Übungen zu Funktionalanalysis

Nicolas Thorstensen 6. Übungsblatt November 2012

- 1. Sei H ein Hilbertraum und $T \in \mathcal{B}(H,H)$. Zeige, dass T normal ist genau dann, wenn $||Tx|| = ||T^*x||$.
- 2. Sei $\phi:[0,1]\to\mathbb{R}$ stetig und $A:L_2([0,1])\to L_2([0,1])$ definiert durch

$$(Af)(x) = \phi(x) \int_0^1 \phi(t) f(t) dt.$$

- (a) Zeige $A = A^*$ und A ist positiv.
- (b) Zeige es gibt ein $\lambda \ge 0$, sodass $A^2 = \lambda A$.
- (c) Wann ist A ein orthogonaler Projektor?
- 3. Sei $H = (\mathbb{R}^2, (., .))$ und $M = \{(x, 0) \mid x \in \mathbb{R}\}$, $N = \{(x, x \tan \theta) \mid x \in \mathbb{R}\}$ mit $\theta \in (0, \pi/2)$. Finde $T_{\theta} \in \mathcal{B}(H, H)$ mit den Eigenschaften $T_{\theta}^2 = T_{\theta}$, $T_{\theta}(H) = M$ und $Ker(T_{\theta}) = N$. Berechne $||T_{\theta}||$ und zeige, dass T_{θ} kein orthogonal Projektor ist.
- 4. Sei H Hilbertraum und P, Q zwei orthogonale Projektionen auf zwei abgeschlossene Teilräume von H.
 - (a) P+Q ist orthogonale Projektion genau dann, wenn $P(H)\perp Q(H)$. Ist P+Q orthognale Projektion, dann gilt

$$(P+Q)(H) = P(H) + Q(H),$$

$$Ker(P+Q) = Ker(P) \cap Ker(Q).$$

(b) PQ ist orthogonale Projektion genau dann, wenn PQ = QP. Ist PQ orthogonale Projektion, dann gilt

$$(PQ)(H) = P(H) \cap Q(H)$$
,
 $Ker(PQ) = \overline{Ker(P) + + Ker(Q)}$.

- 5. Sei H Hilbertraum und P, Q zwei orthogonale Projektionen auf zwei abgeschlossene Teilräume von H. Folgende Aussagen sind äquivalent:
 - (a) P Q ist orthogonaler Projektor.
 - (b) $Q(H) \subseteq P(H)$.
 - (c) PQ = Q.
 - (d) QP = Q.