ω
[
Fξ1→kξ1 [m1]

]
(kξ1 , ω = Sign(kξ2)

√
k2
ξ1

+ k2
ξ2

)

 .

∀(ξ1, ξ2) ∈ R2 .

(4.23)

Measurements with Point Detectors

From equation (3.7), we know that the solution of the initial value prob-
lem (4.15) can be written as

p(x; t) = ∂t

(
1

4πt

∫
∂B(0,t)

f(x+ y)ds(y)

)
, ∀x ∈ R3 and t > 0 .

Parameterizing the sphere ∂B(0, t) in cylindrical coordinates,

∂B(0, t) =
{

(
√
t2 − h2 (cos(θ), sin(θ)), h) : h ∈ [−t, t], θ ∈ [0, 2π)

}
,

we find for every x = (ξ, z), ξ ∈ R2, z ∈ R, and t > 0 that

p(ξ, z; t) = ∂t

(
1

4πt

∫ t

−t

∫ 2π

0

p̂0(ξ +
√
t2 − h2(cos(θ), sin(θ)))δ(z + h)tdθdh

)
.

Integrating out the δ-distribution, we get for z ∈ [−t, t]

p(ξ, z; t) = ∂t

(
1

4π

∫ 2π

0

p̂0(ξ +
√
t2 − z2 (cos(θ), sin(θ)))dθ

)
.

Using polar coordinate transformation, we find that

p(ξ, z; t) = ∂t

(
1

4π

∫
S1
p̂0(ξ +

√
t2 − z2 ψ)ds(ψ)

)
. (4.24)
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By the definition (3.2) of the spherical mean operator M2, this means

p(ξ, z; t) =
1

2
∂t
(
M2[p̂0](ξ;

√
t2 − z2)

)
for z ∈ [−t, t]. (4.25)

From the assumption that the support of p̂0 lies completely in Ω, we know
that M2[p̂0](ξ; 0) = p̂0(ξ) = 0 for ξ /∈ Ω. Thus, we can integrate the rela-
tion (4.25) for ξ /∈ Ω and find for every z ∈ [−t, t] that

M2[p̂0](ξ;
√
t2 − z2) = 2

∫ t

z

p(ξ, z; t̃)dt̃.

Setting z = 0, we get for every ξ ∈ ∂Ω and every t > 0 the relation

M2[p̂0](ξ; t) = 2

∫ t

0

m2(ξ; t̃)dt̃.

Having calculated the spherical mean of p̂0, we can now proceed as in Sec-
tion 3.

Measurements with Vertical Plane Detectors

For every θ ∈ S1, we define for r ∈ R and t ≥ 0 the function

p̃θ(r; t) =

∫
P (r,θ)

p(x; t)ds(x) ,

where P (r, θ) denotes the plane as defined in (4.21).
Then, since the vectors (θ, 0), (θ⊥, 0), and (0, 0, 1) form an orthonormal

basis of R3 and the Laplacian is rotationally invariant, we find from equa-
tion (4.15) that

∂ttp̃θ(r; t) =

∫ ∞
−∞

∫ ∞
−∞

∆xp(ζ(θ) + rθ + uθ⊥, z; t)dudz = ∂rrp̃θ(r; t)

for every r ∈ R and t > 0. Thus, p̃θ solves the one-dimensional wave equation
with the initial conditions

∂tp̃θ(r; 0) = 0 for all r ∈ R and

p̃θ(0; t) = m3(θ; t) for all t > 0
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resulting from (4.15) and (4.18), respectively. Moreover, since p̂0 has its
support inside Ω, we know that p̃θ(r; 0) = 0 for r ≥ 0.

With d’Alembert’s formula for the solution of the one-dimensional wave
equation, we find that the unique solution for this initial value problem is
given by

p̃θ(r; t) = m3(θ;−t− r) +m3(θ; t− r), r ∈ R, t > 0,

where we set m3(θ; t) = 0 for t ≤ 0.
Finally, we have to recover from the values of p̃θ, θ ∈ S1, the initial

pressure distribution p0 from equation (4.15). We have the relation

p̃θ(r; 0) =

∫ ∞
−∞

p̂0(ζ(θ) + rθ + uθ⊥)du = R[p̂0](r + 〈ζ(θ), θ〉 , θ),

where R denotes the Radon transform as defined in (2.1). We can therefore
recover p̂0 with an inverse Radon transform:

p̂0 = 2R−1[m̃3], m̃3(r, θ) =

{
m3(θ; 〈ζ(θ), θ〉 − r) if r < 〈ζ(θ), θ〉 ,
0 if r ≥ 〈ζ(θ), θ〉 .

(4.26)

Equation (4.26) reveals an interesting property of integrating area detectors:
For an arbitrary strictly convex measurement geometry Ω, exact reconstruc-
tion formulas exist. This is a property which is not known for conventional
and other photoacoustic sectional imaging technologies.

Measurements with Horizontal Line Detectors

For every θ ∈ S1, we define the function

p̃θ(r, z; t) =

∫
T (r,θ)

p(ξ, z; t)ds(ξ),

where T (r, θ) is defined as in (4.20). Then, using that the vectors (θ, 0),
(θ⊥, 0), and (0, 0, 1) are an orthonormal basis of R3 and that the Laplacian is
rotationally invariant, the initial value problem (4.15) implies that p̃θ solves
for all r, z ∈ R and t > 0 the two-dimensional wave equation

∂ttp̃θ(r, z; t) =

∫ ∞
−∞

∆xp(ζ(θ) + rθ + uθ⊥, z; t)du

= ∂rrp̃θ(r, z; t) + ∂zzp̃θ(r, z; t)
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with the initial conditions

∂tp̃θ(r, z; 0) = 0,

p̃θ(r, z; 0) = Pθ(r)δ(z), Pθ(r) =

∫
T (r,θ)

p̂0(ξ)ds(ξ),

for every r, z ∈ R.
From formula (3.7), we see that the solution of this initial value problem

can be written as

p̃θ(r, z; t) =
1

2π
∂t

(∫
B2
t (0)

Pθ(r + ρ)δ(z + ζ)√
t2 − ρ2 − ζ2

ds(ρ, ζ)

)

=
1

2π
∂t

(∫ t

−t
δ(z + ζ)

∫ √t2−ζ2

−
√
t2−ζ2

Pθ(r + ρ)√
t2 − ρ2 − ζ2

dρdζ

)
for all r, z ∈ R and t > 0. Integrating out the δ-function, we find for every
z ∈ [−t, t] that

p̃θ(r, z; t) =
1

2π
∂t

(∫ √t2−z2
−
√
t2−z2

Pθ(r + ρ)√
t2 − z2 − ρ2

dρ

)
.

Since p̃θ is related to the measurement m4, given by (4.19), via m4(θ; t) =
p̃θ(0, 0; t), and since Pθ(r) = 0 for r > 0 by the assumption that p̂0 has
support inside Ω, we find with the formula (1.19) for the Abel transform in
reciprocal coordinates that

m4(θ; t) =
1

2π
∂t

(∫ t

0

Pθ(−ρ)√
t2 − ρ2

dρ

)
=

1

4π
∂t
(

1
t
A[ψθ](

1
t
)
)

where ψθ(
1
ρ
) = ρ2Pθ(−ρ). Switching to the reciprocal coordinate s = 1

t
and

using the identity (1.36), we see that this is of the form

2

s2
m(θ; 1

s
) = − 1

2π
∂s
(
sA[ψθ](s)

)
= A−1[ψ̃θ](s)

with ψ̃θ(
1
ρ
) = 1

ρ2
ψθ(

1
ρ
) = Pθ(−ρ). Thus, we can directly solve the equation

for Pθ and find

Pθ(−ρ) = 2A[m̃θ](
1
ρ
), m̃θ(

1
t
) = t2m4(θ; t). (4.27)
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Since we have by definition

Pθ(r) = R[p̂0](r + 〈ζ(θ), θ〉 , θ),

we finally get (remembering that Pθ(r) = 0 for r ≥ 0)

p̂0 = 2R−1[P̃ ], P̃ (r, θ) =

{
A[m̃θ]

(
1

〈ζ(θ),θ〉−r

)
if r < 〈ζ(θ), θ〉 ,

0 if r ≥ 〈ζ(θ), θ〉 .
(4.28)

So, the reconstruction of p̂0 can be accomplished by an Abel transform of the
rescaled measurements m̃θ, defined in (4.27), followed by an inverse Radon
transform. Again, this reconstruction formula is valid for an arbitrary strictly
convex measurement geometry Ω.

The attenuated Radon transform is defined by∫ τ+

τ−

e−Da(y,θ)f(y) ds(y)

It solves the PDE

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x).

Actually, we have

e−Da(y,θ)f(y)
∣∣τ−(x,θ)

τ−(x,θ)
=

∫ τ+

τ−

e−Da(y,θ)f(y) ds(y) .
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Part II

(L. Mindrinos)
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Chapter 5

Inverse Acoustic Scattering
Theory

This chapter is mainly based on [3] and partially on [8].

5.1 Introduction to Inverse Problems

5.1.1 Examples

1. Direct Problem: Find the zeros x1, ..., xn of a given polynomial p of
degree n. Then, the inverse problem reads: Find a polynomial p of
degree n with given zeros x1, ..., xn. Here, the inverse problem is easier
to solve. The solution is p(x) = c(x− x1) · · · (x− xn), c ∈ R.

2. (Scattering Problem) Direct Problem: Calculate the scattered field
for a given object and incident radiation. Given an incident wave ui(x),
find the total field u = ui + us. Then, the inverse problem is to find
the shape or the properties of a scattering object given the intensity
(and phase) of sound or the electromagnetic waves scattered by this
object. More precise, let D ⊂ Rn, n = 2, 3 be a bounded domain
with smooth boundary ∂D describing the scattering object. Consider
a plane incident wave,

ui(x) = eikd·x,

where k > 0 is the wave number and d is a unit vector describing the

57
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incident direction. Then, the total fields solve the problem,

∆u+ k2u = 0, x ∈ Rn\D̄
Bu = 0, x ∈ ∂D

∂us

∂r
− ikus = O(r−(n+1)/2), r = |x| → ∞.

The last limit is considered uniformly in x/|x|. This system makes
sense under the assumptions of time harmonic fields u(x, t) = u(x)e−iωt,
where ω is the frequency. For suitably polarized time harmonic elec-
tromagnetic scattering problems, Maxwell’s equations reduce to the
two-dimensional Helmholtz equation. The boundary conditions can be
Dirichlet , Neumann or Robin depending on the nature of the medium.
The radiation condition has to do with unique solvability of the direct
problem and ensures the that the scattered field describes divergent
wave with sources situated in a bounded domain. For a homogeneous
medium, k = ω/c =

√
εµ ω, where c is the speed of sound, ε the dielec-

tric constant and µ the permeability. The radiation condition yields
the asymptotic expansion,

us(x) =
eikr

r(n−1)/2
u∞(x̂) +O(r−(n+1)/2), r →∞,

where x̂ = x/|x|. The inverse problem is to determine the shape of
D when the far field pattern u∞(x̂) is measured for all x̂ on the unit
sphere in Rn.

