UNIVERSITÄT WIEN FORSCHUNGSGRUPPE DATA ANALYTICS AND COMPUTING

Grundlagen der Mathematik und Analysis 50009/1-4

Übungsblatt 9

Differentialgleichungen

Aufgabe 1

Ermitteln Sie die Lösungen der folgenden Anfangswertprobleme:

a)
$$y' - 2x = 0, y(3) = 2$$

b)
$$y' = \sin x, y(\pi) = 10$$

Aufgabe 2

Lösen Sie folgende Differentialgleichungen:

a)
$$y' + 2xy - 2x = 0$$

b)
$$y' = -y^2$$

c)
$$xy' - 2x + 1 = 0$$

Aufgabe 3

Lösen Sie y'' + y' - 2y = 3 mit y(0) = y'(0) = 1.

Aufgabe 4

Lösen Sie y'' - 6y' + 9y = 0 mit y(0) = 24 und y'(0) = 0.

Aufgabe 5

Lösen Sie y'' + 2y' + 17y = 0. Ist die Lösung konvergent für $x \to \infty$?

Aufgabe 6

Lösen Sie die Differentialgleichung y' + y = 2 + 2x durch Variation der Konstanten.

Aufgabe 7

Lösen Sie die Differentialgleichung $y'(x-2)-y=2(x-2)^3$ durch Variation der Konstanten.

Aufgabe 8

Lösen Sie die Differentialgleichung $y' + y \cot x = 5e^{\cos x}$ durch Variation der Konstanten.

Aufgabe 9

Wenn an eine Spule eine Wechselspannung $u = U \sin \omega t$ gelegt wird, so wird in ihr die Induktionsspannung $u_L = -L\frac{di}{dt}$ erzeugt. Es gilt dann: $L\frac{di}{dt} + Ri = U \sin \omega t$. Lösen Sie die Differentialgleichung durch Variation der Konstanten unter Berücksichtigung der Anfangsbedingung i(0) = 0. Hinweis: es gilt $a \sin \omega t - b \cos \omega t = \sqrt{a^2 + b^2} \sin (\omega t - \varphi)$, wobei $\tan \varphi = \frac{b}{a}$ (Spezialfall der Summe zweier harmonischer Schwingungen mit derselben Kreisfrequenz).

Aufgabe 10

Die Differentialgleichung der Kettenlinie, welche den Durchhang einer an ihren Enden aufgehängten Kette unter Einfluss der Schwerkraft beschreibt, lautet: $y'' = \frac{1}{a}\sqrt{1+y'^2}$. Ermitteln Sie die Gleichung der Kettenlinie für die Anfangsbedingungen y(0) = a und y'(0) = 0.

Aufgabe 11

Lösen Sie folgende Differentialgleichung: $y'' + 5y = x^2$. Hinweis: Wählen Sie als Ansatz für eine partikuläre Lösung: $y_p = b_0 + b_1 x + b_2 x^2$.

Aufgabe 12

Lösen Sie folgende Differentialgleichung: $y'' - 2y' - 8y = 7e^{-2x}$, Q(0|-2), $y'(0) = \frac{3}{2}$. Hinweis: Wählen Sie als Ansatz für eine partikuläre Lösung: $y_p = bxe^{-2x}$.

Aufgabe 13

Lösen Sie folgende Differentialgleichung: $y'' - 2y' + 17y = 2\cos 3x, A(0|0), y'(0) = 2$. Hinweis: Wählen Sie als Ansatz für eine partikuläre Lösung: $y_p = a\cos 3x + b\sin 3x$.

Aufgabe 14

Lösen Sie folgende Differentialgleichung: $y'' + 9y = x \cos x - 3 \sin x$, P(0|0), y'(0) = 0. Hinweis: Wählen Sie als Ansatz für eine partikuläre Lösung: $y_p = Ax \cos x + Bx \sin x + C \cos x + D \sin x$.