
Markus Grasmair

Discrete Optimisation

Lecture Notes

Winter 2010/11

Computational Science Center
University of Vienna

A-1090 Vienna, Austria





Preface

These notes are mostly based on the following book and lecture notes:

• Bernhard Korte and Jens Vygen, Combinatorial Optimization, Springer,
2000.

• Alexander Martin, Diskrete Optimierung, Technical University of Darm-
stadt, Germany, 2006.

The chapter on continuous linear optimisation in addition uses:

• Philippe G. Ciarlet, Introduction to numerical linear algebra and optim-
isation, Cambridge University Press, 1989.

• Otmar Scherzer and Frank Lenzen, Optimierung, Vorlesungsskriptum WS
2008/09, University of Innsbruck, Austria, 2009.

The examples are partly taken from:

• Lászlo B. Kovács, Combinatorial Methods of Discrete Programming, Aka-
démiai Kiadó, Budapest, 1980.

• Eugene L. Lawler, Jan K. Lenstra, Alexander H.G. Rinnooy Kan, David
B. Shmoys, The Traveling Salesman Problem, John Wiley and Sons, 1985.

Markus Grasmair,
Vienna, 18th January 2011.

i





Contents

1 Introduction 1

1.1 Classification of Optimisation Problems . . . . . . . . . . . . . . 1

1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Set Packing . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Assignment Problem . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Traveling Salesman . . . . . . . . . . . . . . . . . . . . . . 5

2 Linear Programming 9

2.1 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Canonical Form of Linear Programmes . . . . . . . . . . . . . . . 11

2.3 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Integer Polyhedra 21

3.1 Integer Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Total Unimodularity and Total Dual Integrality . . . . . . . . . . 23

4 Relaxations 27

4.1 Cutting Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Gomory–Chvátal Truncation . . . . . . . . . . . . . . . . 28

4.1.2 Gomory’s Algorithmic Approach . . . . . . . . . . . . . . 28

4.2 Lagrangean Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Heuristics 33

5.1 The Greedy Method . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Greedoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . 39

6 Exact Methods 41

6.1 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Application to the Traveling Salesman Problem . . . . . . 44

6.2 Dynamical Programming . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.2 The Knapsack Problem . . . . . . . . . . . . . . . . . . . 47

iii



iv CONTENTS

A Graphs 51
A.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Paths, Circuits, and Trees . . . . . . . . . . . . . . . . . . . . . . 52



List of Algorithms

1 Simplex algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Best–in–greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . 34
3 Worst–out–greedy algorithm . . . . . . . . . . . . . . . . . . . . . 35
4 Best–in–greedy algorithm over a greedoid . . . . . . . . . . . . . . 36
5 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Local search; alternative . . . . . . . . . . . . . . . . . . . . . . . . 38
7 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 Enumeration method . . . . . . . . . . . . . . . . . . . . . . . . . 42
10 Brand-and-Bound method . . . . . . . . . . . . . . . . . . . . . . 43
11 Shortest paths in a directed graph . . . . . . . . . . . . . . . . . . 47
12 Dynamical programming for the knapsack problem . . . . . . . . . 49

v





Chapter 1

Introduction

1.1 Classification of Optimisation Problems

Many problems in applications can be formulated aa optimisation problems,
which consist in the minimisation of an objective function or cost function f
over a set of feasible variables Ω. That is, one has to solve the problem:

Minimise f(x) subject to x ∈ Ω .

Typically, the function f is defined on some larger set X, and the condition
x ∈ Ω serves as an additional restriction of the set of solutions.

Depending on the function f and the sets X and Ω, one can make the
following rough classification of optimisation problems. Each of the following
classes requires a different approach for the actual computation of the optimum.

Discrete and Continuous Optimisation

Continuous Optimisation

Here the set X is a real vector space (typically, X = Rn), and the set Ω is a
continuous (that is, non-discrete) subset of X.

Discrete Optimisation

Here, either the set X or the set Ω is some discrete set. The typical situation
is that of integer pgrogramming, where Ω is a subset of Zn. One also often uses
the term combinatorial optimisation instead of discrete optimisation.

Binary Optimisation

This is the special case of discrete optimisation, where Ω is a subset of {0, 1}n.
Many problems in graph theory can be equivalently formulated as binary op-
timisation problems.

Mixed Integer Optimisation

Here X = Rn, and Ω is some subset of Zp ×Rn−p with 1 ≤ p ≤ n− 1. That is,
part of the variables are integers, part are reals.

1



2 CHAPTER 1. INTRODUCTION

Restricted and Free Optimisation

In the case where X = Rn, one has to differentiate between free and restricted
optimisation:

Free Optimisation

Here Ω = Rn.

Restricted Optimisation

Here Ω ( Rn.
Typically, the set Ω is defined by a set of equalities and inequalities, that is,

Ω =
{
x ∈ Rn : c

(1)
i = 0 for all i ∈ I1

}
∩
{
x ∈ Rn : c

(2)
i (x) ≤ 0 for all i ∈ I2

}
for some finite number of (continuous) functions c

(j)
i : X → R, i ∈ Ij , j = 1, 2.