For example, if B = I is the identity, u is sufficient smooth and ψ is
continuous density, let

us(x) =

∫
∂D

∂Φ(x, y)

∂ν(y)
ψ(y)ds(y), x ∈ Rn \ ∂D,

where,

Φ(x, y) =

{
i
4
H

(1)
0 (k|x− y|), n = 2

eik|x−y|

4π|x−y| , n = 3

and ∂
∂ν

denotes then normal derivative where H
(1)
0 denotes the Hankel func-

tion of the first kind of order zero. Then, us solves the above problem pro-
vided ψ is a solution of the integral equation,

ψ(x) + 2

∫
∂D

∂Φ(x, y)

∂ν(y)
ψ(y)ds(y) = −2ui(x), x ∈ ∂D.
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In general, we can formulate the direct problem as the evaluation of an
operatorK acting on a known φ (model) in a spaceX and the inverse problem
as the solution of the equation Kφ = y.

Direct problem: given φ (and K), evaluate Kφ.
Inverse problem: given y (and K), solve Kφ = y for φ.

In order to formulate an inverse problem, the definition of the operator
K, including its domain and range, has to be given. The formulation as an
operator equation allows us to distinguish among finite, infinite-dimensional,
linear and non-linear problems.

5.1.2 Preliminaries

Definition 5.1. The operator K : X → Y, mapping a vector space into a
vector space is called linear if

K(c1φ+ c2ψ) = c1Kφ+ c2Kψ,

for all φ, ψ ∈ X and c1, c2 ∈ C.

Theorem 5.2. Let X and Y be normed spaces and K : X → Y a linear
operator. Then K is continuous if it is continuous at one point.

Proof. Suppose K is continuous at φ0 ∈ X. Then for every φ ∈ X and
φn → φ we have that

Kφn = K(φn − φ+ φ0) +K(φ− φ0)→ Kφ0 +K(φ− φ0) = Kφ

since φn − φ+ φ0 → φ0.

A linear operator K : X → Y from a normed space X into a normed
space Y is called bounded if there exists a positive constant C such that

‖Kφ‖ ≤ C ‖φ‖

for every φ ∈ X. The norm of K is the smallest such C, i.e.

‖K‖ := sup
‖φ‖=1

‖Kφ‖ , φ ∈ X

If Y = C, K is called a bounded linear functional. The space X∗ of bounded
linear functionals on a normed space X is called the dual space of X.
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Theorem 5.3. Let X and Y be normed spaces and K : X → Y a linear
operator. Then K is continuous if and only if it is bounded.

Proof. Let K : X → Y be bounded and let {φn} be a sequence in X such
that φn → 0 as n → ∞. Then ‖Kφn‖ ≤ C ‖φn‖ implies that Kφn → 0 as
n→∞, i.e. K is continuous at φ = 0. By Theorem 5.2 K is continuous for
all φ ∈ X. Conversely, let K be continuous and assume that there is no C
such that ‖Kφ‖ ≤ C ‖φ‖ for all φ ∈ X. Then there exists a sequence {φn}
with ‖φn‖ = 1 such that ‖Kφn‖ ≥ n. Let

ψn := ‖Kφn‖−1 φn.

Then ψn → 0 as n → ∞ and hence by the continuity of K we have that
Kψn → K0 = 0 which is a contradiction since ‖Kψn‖ = 1 for every integer
n. Hence K must be bounded.

Definition 5.4. The operator K : X → Y is called compact if it maps every
bounded set S into a relatively compact set K(S).

The set of all compact operators from X into Y is a closed subspace of
L(X, Y ) (the space of all linear bounded mappings from X to Y ).

Theorem 5.5. 1. If K1 and K2 are compact from X into Y, then so are
K1 +K2 and λK1 for every λ ∈ C.

2. Let Kn : X → Y be a sequence of compact operators between Banach
spaces X and Y. Let K : X → Y be bounded, and let Kn converge to
K in the operator norm, i.e.,

‖Kn −K‖ := sup
x 6=0

‖Knx−Kx‖
‖x‖

→ 0, n→∞.

Then K is also compact.

3. If L ∈ L(X, Y ) and K ∈ L(Y, Z), and L or K is compact, then KL is
also compact.

Theorem 5.6. Let X be a normed space. Then the identity operator I :
X → X is a compact operator if and only if X has finite dimension.

Theorem 5.7 (Riesz Theorem). Let K : X → X be a compact operator
on a normed space X. Then either
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1. the homogeneous equation

φ−Kφ = 0

has a nontrivial solution φ ∈ X or

2. for each f ∈ X the equation

φ−Kφ = f

has a unique solution φ ∈ X. If I−K is injective (and hence bijective),
then (I −K)−1 : X → X is bounded.

Let K : X → X be a compact operator of a normed space into itself.
A complex number λ is called an eigenvalue of K with eigenfunction φ ∈
X if there exists φ ∈ X,φ 6= 0 , such that Kφ = λφ. It is easily seen
that eigenfunctions corresponding to different eigenvalues must be linearly
independent.

We call the dimension of the null space of Lλ := λI −K the multiplicity
of λ. If λ = 0 is not an eigenvalue of K, it follows from the Riesz theorem
that the resolvent operator (λI − K)−1 is a well defined bounded linear
operator mapping X onto itself. On the other hand, if λ = 0 then K−1

cannot be bounded on K(X) unless X is finite dimensional since if it were
then I = K−1K would be compact.

5.1.3 Ill-posed problem

There is a fundamental difference between the direct and the inverse prob-
lems. In all cases, the inverse problem is ill-posed or improperly-posed in the
sense of Hadamard, while the direct problem is well-posed.

We formulate the notion of well-posedness in the following way.

Definition 5.8 (well-posedness). Let X and Y be normed spaces, K :
X → Y a (linear or non-linear) mapping. The equation Kx = y is called
properly-posed or well-posed if the following holds:

1. Existence: For every y ∈ Y there is (at least one) x ∈ X such that
Kx = y.

2. Uniqueness: For every y ∈ Y there is at most one x ∈ X with Kx = y.
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3. Stability: The solution x depends continuously on y, that is, for every
sequence (xn) ⊂ X with Kxn → Kx as n→∞, it follows that xn → x
as n→∞.

Equations for which (at least) one of these properties does not hold are
called improperly-posed or ill-posed. Existence and uniqueness depend only
on the algebraic nature of the spaces and the operator, that is, whether
the operator is onto or one-to-one. Stability, however, depends also on the
topologies of the spaces, i.e., whether the inverse operator K−1 : Y → X is
continuous.

5.2 Scattering Theory

Studying an inverse problem requires a good knowledge of the theory for the
corresponding direct problem. Therefore, we begin by presenting the founda-
tions of obstacle scattering problems for time-harmonic acoustic waves, that
is, to exterior boundary value problems for the scalar Helmholtz equation.
Our aim is to develop the analysis for the direct problems.

Consider the propagation of sound waves of small amplitude in a homo-
geneous isotropic medium in R3 viewed as an inviscid fluid. Let v = v(x, t)
be the velocity field and let p = p(x, t), ρ = ρ(x, t) and s = s(x, t) denote the
pressure, density and specific entropy, respectively, of the fluid. The motion
is then governed by Euler’s equation

∂v

∂t
+ v · ∇v + γv +

1

ρ
∇p = 0,

the equation of continuity

∂ρ

∂t
+ div(ρv) = 0,

the state equation
p = f(ρ, s),

and the adiabatic hypothesis

∂s

∂t
+ v · ∇s = 0

where γ is the absorption coefficient, f is a function depending on the nature
of the fluid.
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The above system for v, p, ρ and s is non-linear. To linearize the above
system, we assume that v, p, ρ and s are small perturbations of the static
state v0 = 0, and constant values p0, ρ0, s0, i.e.,

v =
∞∑
k=0

εkvk, p =
∞∑
k=0

εkpk,

ρ =
∞∑
k=0

εkρk, s =
∞∑
k=0

εksk,

for 0 < ε� 1. Then, we obtain the linearized version keeping only terms of
first order,

∂v1

∂t
+

1

ρ0

∇p1 = 0,

∂ρ1

∂t
+ ρ0div(v1) = 0,

∂f

∂ρ
(ρ0, s0)

∂ρ1

∂t
=
∂p1

∂t
,

We define the speed of sound by

c2 =
∂f

∂ρ
(ρ0, s0)

and from the linearized Euler equation, we observe that there exists a velocity
potential u = u(x, t) such that

v =
1

ρ0

∇u, p = −∂u
∂t
.

Clearly, the velocity potential also satisfies the wave equation

1

c2

∂2u

∂t2
= ∆u. (5.1)

For time-harmonic acoustic waves of the form

u(x, t) = <
{
u(x)e−iωt

}
with frequency ω > 0, we deduce that the complex valued space dependent
part u satisfies the reduced wave equation or Helmholtz equation

∆u+ k2u = 0 (5.2)



64 CHAPTER 5. INVERSE ACOUSTIC SCATTERING THEORY

where the wave number k is given by the positive constant k = ω/c.
In general, considering the scattering of acoustic and electromagnetic

waves by an inhomogeneous medium of compact support, we set

ρ(x, t) = ρ0(x) + ερ1(x, t) + ...

s(x, t) = s0(x) + εs1(x, t) + ...

Then, keeping only the terms of order ε, we obtain

∂2p1

∂t2
= c2(x)ρ0(x)div

(
1

ρ0(x)
∇p1(x)

)
,

where now

c2(x) =
∂f

∂ρ
(ρ0(x), s0(x)).

If we now assume that terms involving ∇ρ0 are negligible and that p1 is time
harmonic,

p1(x, t) = <{u(x)e−iωt}
we see that u satisfies

∆u+
ω2

c2(x)
u = 0.

The above equation governs the propagation of time harmonic acoustic waves
of small amplitude in a slowly varying inhomogeneous medium. We still must
prescribe how the wave motion is initiated and what is the boundary of the
region containing the fluid. We shall only consider the simplest case when the
inhomogeneity is of compact support. Assuming the inhomogeneous region
is contained inside a ball B, i.e., c(x) = c0 = constant for x ∈ R3 \B, we see
that the scattering problem under consideration is now modeled by

∆u+ k2n(x)u = 0,

where k = ω/c0 > 0 is the wave number and

n(x) :=
c2

0

c2(x)
,

is the refractive index. In the following we assume n(x) = 1 and the inho-
mogeneous case will be considered later.

In obstacle scattering we must distinguish between the two cases of im-
penetrable and penetrable objects.
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1. For a sound-soft obstacle the pressure of the total wave vanishes on
the boundary. Consider the scattering of a given incoming wave ui

by a sound-soft obstacle D. Then the total wave u = ui + us, where
us denotes the scattered wave, must satisfy the wave equation in the
exterior R3 \ D̄ of D and a Dirichlet boundary condition

u = 0 on ∂D.

2. Similarly, the scattering from sound-hard obstacles leads to a Neu-
mann boundary condition

∂u

∂ν
= 0 on ∂D,

where ν is the unit outward normal to ∂D since here the normal velocity
of the acoustic wave vanishes on the boundary.

3. More generally, allowing obstacles for which the normal velocity on the
boundary is proportional to the excess pressure on the boundary leads
to an impedance boundary condition of the form

∂u

∂ν
+ iλu = 0 on ∂D,

with a positive constant λ.

4. The scattering by a penetrable obstacle D with constant density ρD
and speed of sound cD differing from the density ρ and speed of sound
c in the surrounding medium R3\D̄ leads to a transmission problem.
Here, in addition to the superposition u = ui+us of the incoming wave
and the scattered wave us in R3 \ D̄ satisfying the Helmholtz equation
with wave number k = ω/c, we also have a transmitted wave v in D
satisfying the Helmholtz equation with wave number kD = ω/cD 6= k.
The continuity of the pressure and of the normal velocity across the
interface leads to the transmission conditions

u = v,
1

ρ

∂u

∂ν
=

1

ρD

∂v

∂ν
, on ∂D.

