Übungen zu Funktionalanalysis

Nicolas Thorstensen

1. Übungsblatt Oktober 2012

1. Ein Skalarprodukt $(.,.): V \to \mathbb{R}$ auf einem Vektorraum V ist definiert durch die Norm $\|.\|$ auf V genau dann, wenn die Norm die Parallelogrammgleichung erfüllt ist. Und das Skalarprodukt ist gleich die Polarisationsgleichung

$$(x,y) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right) .$$

2. Zeige es gibt keine Skalarprodukt (.,.) auf C([0,1]), so daß für alle $f \in C[0,1]$

$$(f,f)^{\frac{1}{2}} = \max_{0 \le x \le 1} |f(x)|$$

gilt. Wie läßt sich das obige Ergebniss auf C[a, b] verallgemeinern?

3. Sei I eine beliebige nicht-leere Menge und

$$\ell_2(I) = \{x : I \to \mathbb{R} \mid x(i) \neq 0 \text{ für höchstens abzählbar viele } i \in I, \sum_{i \in I} |x(i)|^2 < \infty \}.$$

- (a) Zeige $(x,y):=\sum\limits_{i\in I}x(i)y(i)$ mit $x,y\in\ell_2(I)$ ist ein Skalarprodukt auf $\ell_2(I)$.
- (b) Zeige $(\ell_2(I), (.,.))$ ist ein Hilbertraum.
- 4. Entscheide für jeden der folgenden Räume, ob $(c_0, \|.\|_{\infty})$, $(\ell_1, \|.\|_1)$ und $(\ell_2, \|.\|_2)$ ein Hilbertraum ist. Gegebenebfalls geben sie das Skalarprodukt an.
- 5. Sei $\mathcal{M}(\mathbb{C})$ Raum der $n \times n$ komplexen Matrizen. Ist $(\mathcal{M}(\mathbb{C}), (.,.))$ ein Hilbertraum, wobei $(.,.): \mathcal{M}(\mathbb{C}) \to \mathbb{C}$ durch $(A,B) = \operatorname{Spur}(AB^*)$ definiert ist? B^* ist die adjungierte zu B. Nun zeige weiters

$$|\operatorname{Spur}(AB^*)|^2 \le \operatorname{Spur}(AA^*)\operatorname{Spur}(BB^*).$$