Convex and Non-convex Optimisation

Again we assume that X = Rn. Recall that a function f : Rn → R ∪ {+∞} is
called convex, if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) for all x, y ∈ Rn and 0 ≤ λ ≤ 1 .

In other words, the line connecting the points (x, f(x)) and (y, f(y)) lies always
above the graph of f (that is, it is contained in the epigraph of f). Moreover, a
set K ⊂ Rn is convex, if

λx+ (1− λ)y ∈ K for all x, y ∈ K and 0 ≤ λ ≤ 1 .

Note that the set K is convex, if and only if its indicator function χK , which is
defined as χK(x) = 0 for x ∈ K and χk(x) = +∞ if x 6∈ K, is convex.

Convex Optimisation

In this case the objective function f is convex (and lower semi-continuous) and
the set Ω is a convex (and closed) subset of Rn. Typically, one has

Ω =
{
x ∈ Rn : ci(x) ≤ 0 for all x ∈ I

}
,

where ci : Rn → R ∪ {∞}, i ∈ I, are convex functions.

Quadratic Optimisation

Here the function f : Rn → R is quadratic, that is, there exist a (symmetric and
positive semi-definite) matrix G ∈ Rn × Rn, a vector c ∈ Rn, and d ∈ R such
that

f(x) =
1

2
xTGx+ cTx+ d .

Note that often we may assume without loss of generality that d = 0, as we are
only interested in the minimiser of f and not the value at the minimiser.

Moreover, one often assumes that the constraints defining the set Ω of feas-
ible variables are linear. That is, there exists a matrix A ∈ Rm×n and a vector
x ∈ Rm such that

Ω =
{
x ∈ Rn : Ax ≤ b

}
.



1.1. CLASSIFICATION OF OPTIMISATION PROBLEMS 3

Linear Optimisation

Here both the objective function as well as the constraints are linear. That is,
there exist a vector c ∈ Rn, a matrix A ∈ Rm×n, a vector b ∈ Rm, and d ∈ R
such that

f(x) = cTx+ d

and
Ω =

{
x ∈ Kn : Ax ≤ b

}
with either K = R (continuous optimisation) or K = Z (discrete optimisation).
One often uses the term linear programme to denote a linear optimisation prob-
lem.

Somewhere between linear and quadratic optimisation, one finds second or-
der cone programmes, where the objective function is linear, but some of the
constraints are quadratic.

Non-convex Optimisation

Everything else.
Though—also here, one has to differentiate between smooth optimisation,

where the objective functionals is (twice) differentiable, and non-smooth optim-
isation, which is still harder to treat.

Differences

In general, discrete optimisation problems are much harder to solve than con-
tinuous ones (at least, if the objective function has some structure like convexity
or at least smoothness). In addition, free optimisation problems are easier to
solve than restricted ones. Finally, there are huge differences between linear,
convex, and non-convex optimisation problems. While linear problems can be
solved exactly in finite time, most convex optimisation problems can only be
solved approximately (using some kind of numerical approximation of the min-
imiser). In the case of non-convex problems, even the approximate minimisation
is often not possible; the best one usually obtains are approximations of local
minimisers.

Remarks

Often a concrete problem is not given as a minimisation problem, but rather
as a maximisation problem. That is, one is given the task to maximise f(x)
subject to the constraint x ∈ Ω. Such a problem can be easily reformulated as
a minimisation problem by simply replacing the objective function f by −f .

Note that linear discrete optimisation as defined above also encompasses
linear binary optimisation. Indeed, the constraint x ∈ {0, 1}n can be equival-
ently written as x ∈ Zn, x ≤ 1, −x ≤ 0. Therefore, we may restrict ourselves to
studying general discrete linear optimisation problems and need not differentiate
between general discrete, and binary ones.

Note that every inequality constraint Ax ≥ b is equivalent to the opposite
constraint −Ax ≤ −b. In addition, an equality constraint Ax = b holds if
and only if the two inequality constraints Ax ≤ b and −Ax ≤ −b are satisfied
simultaneously.



4 CHAPTER 1. INTRODUCTION

1.2 Examples

1.2.1 Knapsack Problem

Assume you have to pack your knapsack for a hiking tour (or your luggage for
going on holidays). There are different items you can take with you, and each of
them has its own use-value for you. In addition, every item has its weight, and
you do not want to overload yourself (or you do not want to pay for overweight).
What should you take with you, if you want to obtain the best use-value while
still staying below the maximum possible (or permitted) weight?

More mathematically, you can formulate this problem as follows: Given a
number n of objects oj , j = 1, . . . , n, of respective weight aj > 0 and use-value
cj > 0. The task is to choose a subset S of these objects in such a way that∑

j∈S
cj is maximal, while

∑
j∈S

aj ≤ b

for some given maximal weight b ≥ 0.
This problem can be quite easily rewritten as a binary linear optimisation

problem. To that end we define the variable xj as

xj =

{
1 , if the object oj is chosen,

0 , else.