For the scattered wave us, the radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r = |x|,
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introduced by Sommerfeld will ensure uniqueness for the solutions to the
scattering problems. From the two possible spherically symmetric solutions

eikr

r
,

e−ikr

r

to the Helmholtz equation, only the first one satisfies the radiation condition.
Since via

<
{
eikr−iωt

r

}
=

cos(kr − ωt)
r

this corresponds to an outgoing spherical wave, we observe that physically
speaking the Sommerfeld radiation condition characterizes outgoing waves.
Throughout |x| we denote the Euclidean norm of a point x in R3.

5.2.1 Green’s theorem and formula

We begin by giving some basic properties of solutions to the Helmholtz equa-
tion ∆u+k2u = 0 with positive wave number k. Most of these can be deduced
from the fundamental solution

Φ(x, y) =
1

4π

eik|x−y|

|x− y|
, x 6= y (5.3)

Straightforward differentiation shows that for fixed y ∈ R3 the fundamen-
tal solution satisfies the Helmholtz equation in R3 \ {y}.

Definition 5.9. A domain D ⊂ R3, i.e., an open and connected set, is said
to be of class Ck, k ∈ N, if for each point z of the boundary ∂D there exists
a neighborhood Vz of z with the following properties:

1. the intersection Vz ∩ D̄ can be mapped bijectively onto the half ball
{x ∈ R3 : |x| < 1, x3 ≥ 0}, this mapping and its inverse are k-times
continuously differentiable.

2. the intersection Vz∩∂D is mapped onto the disk {x ∈ R3 : |x| < 1, x3 =
0}.

We will express the property of a domain D to be of class Ck also by
saying that its boundary ∂D is of class Ck. By Ck(D) we denote the linear
space of real or complex valued functions defined on the domain D which are
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k−times continuously differentiable. By Ck(D̄) we denote the subspace of
all functions in Ck(D) which together with all their derivatives up to order
k can be extended continuously from D into the closure D̄.

One of the basic tools in studying the Helmholtz equation is provided by
Green’s integral theorems. Let D be a bounded domain of class C1 and let ν
denote the unit normal vector to the boundary ∂D directed into the exterior
of D. Then, for u ∈ C1(D) and v ∈ C2(D) we have Green’s first theorem∫

D

(u∆v +∇u · ∇v) dx =

∫
∂D

u
∂v

∂ν
ds (5.4)

and for u, v ∈ C2(D) we have Green’s second theorem∫
D

(u∆v − v∆u) dx =

∫
∂D

(
u
∂v

∂ν
− v∂u

∂ν

)
ds (5.5)

Theorem 5.10. Let D be a bounded domain of class C2 and let ν denote
the unit normal vector to the boundary ∂D directed into the exterior of D.
Let u ∈ C2(D)∩C(D̄) be a function which possesses a normal derivative on
the boundary in the sense that the limit

∂u

∂ν
(x) = lim

h→+0
ν(x) · ∇u(x− hν(x)), x ∈ ∂D

exists uniformly on ∂D. Then we have Green’s formula

u(x) =

∫
∂D

(
∂u

∂ν
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂ν(y)

)
ds(y)

−
∫
D

(
∆u(y) + k2u(y)

)
Φ(x, y)dy, x ∈ D, (5.6)

where the volume integral exists as improper integral. In particular, if u is a
solution to the Helmholtz equation

∆u+ k2u = 0, in D,

then,

u(x) =

∫
∂D

(
∂u

∂ν
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂ν(y)

)
ds(y), x ∈ D. (5.7)
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Proof. See theorem 2.1, p. 16 [3].

Obviously, Theorem 5.10 remains valid for complex values of k.

Theorem 5.11. If u is a two times continuously differentiable solution to
the Helmholtz equation in a domain D, then u is analytic.

Proof. Let x ∈ D and choose a closed ball contained in D with center x.
Then Theorem 5.10 can be applied in this ball and the statement follows
from the analyticity of the fundamental solution for x 6= y.

As a consequence of Theorem 5.11, a solution to the Helmholtz equation
that vanishes in an open subset of its domain of definition must vanish ev-
erywhere. In the sequel, by saying u is a solution to the Helmholtz equation
we always tacitly imply that u is twice continuously differentiable, and hence
analytic, in the interior of its domain of definition.

Definition 5.12. A solution u to the Helmholtz equation whose domain of
definition contains the exterior of some sphere is called radiating if it satisfies
the Sommerfeld radiation condition

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0, r = |x|,

where r = |x| and the limit is assumed to hold uniformly in all directions
x/|x|.

Theorem 5.13. Assume the bounded set D is the open complement of an
unbounded domain of class C2 and let ν denote the unit normal vector to the
boundary ∂D directed into the exterior of D. Let u ∈ C2(R3 \ D̄)∩C(R3 \D)
be a radiating solution to the Helmholtz equation

∆u+ k2u = 0, in R3 \ D̄,

which possesses a normal derivative on the boundary in the sense that the
limit

∂u

∂ν
(x) = lim

h→+0
ν(x) · ∇u(x+ hν(x)), x ∈ ∂D

exists uniformly on ∂D. Then we have Green’s formula

u(x) =

∫
∂D

(
∂Φ(x, y)

∂ν
u(y)− Φ(x, y)

∂u(y)

∂ν(y)

)
ds(y), x ∈ R3 \ D̄, (5.8)
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Proof. See theorem 2.4, p. 18 [3].

From Theorem (5.13) we deduce that radiating solutions u to the Helmholtz
equation automatically satisfy Sommerfeld’s finiteness condition

u(x) = O
(

1

|x|

)
, |x| → ∞

uniformly for all directions and that the validity of the Sommerfeld radiation
condition is invariant under translations of the origin.

Solutions to the Helmholtz equation which are defined in all R3 are called
entire solutions. An entire solution to the Helmholtz equation satisfying the
radiation condition must vanish identically. This follows immediately from
combining Green’s formula (5.8) and Green’s theorem (5.5).

We are now in a position to introduce the definition of the far field pattern
or the scattering amplitude.

Theorem 5.14. Every radiating solution u to the Helmholtz equation has
the asymptotic behavior of an outgoing spherical wave

u(x) =
eik|x|

|x|

{
u∞(x̂) +O

(
1

|x|

)}
, |x| → ∞ (5.9)

uniformly in all directions x̂ = x/|x| where the function u, defined on the
unit sphere Ω is known as the far field pattern of u. Under the assumptions
of Theorem (5.13) we have

u∞(x̂) =

∫
∂D

(
∂e−ikx̂·y

∂ν
u(y)− e−ikx̂·y ∂u(y)

∂ν(y)

)
ds(y), x̂ ∈ Ω. (5.10)

Proof. From

|x− y| =
√
|x|2 − 2x · y + |y|2 = |x| − x̂ · y +O

(
1

|x|

)
we derive

eik|x−y|

|x− y|
=
eik|x|

|x|

{
e−ikx̂·y +O

(
1

|x|

)}
(5.11)

and similarly

∂

∂ν(y)

eik|x−y|

|x− y|
=
eik|x|

|x|

{
∂e−ikx̂·y

∂ν(y)
+O

(
1

|x|

)}
uniformly for all y ∈ ∂D. Inserting this into (5.8), the theorem follows.



70 CHAPTER 5. INVERSE ACOUSTIC SCATTERING THEORY

The main problem will be to recover radiating solutions of the Helmholtz
equation from a knowledge of their far field patterns. In terms of the mapping
F : u 7→ u∞, transferring the radiating solution u into its far field pattern
u∞, we want to solve the equation

Fu = u∞,

for a given u∞.

5.2.2 The Far Field mapping

We establish the one-to-one correspondence between radiating solutions to
the Helmholtz equation and their far field patterns.

Lemma 5.15 (Rellich). Assume the bounded set D is the open complement
of an unbounded domain and let u ∈ C2(R3\D̄) be a solution to the Helmholtz
equation satisfying

lim
r→∞

∫
|x|=r
|u(x)|2ds = 0.

Then, u = 0 in R3 \ D̄.

Rellich’s lemma ensures uniqueness for solutions to exterior boundary
value problems through the following theorem.

Theorem 5.16. Let D be as in Lemma (5.15), let ∂D be of class C2 with
unit normal ν directed into the exterior of D and assume u ∈ C2(R3 \ D̄) ∩
C(R3\D) is a radiating solution to the Helmholtz equation with wave number
k > 0 which has a normal derivative in the sense of uniform convergence and
for which

=
∫
∂D

u
∂ū

∂ν
ds ≥ 0.

Then, u = 0 in R3 \ D̄.

Proof. From

lim
r→∞

∫
Ωr

(
|∂u
∂ν
|2 + k2|u(x)|2

)
ds = −2k=

∫
∂D

u
∂ū

∂ν
ds

we conclude that

lim
r→∞

∫
Ωr

|u(x)|2ds = 0

and hence from theorem 5.15 follows the argument.
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Rellich’s lemma also establishes the one-to-one correspondence between
radiating waves and their far field patterns.

Theorem 5.17. Let D be as in Lemma 5.15 and let u ∈ C2(R3 \ D̄) be a
radiating solution to the Helmholtz equation for which the far field pattern
vanishes identically. Then u = 0 in R3 \ D̄.

Proof. From (5.9) we deduce∫
|x|=r
|u(x)|2ds =

∫
Ω

|u∞(x̂)|2ds+O
(

1

r

)
, r →∞,

the assumption u∞ = 0 on Ω implies that Rellich’s Lemma can be applied.

5.2.3 Single- and Double-Layer Potentials

We assume that D is the open complement of an unbounded domain of class
C2, that is, we include scattering from more than one obstacle in our analysis.

We first briefly review the basic jump relations and regularity properties
of acoustic single- and double-layer potentials. Given an integrable function
φ, the integrals

u(x) :=

∫
∂D

Φ(x, y)φ(y)ds(y), x ∈ R3 \ ∂D

and

v(x) :=

∫
∂D

∂Φ(x, y)

∂ν(y)
φ(y)ds(y), x ∈ R3 \ ∂D

are called, respectively, acoustic single-layer and acoustic double-layer poten-
tials with density φ. They are solutions to the Helmholtz equation in D and
in R3 \ D̄ and satisfy the Sommerfeld radiation condition. Green’s formulas
show that any solution to the Helmholtz equation can be represented as a
combination of single- and double-layer potentials. For continuous densities,
the behavior of the surface potentials at the boundary is described by the
following jump relations. By ‖·‖∞ = ‖·‖∞,G , we denote the usual supremum

norm of real or complex valued functions defined on a set G ⊂ R3.

Theorem 5.18. Let ∂D be of class C2 and let φ be continuous. Then the
single- layer potential u with density φ is continuous throughout R3 and

‖u‖∞,R3 ≤ C ‖φ‖∞,∂D
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for some constant C depending on ∂D. On the boundary we have

u(x) =

∫
∂D

Φ(x, y)φ(y)ds(y), x ∈ ∂D (5.12)

and
∂u±
∂ν

(x) =

∫
∂D

∂Φ(x, y)

∂ν(x)
φ(y)ds(y)∓ 1

2
φ(x), x ∈ ∂D (5.13)

where
∂u±
∂ν

(x) = lim
h→+0

ν(x) · ∇u(x± hν(x)),

is to be understood in the sense of uniform convergence on ∂D and where
the integrals exist as improper integrals. The double-layer potential v with
density φ can be continuously extended from D to D̄ and from R3 \ D̄ to
R3 \D with limiting values

v±(x) =

∫
∂D

∂Φ(x, y)

∂ν(y)
φ(y)ds(y)± 1

2
φ(x), x ∈ ∂D (5.14)

where
v±(x) = lim

h→+0
v(x± hν(x)),

and where the integrals exist as improper integrals. Furthermore,

‖v‖∞,R3\D ≤ C ‖φ‖∞,∂D , ‖v‖∞,D̄ ≤ C ‖φ‖∞,∂D
for some constant C depending on ∂D.

For the direct values of the single- and double-layer potentials on the
boundary ∂D, we have more regularity. This can be conveniently expressed
in terms of the mapping properties of the single- and double-layer operators
S and K, given by

(Sφ)(x) := 2

∫
∂D

Φ(x, y)φ(y)ds(y), x ∈ ∂D (5.15)

and

(Kφ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(y)
φ(y)ds(y), x ∈ ∂D (5.16)

and the normal derivative operators K ′ and T, given by

(K ′φ)(x) := 2

∫
∂D

∂Φ(x, y)

∂ν(x)
φ(y)ds(y), x ∈ ∂D (5.17)



5.2. SCATTERING THEORY 73

and

(Tφ)(x) := 2
∂

∂ν(x)

∫
∂D

∂Φ(x, y)

∂ν(y)
φ(y)ds(y), x ∈ ∂D (5.18)

Clearly, by interchanging the order of integration, we see that S is self
adjoint and K and K ′ are adjoint with respect to the bilinear form

〈φ, ψ〉 =

∫
∂D

φψ ds,

that is,
〈Sφ, ψ〉 = 〈φ, Sψ〉

and
〈Kφ,ψ〉 = 〈φ,K ′ψ〉

for all φ, ψ ∈ C(∂D). To derive further properties of the boundary integral
operators, let u and v denote the double-layer potentials with densities φ and
ψ in C1,a(∂D), respectively. Then by the jump relations of Theorem 5.18,
Green’s theorem and the radiation condition we find that∫
∂D

Tφψ ds = 2

∫
∂D

∂u

∂ν
(v+ − v−) ds = 2

∫
∂D

(u+ − u−)
∂v

∂ν
ds =

∫
∂D

φTψ ds

that is, T also is self adjoint. Now, in addition, let w denote the single-layer
potential with density φ ∈ C(∂D). Then∫
∂D

SφTψ ds = 4

∫
∂D

w
∂v

∂ν
ds = 4

∫
∂D

v−
∂w−
∂ν

ds =

∫
∂D

(K − I)ψ(K ′+ I)φ ds

where I is the identity operator, hence∫
∂D

φSTψ ds =

∫
∂D

φ(K2 − I)ψ ds

follows for all φ ∈ C(∂D) and ψ ∈ C1,a(∂D). Thus, we have proven the
relation

ST = K2 − I

and similarly, it can be shown the adjoint relation

TS = K ′2 − I

is also valid.
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Theorem 5.19. Let ∂D be of class C2. Then the operator S,K,K ′ are
bounded from C(∂D) into C0,a(∂D). The operators S,K are also bounded
from C0,a(∂D) into C1,a(∂D) and the operator T is bounded from C1,a(∂D)
into C0,a(∂D).

Theorem 5.20 (Lax’s theorem). Let X and Y be normed spaces both
of which have a scalar product (·, ·) and assume that there exists a positive
constant c such that

|(φ, ψ)| ≤ ‖φ‖ ‖ψ‖
for all φ, ψ ∈ X. Let U ⊂ X be a subspace and let A : U → Y and B : Y → X
be bounded linear operators satisfying

(Aφ, ψ) = (φ,Bψ)

for all φ ∈ U and ψ ∈ Y . Then A : U → Y is bounded with respect to the
norms induced by the scalar products.

Theorem 5.21. Let ∂D be of class C2 and let H1(∂D) denote the usual
Sobolev space. Then the operator S is bounded from L2(∂D) into H1(∂D).
Assume further that ∂D belongs to C2,a. Then the operators K and K ′

are bounded from L2(∂D) into H1(∂D) and the operator T is bounded from
H1(∂D) into L2(∂D).

Proof. Theorem 3.6, p. 43 [3].

The jump relations of Theorem 5.18 can also be extended through the
use of Lax’s theorem from the case of continuous densities to L2 densities.

5.2.4 Scattering from a Sound-Soft Obstacle

The scattering of time-harmonic acoustic waves by sound-soft obstacles leads
to the following problem.

Direct Acoustic Obstacle Scattering Problem. Given an entire
solution ui to the Helmholtz equation representing an incident field, find a
solution

u = ui + us

to the Helmholtz equation in R3 \ D̄ such that the scattered field us sat-
isfies the Sommerfeld radiation condition and the total field u satisfies the
boundary condition

u = 0, on ∂D
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Clearly, after renaming the unknown functions, this direct scattering
problem is a special case of the following Dirichlet problem.

Exterior Dirichlet Problem. Given a continuous function f on ∂D,
find a radiating solution u ∈ C2(R3\D̄)∩C(R3\D) to the Helmholtz equation

∆u+ k2u = 0, in R3 \ D̄

which satisfies the boundary condition

u = f, on ∂D

We briefly sketch uniqueness, existence and well-posedness for this boundary
value problem.

Lemma 5.22. Let u ∈ C2(R3\D̄)∩C(R3\D) be a solution to the Helmholtz
equation in R3 \ D̄ which satisfies the homogeneous Dirichlet boundary con-
dition on ∂D. We define DR := {y ∈ R3 \ D̄ : |y| < R} for sufficient large
R. Then ∇u ∈ L2(DR) and∫

|x|=R
u
∂ū

∂ν
ds =

∫
DR

(
|∇u|2 − k2|u|2

)
dx

Theorem 5.23. The exterior Dirichlet problem has at most one solution.

Proof. We have to show that solutions to the homogeneous boundary value
problem u = 0 on ∂D vanish identically. The above lemma, justifies the
application of Theorem 5.16 and hence u = 0 in R3 \ D̄.

The existence of a solution to the exterior Dirichlet problem can be based
on boundary integral equations. In the so-called layer approach, we seek
the solution in the form of acoustic surface potentials. Here, we choose
an approach in the form of a combined acoustic double- and single-layer
potential

u(x) =

∫
∂D

(
∂Φ(x, y)

∂ν(y)
− iηΦ(x, y)

)
φ(y)ds(y), x ∈ R3 \ ∂D (5.19)

with a density φ ∈ ∂D and a real coupling parameter η 6= 0. Then from
the jump relations of Theorem 5.18 we see that the potential u solves the
exterior Dirichlet problem provided the density is a solution of the integral
equation

φ+Kφ− iηSφ = 2f. (5.20)
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Since S,K : C(∂D) → C0,a(∂D) are bounded, from the compact imbed-
ding C0,a(∂D) ↪→ C(∂D), 0 < a ≤ 1 we see that S,K : C(∂D) → C(∂D)
are compact. Therefore, the existence of a solution can be established by
the Riesz-Fredholm theory for equations of the second kind with a compact
operator.

Let φ be a continuous solution to the homogeneous form of (5.20). Then
the potential u given by (5.19) satisfies the homogeneous boundary condition

u+ = 0, on ∂D

hence by the uniqueness for the exterior Dirichiet problem u = 0 in R3 \ D̄
follows. The jump relations now yield

−u− = φ, −∂u−
∂ν

= iηφ, on ∂D

Hence, using Green’s theorem (5.4), we obtain

iη

∫
∂D

|φ|2ds =

∫
∂D

ū−
∂u−
∂ν

ds =

∫
D

(
|∇u|2 − k2|u|2

)
dx

Taking the imaginary part of the last equation shows that φ = 0. Thus,
we have established uniqueness for the integral equation (5.20), that is, in-
jectivity of the operator I + K − iηS : C(∂D) → C(∂D). Then, by the
Riesz-Fkedholm theory, the inverse (I + K − iηS)−1 : C(∂D) → C(∂D) is
bounded. Hence, the inhomogeneous equation (5.20) possesses a solution
and this solution depends continuously on f in the maximum norm. From
the representation (5.19) of the solution as a combined double- and single-
layer potential, with the aid of the regularity estimates in Theorem 5.18, the
continuous dependence of the density φ on the boundary data f shows that
the exterior Dirichlet problem is well-posed, i.e., small deviations in f in the
maximum norm ensure small deviations in u in the maximum norm on R3\D
and small deviations of all its derivatives in the maximum norm on closed
subsets of R3 \ D̄.

We summarize these results in the following theorem.

Theorem 5.24. The exterior Dirichlet problem has a unique solution and the
solution depends continuously on the boundary data with respect to uniform
convergence of the solution on R3 \D and all its derivatives on closed subsets
of R3 \ D̄.
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Note that for η = 0 the integral equation (5.20) becomes non-unique if k
is a so-called irregular wave number or internal resonance, i.e., if there exist
nontrivial solutions u to the Helmholtz equation in the interior domain D
satisfying homogeneous Neumann boundary conditions ∂u/∂ν = 0 on ∂D.

In order to be able to use Green’s representation formula for the solution
of the exterior Dirichlet problem, we need its normal derivative. However,
assuming the given boundary values to be merely continuous means that
in general the normal derivative will not exist. Hence, we need to impose
some additional smoothness condition on the boundary data. This leads to
an operator that transfers the boundary values, i.e., the Dirichlet data, into
the normal derivative, i.e., the Neumann data, and therefore it is called the
Dirichlet to Neumann map.

In general, for the scattering problem the boundary values are as smooth
as the boundary since they are given by the restriction of the analytic function
ui to ∂D. In particular, for domains D of class C2 our regularity analysis
shows that the scattered field us is in C1,a(R3 \D). Therefore, we may apply
Green’s formula 5.8 with the result

us(x) =

∫
∂D

(
∂Φ(x, y)

∂ν
us(y)− Φ(x, y)

∂us(y)

∂ν(y)

)
ds(y), x ∈ R3 \ D̄, (5.21)

Green’s theorem (5.5), applied to the entire solution ui and Φ(x, .), gives

0 =

∫
∂D

(
∂Φ(x, y)

∂ν
ui(y)− Φ(x, y)

∂ui(y)

∂ν(y)

)
ds(y), x ∈ R3 \ D̄. (5.22)

Adding these two equations and using the boundary condition ui+us = 0
on ∂D gives the following theorem. The representation for the far field
pattern is obtained with the aid of (5.11).

Theorem 5.25. For the scattering of an entire field ui from a sound-soft
obstacle D we have

u(x) = ui(x)−
∫
∂D

Φ(x, y)
∂u(y)

∂ν(y)
ds(y), x ∈ R3 \ D̄,

and the far field pattern of the scattered field us is given by

u∞(x̂) = − 1

4π

∫
∂D

e−ikx̂·y
∂u(y)

∂ν(y)
ds(y), x̂ ∈ Ω,

In physics, the this representation for the scattered field is known as
Huygen’s principle.
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5.2.5 Scattering from a Sound-hard Obstacle

Exterior Neumann Problem. Given a continuous function f on ∂D, find
a radiating solution u ∈ C2(R3 \ D̄) ∩ C(R3 \D) to the Helmholtz equation

∆u+ k2u = 0, in R3 \ D̄

which satisfies the boundary condition

∂u

∂ν
= g, on ∂D

Uniqueness for the Neumann problem follows from Theorem (5.16). To prove
existence we again use a combined single- and double-layer approach. We
overcome the problem that the normal derivative of the double-layer potential
in general does not exist if the density is merely continuous by incorporating
a smoothing operator, that is, we seek the solution in the form

u(x) =

∫
∂D

(
Φ(x, y)φ(y) + iη

∂Φ(x, y)

∂ν(y)
(S2

0φ)(y)

)
ds(y), x ∈ R3 \ ∂D

(5.23)
with a density φ ∈ ∂D and a real coupling parameter η 6= 0. By S0 we
denote the single-layer operator in the potential theoretic limit case k = 0.
Note that by Theorem 5.19 the density S2

0φ of the double-layer potential
belongs to C1,a(∂D). This operator is called a smoothing operator. From
Theorem 5.18 we see that 5.23 solves the exterior Neumann problem provided
the density is a solution of the integral equation

φ−K ′φ− iηTS2
0φ = −2g. (5.24)

Since K ′ + iηTS2
0 : C0,a(∂D) → C0,a(∂D) is compact the Riesz-Fredholm

theory is available.
Let φ be a continuous solution to the homogeneous form of (5.24). Then

the potential u given by (5.23) satisfies the homogeneous boundary condition

∂u+

∂ν
= 0, on ∂D

hence by the uniqueness for the exterior Neumann problem u = 0 in R3 \ D̄
follows. The jump relations now yield

−u− = iηS2
0φ, −∂u−

∂ν
= −φ, on ∂D
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and, by interchanging the order of integration and using Green’s integral
theorem as above in the proof for the Dirichlet problem, we obtain

iη

∫
∂D

|S0φ|2ds = iη

∫
∂D

φS2
0 φ̄ ds =

∫
∂D

ū−
∂u−
∂ν

ds =

∫
D

(
|∇u|2 − k2|u|2

)
dx

whence S0φ = 0 on ∂D follows. The single-layer potential S0 with density
φ and wave number k = 0 is continuous throughout R3, harmonic in D and
in R3 \ D̄ and vanishes on ∂D and at infinity. Therefore, by the maximum-
minimum principle for harmonic functions, we have S0φ = 0 in R3 and the
jump relation yields φ = 0. Thus, we have established injectivity of the
operator I−K ′−iηTS2

0 and, by the Riesz-Fredholm theory, (I−K ′−iηTS2
0)−1

exists and is bounded in C(∂D). From this we conclude the existence of the
solution to the Neumann problem for continuous boundary data g and the
continuous dependence of the solution on the boundary data.

Theorem 5.26. The exterior Neumann problem has a unique solution and
the solution depends continuously on the boundary data with respect to uni-
form convergence of the solution on R3 \D and all its derivatives on closed
subsets of R3 \ D̄.

5.2.6 Scattering in inhomogeneous medium

Recall that if the inhomogeneous region is contained inside a ball B, i.e.,
c(x) = c0 = constant for x ∈ R3 \ B, we see that the scattering problem
under consideration is now modeled by

∆u+ k2n(x)u = 0, in R3

ui + us = u (5.25)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0

where k = ω/c0 > 0 and

n(x) :=
c2

0

c2(x)
,

is the refractive index, positive, satisfying n(x) = 1 for x ∈ R3 \B. we would
also like to include the possibility that the medium is absorbing, i.e., the
refractive index has an imaginary component.
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The Lippmann-Schwinger Equation

The aim of this section is to derive an integral equation that is equivalent to
the scattering problem (5.25) where n ∈ C1(R3) has the general form

n(x) = n1(x) + i
n2(x)

k
.

We set
m := 1− n

with compact support and

n1(x) > 0 and n2(x) ≥ 0

for all x ∈ R3. We set in addition D := {x ∈ R3 : m(x) 6= 0}. To derive an
integral equation equivalent to (5.25), we shall need to consider the volume
potential

u(x) :=

∫
R3

Φ(x, y)φ(y)dy, x ∈ R3, (5.26)

where Φ is the fundamental solution to the Helmholtz equation and φ is a
continuous function in R3 with compact support, i.e., φ ∈ C0(R3).

Theorem 5.27. The volume potential u given by (5.26) exists as an improper
integral for all x ∈ R3 and has the following properties. If φ ∈ C0(R3)
then u ∈ C1,a(R3) and the orders of differentiation and integration can be
interchanged.

If φ ∈ C0(R3) ∩ C1,a(R3) then u ∈ C2,a(R3) and

∆u+ k2u = −φ, in R3.

In addition,
‖u‖2,a,R3 ≤ C ‖φ‖a,R3 ,

where C > 0 depends only on the support of φ.

We now show that the scattering problem (5.25) is equivalent to the
problem of solving an integral equation.

Theorem 5.28. If u ∈ C2(R3) is a solution of (5.25), then u is a solution
of

u(x) = ui(x)− k2

∫
R3

Φ(x, y)m(y)u(y)dy, x ∈ R3. (5.27)

Conversely, if u ∈ C(R3) is a solution of (5.27) then u ∈ C2(R3) and u
is a solution of (5.25).
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Proof. Let u ∈ C2(R3) be a solution of (5.25). Let x ∈ R3 be an arbitrary
point and choose an open ball B with exterior unit normal ν containing the
support of m such that x ∈ B. From Green’s formula (5.10) applied to u, we
have

u(x) =

∫
∂B

(
∂u

∂ν
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂ν(y)

)
ds(y)

− k2

∫
B

Φ(x, y)m(y)u(y)dy, (5.28)

since ∆u + k2u = mk2u. Note that in the volume integral over B we can
integrate over all of R3 since m has support in B. Green’s formula applied
to ui, gives

ui(x) =

∫
∂B

(
∂ui

∂ν
(y)Φ(x, y)− ui(y)

∂Φ(x, y)

∂ν(y)

)
ds(y). (5.29)

Finally, from Green’s theorem 5.5 and the radiation condition we see that∫
∂B

(
∂us

∂ν
(y)Φ(x, y)− us(y)

∂Φ(x, y)

∂ν(y)

)
ds(y) = 0

With the aid of u = ui + us we can now combine the above equations to
conclude that (5.27) is satisfied.

Conversely, let u ∈ C(R3) be a solution of (5.27) and define us by

us(x) := −k2

∫
B

Φ(x, y)m(y)u(y)dy, x ∈ R3

Since Φ satisfies the Sommerfeld radiation condition uniformly with respect
to y on compact sets and m has compact support, it is easily verified that
us satisfies the Sommerfeld radiation condition. Since m ∈ C1

0(R3), we can
conclude from (5.27) and Theorem (5.27) that first u ∈ C1(R3) and then
that us ∈ C2(R3) with ∆us + k2us = mk2u. Finally, since ∆ui + k2ui = 0,
we can conclude that

∆u+ k2u = mk2u

that is,
∆u+ k2nu = 0.

in R3 and the proof is completed.
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We show that (5.27) is uniquely solvable for all values of k > 0. This
result is nontrivial since it is based on the unique continuation principle.

Theorem 5.29. Let G be a domain in R3 and suppose u ∈ C2(G) is a
solution of

∆u+ k2n(x)u = 0

in G such that n ∈ C(Ḡ) and u vanishes in a neighbourhood of some x0 ∈ G.
Then u is identically zero in G.

Theorem 5.30. For each k > 0 there exists a unique solution to (5.25) and
the solution u depends continuously with respect to the maximum norm on
the incident field ui.

Proof. As previously discussed, to show existence and uniqueness it suffices
to show that the only solution of

∆u+ k2n(x)u = 0, in R3 (5.30)

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0

is u identically zero. If this is done, by the Riesz-Fredholm theory the integral
equation (5.27) can be inverted in C(B̄) and the inverse operator is bounded.
From this, it follows that u depends continuously on the incident field ui

with respect to the maximum norm. Hence we only must show that the only
solution of (5.30) is u = 0.

Recall that B is chosen to be a ball of radius a centered at the origin such
that m vanishes outside of B. As usual ν denotes the exterior unit normal
to ∂B. We begin by noting from Green’s theorem (5.4) that∫

|x|=a
u
∂ū

∂ν
ds =

∫
|x|≤a

(
|∇u|2 − k2n̄|u|2

)
dx

From this, since =n > 0, it follows that

=
∫
|x|=a

u
∂ū

∂ν
ds = k2

∫
|x|≤a
=n |u|2dx ≥ 0

Theorem (5.16) now shows that u(x) = 0 for |x| ≥ a and it follows by the
previous Theorem that u(x) = 0 for all x ∈ R3.



Chapter 6

Regularization Theory

This chapter is mainly based on [8]. The last section follows [1].

6.1 General Regularization Scheme

Many inverse problems lead to integral equations of the first kind with con-
tinuous or weakly singular kernels. Such integral operators are compact with
respect to any reasonable topology. These inverse problems can be formu-
lated as operator equations of the form

Kx = y,

where, for now, K is a linear compact operator between Hilbert spaces X
and Y over R or C. Let K be also one-to-one and assume that that there
exists a solution x ∈ X of the unperturbed equation Kx = y. In other words,
we assume that y ∈ R(K). The injectivity of K implies that this solution is
unique.

In practice, the right-hand side y ∈ Y is never known exactly but only
up to an error of, say, δ > 0. Therefore, we assume that we know δ > 0 and
yδ ∈ Y with ∥∥y − yδ∥∥ ≤ δ. (6.1)

We want to “solve” the perturbed equation

Kxδ = yδ. (6.2)

In general, Equation (6.2) is not solvable because we cannot assume that the
measured data yδ are in the range R(K) of K. Therefore, the best we can
hope is to determine an approximation xδ ∈ X to the exact solution x.

83
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Definition 6.1. Let K : X → Y be a linear bounded operator between Ba-
nach spaces, X1 ⊂ X a subspace, and ‖·‖1 a “stronger” norm on X1, that is,
there exists c > 0 such that ‖x‖ ≤ c ‖x‖1 for all x ∈ X1. Then, we define

F(δ, E, ‖·‖1) := sup{‖x‖ : x ∈ X1, ‖Kx‖ ≤ δ, ‖·‖1 ≤ E}

and call F(δ, E, ‖·‖1) the worst-case error for the error δ in the data and a
priori information ‖x‖1 ≤ E.

F(δ, E, ‖·‖1) depends on the operator K and the norms in X, Y, and
X1. It is desirable that this worst-case error not only converge to zero as
δ → 0 but that it be of order δ. This is certainly true (even without a
priori information) for bounded invertible operators, as is readily seen from
the inequality ‖x‖ ≤ ‖K−1‖ ‖Kx‖ . For compact operators K, however, and
norm ‖·‖1 = ‖·‖ , this worst-case error does not converge.

Thus, we want the approximation xδ to the exact solution x that is “not
much worse” than the worst-case error F(δ, E, ‖·‖1).

An additional requirement is that the approximate solution xδ should
depend continuously on the data yδ. In other words, it is our aim to construct
a suitable bounded approximation R : Y → X of the (unbounded) inverse
operator K−1 : R(K)→ X.

Definition 6.2. A regularization strategy is a family of linear and bounded
operators

Ra : Y → X, a > 0,

such that
lim
a→0

RaKx = x, for all x ∈ X,

that is, the operators RaK converge pointwise to the identity.

From this definition and the compactness of K, we conclude the following:

Theorem 6.3. Let Ra be a regularization strategy for a compact operator
K : X → Y where dimX =∞. Then we have:

1. The operators Ra are not uniformly bounded, that is, there exists a
sequence (aj) with

∥∥Raj

∥∥→∞ for j →∞.

2. The sequence (RaKx) does not converge uniformly on bounded subsets
of X, that is, there is no convergence RaK to the identity I in the
operator norm.
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Proof. 1. Assume on the contrary, that there exist c > 0 such that ‖Ra‖ ≤
c for all a > 0. From Ray → K−1y as a → 0 for all y ∈ R(K) and
‖Ray‖ ≤ c ‖y‖ for a > 0 we conclude that ‖K−1y‖ ≤ c ‖y‖ for every
y ∈ R(K) , that is K−1 is bounded. This implies that I = K−1K :
X → Y is compact, a contradiction to dimX =∞.

2. Assume that RaK → I. From the compactness of RaK and theorem
(5.5), we conclude that I is also compact, which again would imply
that dimX <∞.

The notion of a regularization strategy is based on unperturbed data, that
is, the regularizer Ray converges to x for the exact right-hand side y = Kx.
Now let y ∈ R(K) be the exact right-hand side and yδ ∈ Y be the measured
data satisfying (6.1). We define

xa,δ := Ray
δ

as an approximation of the solution x of Kx = y. Then the error splits into
two parts by the following obvious application of the triangle inequality:∥∥xa,δ − x∥∥ ≤ ∥∥Ray

δ −Ray
∥∥+ ‖Ray − x‖ (6.3)

≤ ‖Ra‖
∥∥yδ − y∥∥+ ‖RaKx− x‖ (6.4)

≤ δ ‖Ra‖+ ‖RaKx− x‖ (6.5)

This is our fundamental estimate, which we use often in the following.
We observe that the error between the exact and computed solutions consists
of two parts: The first term on the right-hand side describes the error in the
data multiplied by the “condition number” of the regularized problem. By
Theorem (6.3), this term tends to infinity as a tends to zero. The second
term denotes the approximation error ‖(Ra −K−1)y‖ at the exact right-hand
side y = Kx. By the definition of a regularization strategy, this term tends
to zero with a.

We need a strategy to choose a = a(δ) dependent on δ in order to keep the
total error as small as possible. This means that we would like to minimize

δ ‖Ra‖+ ‖RaKx− x‖ .
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Definition 6.4. A regularization strategy a = a(δ) is called admissible if
a(δ)→ 0 and

sup{
∥∥Ra(δ)y

δ − x
∥∥ : yδ ∈ Y,

∥∥Kx− yδ∥∥ ≤ δ} → 0, δ → 0

for every x ∈ X.

A convenient method to construct classes of admissible regularization
strategies is given by filtering singular systems.

Definition 6.5 (Singular Values). Let X and Y be Hilbert spaces and
K : X → Y be a compact operator with adjoint operator K∗ : Y → X,

(Kx, y) = (x,K∗y), for all x ∈ X, y ∈ Y.

The square roots µj =
√
λj , j ∈ J, of the eigenvalues λj of the self-adjoint

operator K∗K : X → X are called singular values of K. Here again, J ⊂ N
could be either finite or J = N.

Note that every eigenvalue λ of K∗K is nonnegative because K∗Kx = λx
implies that

λ(x, x) = (K∗Kx, x) = (Kx,Kx) ≥ 0, i.e., λ ≥ 0.

Theorem 6.6 (Singular Value Decomposition). Let K : X → Y be a
linear compact operator, K∗ : Y → X its adjoint operator, and µ1 ≥ µ2 ≥
µ3 > ... > 0 the ordered sequence of the positive singular values of K, counted
relative to its multiplicity. Then there exist orthonormal systems (xj) ⊂ X
and (yj) ⊂ Y with the following properties:

Kxj = µjyj, K∗yj = µjxj, for all j ∈ J.

The system (µj, xj, yj) is called a singular system for K. Every x ∈ X
possesses the singular value decomposition

x = x0 +
∑
j∈J

(x, xj)xj,

for some x0 ∈ N (K) and

Kx =
∑
j∈J

µj(x, xj)yj
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The following theorem characterizes the range of a compact operator with
the help of a singular system.

Theorem 6.7 (Picard). Let K : X → Y be a linear compact operator with
singular system (µj, xj, yj). The equation,

Kx = y

has a solution of the form

x =
∑
j∈J

1

µj
(y, yj)xj

if and only if

y ∈ N (K∗)⊥ and
∑
j∈J

1

µ2
j

|(y, yj)|2 <∞

A convenient method to construct classes of admissible regularization
strategies is given by filtering singular systems. Let K : X → Y be a linear
compact operator, and let (µj, xj, yj) be a singular system for K. As readily
seen, the solution x of Kx = y is given by Picards theorem, provided the
series converges, that is, y ∈ R(K). This result illustrates again the influence
of errors in y. We construct regularization strategies by damping the factors
1/µj.

Theorem 6.8. Let K : X → Y be a linear compact operator with singular
system (µj, xj, yj) and

q : (0,∞)× (0, ‖K‖)→ R

be a function with the following properties:

1. |q(a, µ)| ≤ 1 for all a > 0 and 0 < µ ≤ ‖K‖ .

2. For every a > 0 there exists c(a) such that

|q(a, µ)| ≤ c(a)µ for all 0 < µ ≤ ‖K‖ .

3. lim
a→0

q(a, µ) = 1 for every 0 < µ ≤ ‖K‖ .
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Then the operator Ra : Y → X, a > 0, defined by

Ray :=
∑
j∈J

q(a, µj)

µj
(y, yj)xj, y ∈ Y,

is a regularization strategy with ‖Ra‖ ≤ c(a). A choice a = a(δ) is admissible
if a(δ)→ 0 and δ c(a)→ 0 as δ → 0. The function q is called a regularizing
filter for K.

Proof. Theorem 2.6, page 32 [8].

However, we are interested in optimal strategies, that is, those that con-
verge of the same order as the worst-case error. This can be done by a
proper replacement of assumption (3), leading to such optimal strategies.
There are many examples of functions q : (0,∞)× (0, ‖K‖)→ R that satisfy
the assumptions of the above theorem. For example:

1. q(a, µ) =
µ2

a+ µ2
, with c(a) =

1

2
√
a

2. q(a, µ) = 1− (1− κµ2)1/a, with c(a) =

√
κ

a
, 0 < κ < 1/ ‖K‖2 .

3. q(a, µ) =

{
1, µ2 ≥ a
0, µ2 < a

, with c(a) =
1√
a

All of the functions q are regularizing filters that lead to optimal regu-
larization strategies. We will see later that the regularization methods for
the first two choices of q admit a characterization that avoids knowledge of
the singular system. The choice (3) of q is called the spectral cut-off. The
spectral cut-off solution xa,δ ∈ X is therefore defined by

xa,δ =
∑
µ2j≥a

1

µj
(yδ, yj)xj

We combine the fundamental estimate (6.3) with the previous theorem and
show the following result for the cut-off solution.

Theorem 6.9. Let yδ ∈ Y be such that (6.1), where y = Kx denotes the
exact right-hand side.
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1. Let K : X → Y be a linear compact operator with singular system
(µj, xj, yj). The operators

Ray :=
∑
µ2j≥a

1

µj
(yδ, yj)xj, y ∈ Y,

define a regularization strategy with ‖Ra‖ ≤ 1/
√
a. This strategy is

admissible if a(δ)→ 0 and δ2/a(δ)→ 0 as δ → 0.

2. Let x = K∗z ∈ R(K∗) with ‖z‖ ≤ E and c > 0. For the choice
a(δ) = cδ/E, we have the estimate,

∥∥xa,δ − x∥∥ ≤ ( 1√
c

+
√
c

)√
δE

Therefore, the spectral cut-off is optimal for the information ‖K∗−1x‖ ≤ E
(if K∗ is one-to-one).

Proof. Theorem 2.9, page 36 [8].

For given concrete integral operators, however, one often wants to avoid
the computation of a singular system. In the next section, we give equivalent
characterizations for the first two examples without using singular systems.

6.1.1 Tikhonov Regularization

A common method to deal with overdetermined finite linear systems of the
form Kx = y is to determine the best fit in the sense that one tries to
minimize the defect ‖Kx− y‖ with respect to x ∈ X for some norm in Y.
If X is infinite-dimensional and K is compact, this minimization problem is
also ill-posed by the following lemma.

Lemma 6.10. Let X and Y be Hilbert spaces, K : X → Y be linear and
bounded, and y ∈ Y. There exists x̂ ∈ X with ‖Kx̂− y‖ ≤ ‖Kx− y‖ for all
x ∈ X if and only if x̂ ∈ X solves the normal equation K∗Kx̂ = K∗y. Here,
K∗ : Y → X denotes the adjoint of K.

Proof. Lemma 2.10, page 36 [8].
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As a consequence of this lemma we should penalize the defect (in the
language of optimization theory) or replace the equation of the first kind
K∗Kx̂ = K∗y with an equation of the second kind (in the language of inte-
gral equation theory). Both viewpoints lead to the following minimization
problem. Given the linear, bounded operator K : X → Y and y ∈ Y,
determine xa that minimizes the Tikhonov functional:

Ja(x) := ‖Kx− y‖2 + a ‖x‖2 for x ∈ X

We prove the following theorem.

Theorem 6.11. Let K : X → Y be a linear and bounded operator between
Hilbert spaces and a > 0. Then the Tikhonov functional Ja has a unique
minimum xa ∈ X. This minimum xa is the unique solution of the normal
equation

axa +K∗Kxa = K∗y. (6.6)

Proof. Theorem 2.11, page 37 [8].

The solution xa of Eq. (6.6) can be written in the form xa = Ray with

Ra := (aI +K∗K)−1K∗ : Y → X. (6.7)

Choosing a singular system (µj, xj, yj) for the compact operator K, we
see that Ray has the representation

Ray =
∑
j∈J

q(a, µj)

µj
(y, yj)xj =

∑
j∈J

µj
a+ µ2

j

(y, yj)xj, y ∈ Y,

with . This function q is exactly the filter function that was studied before.

Theorem 6.12. Let K : X → Y be a linear, compact operator and a > 0.

1. The operator aI +K∗K is bounded invertible. The operators Ra : Y →
X from (6.7) form a regularization strategy with ‖Ra‖ ≤ 1/(2

√
a). It

is called the Tikhonov regularization method. Ray
δ is determined as the

unique solution xa,δ ∈ X of the equation of the second kind

axa,δ +K∗Kxa,δ = K∗yδ. (6.8)

Every choice a(δ)→ 0 and δ2/a(δ)→ 0 as δ → 0 is admissible.
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2. Let x = K∗z ∈ R(K∗) with ‖z‖ ≤ E. We choose a(δ) = c δ/E for some
c > 0. Then the following estimate holds:

∥∥xa,δ − x∥∥ ≤ 1

2

(
1√
c

+
√
c

)√
δE.

Proof. Theorem 2.12, page 38 [8].

The eigenvalues of K tend to zero, and the eigenvalues of aI +K∗K are
bounded away from zero by a > 0. From the previous Theorem, we observe
that a has to be chosen to depend on δ in such a way that it converges to
zero as δ tends to zero but not as fast as δ2. From part (2), we conclude that
the smoother the solution x is the slower a has to tend to zero. On the other
hand, the convergence can be arbitrarily slow if no a priori assumption about
the solution x is available.

Theorem 6.13. Let K : X → Y be linear, compact, and one-to-one such
that the range R(K) is infinite-dimensional. Furthermore, let x ∈ X, and
assume that there exists a continuous function a : [0,∞) → [0,∞) with
a(0) = 0 such that

lim
δ→0

∥∥xa(δ),δ − x
∥∥ δ−2/3 = 0 (6.9)

for every yδ ∈ Y with
∥∥yδ −Kx∥∥ ≤ δ, where xa(δ),δ ∈ X solves (6.8). Then,

x = 0.

Proof. Theorem 2.13, page 39 [8].

Thus, Tikhonov regularization for an ill-posed linear problem with com-
pact operator never yields a convergence rate which is faster than O(δ2/3).
This is in contrast to, e.g., Landweber’s method or the conjugate gradient
method, i.e., a posteriori parameter choice methods.

If we want to solve Kx = y under the information
∥∥yδ − y∥∥ ≤ δ, we have

to accept any x ∈ X with ∥∥Kx− yδ∥∥ ≤ δ (6.10)

as an approximate solution, since it is compatible with the only knowledge
we have on the data. However, ifR(K) is not closed, the set of all x satisfying
the above inequality is unbounded even if N (K) = {0} reflecting the ill-
posedness of Kx = y. Since we are looking for a solution of Kx = y with
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minimal norm, it makes sense to use this as a constraint, in order to choose
one solution of (6.10), i.e., consider the problem

min ‖x‖ subject to
∥∥Kx− yδ∥∥ ≤ δ. (6.11)

This is a constrained optimization problem and if 0 is not in the feasible
region, i.e.

∥∥yδ∥∥ ≤ δ (less signal than noise), then the minimum is achieved
on the boundary of the feasible set, that is, (6.11) is equivalent to,

min ‖x‖2 subject to
∥∥Kx− yδ∥∥2

= δ2. (6.12)

Using Lagrange multipliers, we reformulate it to,

min ‖x‖2 + λ
∥∥Kx− yδ∥∥2

. (6.13)

This equivalent to the Tikhonov functional with a = 1/λ. This can be seen
as a different motivation for Tikhonov regularization itself, but also provides
a rule for choosing the regularization parameter, it should be chosen such
that the constraint in (6.12) is satisfied.

6.1.2 The Discrepancy Principle of Morozov

In this section, we study a discrepancy principle based on the Tikhonov
regularization method. Throughout this section, we assume again that K :
X → Y is a compact and injective operator between Hilbert spaces X and
Y with dense range R(K) ⊂ Y. Again, we study the equation

Kx = y

for given y ∈ Y. The Tikhonov regularization, corresponds to the regulariza-
tion operators (6.7) with a > 0 that approximate the unbounded inverse of
K on R(K). We have seen that xa = Ray exists and is the unique minimum
of the Tikhonov functional. More facts about the dependence on a and y are
proven in the following theorem.

Theorem 6.14. Let y ∈ Y, a > 0 and xa be the unique solution of the
equation

axa +K∗Kxa = K∗y. (6.14)
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Then xa depends continuously on y and a. The mapping a 7→ ‖xa‖ is
monotonously non increasing and

lim
a→∞

xa = 0.

The mapping a 7→ ‖Kxa − y‖ is monotonously non decreasing and

lim
a→0

Kxa = y.

If K∗y 6= 0, then strict monotonicity holds in both cases.

Proof. Theorem 2.16, page 46 [8].

Now we consider the determination of a(δ) from the discrepancy principle.
We compute a = a(δ) > 0 such that the corresponding Tikhonov solution
xa,δ, that is, the solution of the equation

axa,δ +K∗Kxa,δ = K∗yδ. (6.15)

that is, the minimum of

Ja,δ(x) :=
∥∥Kx− yδ∥∥2

+ a ‖x‖2 ,

satisfies the equation ∥∥Kxa,δ − yδ∥∥ = δ. (6.16)

Note that this choice of a by the discrepancy principle guarantees that,
on the one side, the error of the defect is δ and, on the other side, a is not
too small. Equation (6.16) is uniquely solvable, provided∥∥yδ − y∥∥ ≤ δ <

∥∥yδ∥∥ ,
because by the previous theorem

lim
a→∞

∥∥Kxa,δ − yδ∥∥ =
∥∥yδ∥∥ > δ

and
lim
a→0

∥∥Kxa,δ − yδ∥∥ = 0 < δ.

Furthermore, a 7→
∥∥Kxa,δ − yδ∥∥ is continuous and strictly increasing.
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Theorem 6.15. Let K : X → Y be linear, compact and one-to-one with
dense range in Y. Let Kx = y with x ∈ X, y ∈ Y, yδ ∈ Y such that∥∥yδ − y∥∥ ≤ δ <

∥∥yδ∥∥ .
Let the Tikhonov solution xa satisfy

∥∥Kxa,δ − yδ∥∥ = δ for all δ ∈ (0, δ0).
Then

1. xa(δ),δ → x for δ → 0, that is, the discrepancy principle is admissible.

2. Let x = K∗z ∈ K∗(Y ) with ‖z‖ ≤ E. Then,∥∥xa,δ − x∥∥ ≤ 2
√
δE.

Therefore, the discrepancy principle is an optimal regularization strat-
egy under the information ‖K∗−1x‖ ≤ E.

Proof. Theorem 2.17, page 48 [8].

The condition
∥∥yδ∥∥ > δ certainly makes sense because otherwise the

right-hand side would be less than the error level δ , and xδ = 0 would be an
acceptable approximation to x.

The determination of a(δ) is thus equivalent to the problem of finding the
zero of the monotone function

φ(a) :=
∥∥Kxa,δ − yδ∥∥2 − δ2

(for fixed δ > 0). It is not necessary to satisfy the equation
∥∥Kxa,δ − yδ∥∥ = δ

exactly. An inclusion of the form

c1δ ≤
∥∥Kxa,δ − yδ∥∥ ≤ c2δ

is sufficient to prove the assertions of the previous theorem.
The computation of a(δ) can be carried out with Newton’s method. The

derivative of the mapping a 7→ xa,δ is given by the solution of the equation

(aI +K∗K)
∂

∂a
xa,δ = −xa,δ,

as is easily seen by differentiating with respect to a.
We remark that the estimate a(δ) = δ ‖K‖2 /(

∥∥yδ∥∥− δ) can be a starting
value for Newton’s method to determine a(δ).

The biggest disadvantage of Tikhonov regularization with Morozov’s dis-
crepancy principle is the repeated matrix manipulation done to compute
the solution. Another disadvantage of Tikhonov regularization is the over-
smoothing effect. In order to reconstruct non-smooth or discontinuous solu-
tions, one has to use a different penalty term.
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6.2 Bounded variation penalty methods

Let Ω be a bounded convex region in Rn, n = 1, 2, 3 with Lipschitz continuous
boundary ∂Ω. We consider the equation,

Ku = y,

where K is a linear operator from Lp(Ω) into a Hilbert space H, containing
y. We specify the norms,

|x| =

(
n∑
k=1

x2
k

)1/2

,

‖u‖Lp(Ω) =

(∫
Ω

|u(x)|p dx
)1/p

, 1 ≤ p <∞

and for p =∞,

‖u‖L∞(Ω) = inf {c ∈ R : |u(x)| < c for a.e. x ∈ X}

and |Ω| the Lebesgue measure of Ω and χS the indicator function of a set
S ⊂ Ω. We define the BV semi-norm, or total variation,

TV0(u) := sup
v∈V

∫
Ω

(−u div v)dx, (6.17)

where the test functions v belong to

V = {v ∈ C1
0(Ω) : |v(x)| ≤ 1, for all x ∈ Ω}

If u ∈ C1(Ω), then using integration by parts,

TV0(u) =

∫
Ω

|∇u(x)|dx. (6.18)

Then, we consider the problem to minimize the Tikhonov functional,
given now by,

Ja(x) := ‖Ku− y‖2 + a TV0(u).

A more general penalty functional, than the TV semi-norm, can be also
considered, for sufficiently smooth u,

TVβ(u) =

∫
Ω

√
|∇u(x)|2 + β dx, (6.19)



96 CHAPTER 6. REGULARIZATION THEORY

where β ≥ 0. Of course, when β = 0 this reduces to the usual TV. The above
norm can be defined also for non-smooth functions u as we are going to see
later. The advantage of this form is that taking β > 0 we gain differentiation
of the functional TVβ when ∇u = 0.

Going back to (6.18), we state that this holds also for u ∈ W 1,1(Ω). Now,
we are in position to define the space of functions of bounded variations on
Ω by,

BV (Ω) = {u ∈ L1(Ω) : TV0(u) <∞},

with BV norm
‖u‖BV = ‖u‖L1(Ω) + TV0(u).

Remark 6.16. The space BV (Ω) is a Banach space with respect to this
norm. The Sobolev space W 1,1(Ω) is a proper subset of BV (Ω). Since Ω is
bounded, Lp(Ω) ⊂ L1(Ω), for p > 1 and from the definition, BV (Ω) ⊂ L1(Ω).

We define the convex function,

f(x) =
√
|x|2 + β,

given by

f(x) = sup{x · y +
√
β(1− |y|2) : y ∈ Rn, |y| ≤ 1}.

This function attains the supremum for y = x/
√
|x|2 + β. In a similar way,

we can define,

TVβ(u) := sup
v∈V

∫
Ω

−u div v +
√
β(1− |v(x)|2 dx. (6.20)

Note that for β > 0, TVβ is not a semi-norm.

Theorem 6.17. If u ∈ W 1,1(Ω), then (6.19) holds.

Proof. Since C1(Ω) is dense in W 1,1(Ω), it is sufficient to show (6.19) for
u ∈ C1(Ω). From Green’s theorem it follows that,∫

Ω

−u div v +
√
β(1− |v(x)|2 dx =

∫
Ω

∇u · v +
√
β(1− |v(x)|2 dx

≤
∫

Ω

√
|∇u|2 + β dx
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where we have used the definition of f. Consequently,

TVβ(u) ≤
∫

Ω

√
|∇u|2 + β dx.

For the reverse inequality, we set v̄ = ∇u/
√
|∇u|2 + β, and observe that,∫

Ω

∇u · v̄ +
√
β(1− |v̄(x)|2 dx =

∫
Ω

√
|∇u|2 + βdx

and v̄ ∈ C(Ω;Rn) with |v̄| < 1 for all x ∈ Ω. By multiplying v̄ by a suitable
characteristic function compactly supported in Ω, we can deduce v ∈ V ∩
C∞0 (Ω) for which the left-hand side of the above inequality is arbitrary close
to
∫

Ω

√
|∇u|2 + β dx.

The next theorem shows that both TV0 and TVβ have the set BV (Ω) as
their feasible region, and that TV0 is the pointwise limit of TVβ.

Theorem 6.18. 1. For any β > 0 and u ∈ L1(Ω),

TV0(u) <∞ if and only if TVβ(u) <∞.

2. For any u ∈ BV (Ω),

lim
β→0

TVβ(u) = TV0(u).

Proof. For any v ∈ V and u ∈ L1(Ω),∫
Ω

−u div v dx ≤
∫

Ω

−u div v +
√
β(1− |v(x)|2 dx

≤
∫

Ω

−u div v +
√
β dx

Taking the sup over v ∈ V,

TV0(u) ≤ TVβ(u) ≤ TV0(u) +
√
β|Ω|.

The results follow from the boundedness of Ω.

Theorem 6.19. For any β ≥ 0, TVβ is convex.
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Proof. Let 0 ≤ λ ≤ 1, and u1, u2 ∈ Lp(Ω). For any v ∈ V,

TVβ(λu1 + (1− λ)u2) = sup
v∈V

∫
Ω

−(λu1 + (1− λ)u2) div v +
√
β(1− |v(x)|2 dx

= λ sup
v∈V

∫
Ω

−u1 div v +
√
β(1− |v(x)|2 dx

+ (1− λ) sup
v∈V

∫
Ω

−u2 div v +
√
β(1− |v(x)|2 dx

≤ λTVβ(u1) + (1− λ)TVβ(u2).

Theorem 6.20. For any β ≥ 0, TVβ is weakly lower semicontinuous with
respect to the Lp topology for 1 ≤ p <∞.

Proof. Let un converges weakly in Lp(Ω), i,e, un ⇀ ū. For any v ∈ V, divv ∈
C(Ω) and hence,∫

Ω

−ū div v +
√
β(1− |v|2 dx = lim

n→∞

∫
Ω

−un div v +
√
β(1− |v|2 dx

= lim
n→∞

inf

∫
Ω

−un div v +
√
β(1− |v|2 dx

≤ lim
n→∞

infTVβ(un)

Taking the supremum over v ∈ V, gives TVβ(ū) ≤ lim
n→∞

infTVβ(un).

A set of functions S is defined to be BV -bounded if there exists a constant
b > 0 for which ‖u‖BV ≤ b for all u ∈ S. The relative compactness of
BV−bounded sets in Lp(Ω) follows from the next lemma.

Lemma 6.21. If u ∈ BV (Ω), then there exists a sequence {un} ∈ C∞(Ω)
such that

lim
n→∞

‖un − u‖Lp(Ω) = 0, lim
n→∞

TV0(un) = TV0(u).

Theorem 6.22. Let S be a BV -bounded set of functions. Then S is relatively
compact in Lp(Ω) for 1 ≤ p < d/(d − 1). S is bounded, and hence relatively
weakly compact for dimensions d ≥ 2, in Lp(Ω) for p = d/(d− 1).
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Proof. Note that d/(d− 1) is the Sobolev conjugate of 1 in dimension d, the
Sobolev conjugate of p, where 1 ≤ p < d, being defined by l/p∗ = l/p− l/d.
For 1 ≤ p < d/(d− l), the Rellich-Kondrachov compact embedding theorem
holds. A sequence un in S may then be approximated by a sequence of
functions in C∞(Ω), themselves uniformly bounded in BV (Ω) and in Lp(Ω),
so that their sequence must have a subsequence converging in Lp(Ω) to some
u. By semicontinuity of TV0 and the above lemma, u ∈ BV (Ω) and is the
limit (in Lp) of a subsequence extracted from un.

For p = d/(d−1), one can similarly extend to BV -functions the Poincark-
Wirtinger inequality: if

µ =
1

|Ω|

∫
Ω

u(x)dx,

then there exists c such that

‖u− µ‖Lp(Ω) ≤ c TV0(u− µ) = c TV0(u).

Hence, if, say, ‖u‖BV ≤M, then TV0(u− µ) is also bounded by M, and,
by the Poincare-Wirtinger inequality, ‖u− µ‖Lp(Ω) ≤ cM. Consequently,

‖u‖Lp(Ω) ≤ ‖uχΩ‖Lp(Ω) + ‖u− µ‖Lp(Ω)

≤ |µ||Ω|1/p + cM

≤ ‖u‖L1(Ω) |Ω|
1/p−1 + cM

≤ (|Ω|1/p−1 + c)M

=≤ (|Ω|−1/d + c)M

Relative weak compactness in dimensions d ≥ 2 follows from the Banach-
Alaoglu theorem.

6.2.1 Well-posehess of minimization problems

Let T : Lp(Ω) → [−∞,∞]. The following theorems guarantee the well-
posedness of the unconstrained minimization problem

min
u∈Lp(Ω)

T (u). (6.21)
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In order to use the compactness results while still dealing with uncon-
strained minimization problems, we introduce the following property. We
define T to be BV -coercive if

T (u)→ +∞ when ‖u‖BV → +∞. (6.22)

Note that the sets {u ∈ Lp(Ω) : T (u) ≤ a}, where a ≥ 0 are BV -bounded.

Theorem 6.23 (Existence ad uniqueness of minimizers). Suppose that
T is BV -coercive. If 1 ≤ p < d(d− 1) and T is lower semicontinuous, then
problem (6.21) has a solution. If in addition p = d/(d− l), dimension d ≥ 2,
and T is weakly lower semicontinuous, then a solution also exists. In either
case, the solution is unique if T is strictly convex.

Proof. The following argument is standard. Let un, be a minimizing sequence
for T, in other words,

T (un)→ inf
u∈Lp(Ω)

T (u) := Tmin.

By hypothesis (6.22), the un are BV -bounded. As a consequence of
theorem (6.22), there exists a subsequence unj which converges to some
ū ∈ Lp(Ω). Convergence is weak if p = d/(d − 1). By the (weak) lower
semicontinuity of T,

T (u) ≤ lim
j→∞

infT (unj) = Tmin.

Uniqueness of minimizers follows immediately from strict convexity.

Next consider a sequence of perturbed problems

min
u∈Lp(Ω)

Tn(u). (6.23)

Theorem 6.24 (Stability of minimizers). Assume that 1 ≤ ped/(d − 1)
and that T and each of the Tn are BV -coercive, lower semicontinuous, and
have a unique minimizer. Assume in addition:

1. Uniform BV -Coercivity: For any sequence vn ∈ Lp(Ω),

lim
n→∞

Tn(vn) = +∞ when lim
n→∞

‖vn‖BV = +∞ (6.24)
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2. Consistency: Tn → T uniformly on BV -bounded sets, i.e. given b > 0
and ε > 0, there exists N such that

|Tn(u)− T (u)| < ε when n ≥ N, ‖u‖BV ≤ b. (6.25)

Then problem (6.21) is stable with respect to the perturbations (6.23),
i.e. if ū minimizes T and un minimizes Tn, then

‖un − ū‖Lp(Ω) → 0. (6.26)

If p = d/(d−1), d ≥ 2, and one replaces the lower semicontinuity assumption
on T and each Tn, by weak lower semicontinuity, then convergence is weak,

un ⇀ ū. (6.27)

Proof. Note that Tn(un) ≤ Tn(ū). From this and equation (6.25),

lim
n→∞

inf Tn(un) ≤ lim
n→∞

supTn(un) ≤ T (ū) <∞ (6.28)

and hence by (6.24) the un are BV-hounded. Now suppose (6.26) (or (6.27)
if p = d/(d − 1)) does not hold. By Theorem (6.22) there exists a subse-
quence unj , which converges in Lp(Ω) to some û 6= ū. By the (weak) lower
semicontinuity of T , (6.28), and (6.25),

T (û) ≤ lim
n→∞

inf T (unj)

= lim(T (unj)− Tnj(unj)) + lim
n→∞

inf Tnj(unj)

≤ T (ū)

But this contradicts the uniqueness of the minimizer ū of T.

Example 6.25 (Existence-uniqueness). Consider the problem of mini-
mizing

T (u) = ‖Au− z‖2
Z + a ‖u‖BV

for u ∈ Lp(Ω), where the restrictions on p in theorem (6.23) apply. Here
(a > 0 and z ∈ Z are fixed, and A : Lp(Ω)→ Z is hounded and linear. Then

‖u‖BV ≤
1

a
T (u)
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and hence, the coercivity condition (6.22) holds. Weak lower semicontinuity
of T follows from the houndedness of A, the weak lower semicontinuity of
the norms on Banach spaces, and theorem (6.20). By theorem (6.19), the
linearity of A, and convexity of norms, T is convex. By theorem (6.23) a
minimizer exists. T is strictly convex if A is injective, in which case the
minimizer is unique.

The following examples deal with stability. In the next example, assume
again that the restrictions on p of theorem (6.23) apply.

Example 6.26 (Perturbations in the data). Let

Tn(u) = ‖Au− zn‖2
Z + a ‖u‖BV

where zn = z + δn, where ‖ηn‖Z → 0 as n→∞. Then

|Tn(u)− T (u)| = | ‖δn‖2
Z + 2 〈Au− z, δn〉Z | (6.29)

≤ ‖δn‖Z (‖δn‖Z + 2 ‖A‖ ‖u‖Lp(Ω) + 2 ‖z‖Z) (6.30)

Here 〈·, ·〉Z denotes the inner product on the Hilbert space Z, and the above
inequality follows from Cauchy-Schwarz. Note that if u is BV-hounded, then
it is norm bounded in Lp(Ω) by theorem (6.22), and hence (6.25) holds. Equa-
tion (6.24) holds because for each n,

‖u‖BV ≤
Tn(u)

a
. (6.31)

Example 6.27 (Perturbations of the operator A). Assume 1 ≤ p <
d/(d− 1), and let

Tn(u) = ‖Anu− z‖2
Z + a ‖u‖BV

where the An converge strongly (i.e. pointwise) in Lp(Ω) to A. Note that
strong operator convergence is a reasonable assumption. It holds for con-
sistent Galerkin approximations, e.g. finite element approximations as the
mesh spacing h→ 0. Then

|Tn(u)− T (u)| = | ‖Anu‖2
Z − ‖Au‖

2
Z − 2 〈(An − A)u, z〉 | (6.32)

≤ (‖Anu‖Z + ‖Au‖Z + 2 ‖z‖Z) ‖(An − A)u‖Z (6.33)

Note that pointwise convergence of bounded linear operators becomes uni-
form on compact sets. Since BV-boundedness implies relative compactness in
Lp(Ω), (6.25) holds. Uniform coercivity (6.24) again holds because of (6.31).
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6.2.2 Convergence of minimizers

Assume an exact problem
Au = z (6.34)

which has a unique solution uex ∈ BV (Ω). Assume a sequence of perturbed
problems

Anu = zn (6.35)

having approximate solutions un (not necessarily unique) obtained by mini-
mizing the functionals

Tn(u) = ‖Anu− zn‖2
Z + an ‖u‖BV .

The following theorem provides conditions which guarantee convergence of
the un to uex.

Theorem 6.28. Let 1 ≤ p ≤ d/(d − 1). Suppose ‖zn − z‖Z → 0, An →
A pointwise in Lp(Ω) and an → 0 at a rate for which ‖Anuex − zn‖2 /an,
remains bounded. Then un → uex strongly in Lp(Ω) if 1 ≤ p < d/(d − 1).
Convergence is weak in Lp(Ω) if p = d/(d− 1).

Proof. Note that

‖Anun − zn‖2
Z ≤ Tn(un) ≤ Tn(uex)

= ‖Anuex − zn‖2
Z + an ‖uex‖BV

Thus from the assumption that ‖Anuex − zn‖2
Z /an, remains bounded and the

fact that an → 0,
‖Anun − zn‖2

Z → 0. (6.36)

Similarly,

‖un‖BV ≤
Tn(un)

an
≤ Tn(uex)

an
=
‖Anuex − zn‖2

Z

an
+ ‖uex‖BV

and hence, the un are BV-bounded. Suppose they do not converge strongly
(weakly, if p = d/(d−1)) to uex. By theorem (6.22) there is a subsequence unj ,
which converges strongly (weakly, respectively) in Lp(Ω) to some û 6= uex.
For any v ∈ Z,

| 〈Aû− z, v〉Z | ≤ |
〈
A(û− unj), v

〉
Z
|+ |

〈
(A− Anj)unj , v

〉
Z
|

+ |
〈
Anjunj − znj , v

〉
Z
|+ |

〈
znj − z, v

〉
Z
|
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The third and fourth terms on the right-hand side vanish as j →∞ because
of (6.36) and the assumption zn → z. The second term also vanishes, since

|
〈
(A− Anj)unj , v

〉
Z
| ≤

∥∥unj∥∥Lp ∥∥∥(A∗ − A∗nj)v
∥∥∥
Lp
→ 0

by the pointwise convergence of the An (and hence, their adjoints) and the
norm boundedness of the un in Lp(Ω). The first term vanishes as well, taking
adjoints and using the (weak) convergence of unj to û. Consequently, for
〈Aû− z, v〉Z = 0 for any v ∈ Z, and hence Aû = z,. But this violates the
uniqueness of the solution uex of (6.34).
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[11] J. Radon. “Über die Bestimmung von Funktionen durch ihre Integralw-
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