Then the problem is to maximise

f(x) :=

n∑
j=1

cjxj

subject to the constraints

xj ∈ {0, 1} for all 1 ≤ j ≤ n and

n∑
j=1

ajxj ≤ b .

A naive (greedy) approach for the solution of this problem would be to
simply pack those items with the highest value-to-weight ratio. More precisely,
we start with an empty knapsack and select from all those items that we still
can carry one for which the ratio cj/aj is maximal. We add this item and repeat
the procedure until the addition of any item would put us over the weight limit.

It is easy to see that this greedy approach often does not lead to an optimal
solution. Consider, for instance the case where n = 3, a1 = 3, a2 = a3 = 2,
c1 = 5, c2 = c3 = 3, and b = 4. Then

c1
a1

=
5

3
>

3

2
=
c2
a2

=
c1
a1

.

Thus the greedy approach would consist in first packing the first item. Then
we are already finished, as the addition of any other item is impossible. The
total use value we obtain with this strategy is 5. The optimal solution, however,
would be to pack the second and third item, in which case the total use value
would be 6. This shows that the solution of this problem requires a refined
approach.



1.2. EXAMPLES 5

1.2.2 Set Packing

Assume that we are given a finite set E = {1, . . . ,m} and a family Fj , j ∈
{1, . . . , n}, of subsets of E. In addition, to every subset Fj , a cost cj is assigned.
The task is to choose a subfamily of the Fj in such a way that the total cost
is minimal, while every element of E is contained in at most (at least, exactly)
one member of the subfamily.

This can be formulated as a binary programme as follows: We introduce the
variable x ∈ {0, 1}n and let xj = 1 if we include the set Fj , and xj = 0 else.
In addition, we define a matrix A ∈ {0, 1}m×n the entries of which are defined
as ai,j = 1, if the element i ∈ E is contained in Fj , and ai,j = 0 else. Then
the element i ∈ E is contained in at least one of the subsets Fj that have been
chosen, if (Ax)i =

∑
j ai,jxj ≥ 1. Similarly we can obtain the condition that

every element has to be contained in at most or exactly one set, if we replace
the sign ≥ by ≤ or = in the inequality above.

We therefore arrive at the binary programme

cTx→ min subject to −Ax ≤ 1, x ∈ {0, 1}n .

1.2.3 Assignment Problem

A company has n employees who are to be assigned n different tasks; each
employee can perform precisely one task. The costs involved if employee i is
assigned task j are ci,j . The question is, how the tasks should be distributed
among the employees in such a way that the total costs are minimal. Because
of the restrictions that everybody has to perform precisely one job and every
job has to be performed, we can write this as the optimisation problem

n∑
i, j=1

xi,jci,j → min

subject to

xi,j ∈ {0, 1} ,
n∑
i=1

xi,j0 = 1 =

n∑
j=1

xi0,j for all i0, j0 ∈ {1, . . . , n} .

A different way for interpreting the assignment problem is to formulate it
as an optimisation problem on a graph. We consider a graph with vertices

v
(e)
i , 1 ≤ i ≤ n, (the employees) and v

(t)
j , 1 ≤ j ≤ n, (the tasks) and an

edge ei,j between each employee v
(e)
i and each task v

(t)
j . Moreover, every edge

ei,j is assigned the weight ci,j . Because there is no edge between any two
employees and, similarly, between any two tasks, the graph is bipartite with

bipartition (v
(e)
i )1≤i≤n∪̇(v

(t)
j )1≤j≤n. The problem is now to find an optimal

matching between the v
(e)
i and the v

(t)
j , that is, to select edges ei,j in such a

way that every vertex v
(e)
i and every vertex v

(t)
j belongs to precisely one of the

selected edges, and the sum of the costs ci,j of the selected edges is minimal.

1.2.4 Traveling Salesman

A traveling salesman has to visit n cities and in the end return to the city from
which he started. The question is, in which order he should plan the visits such



6 CHAPTER 1. INTRODUCTION

that the total cost of his travels is minimal. Here it is assumed that the costs
for traveling between any pair of cities is given.

In terms of graph theory, we are given a complete graph G with vertex
set consisting of the n cities (undirected or directed, depending on the question
whether the cost of traveling between any two cities does depend on the direction
of the voyage). In addition, we have a cost functional c on the set of all edges.
The task is to solve the optimisation problem

c(C)→ min such that C is a Hamiltonian circuit in G.

In the following, we show how this problem can be formulated as a binary
linear programme. To that end let ci,j denote the cost for traveling from city
i to city j. Moreover we introduce the discrete variables xi,j ∈ {0, 1}, where
xi,j = 1 if a travel from i to j is included in the tour and xi,j = 0 else. Then
the total cost of the travel is

n∑
i, j=1

ci,jxi,j .

The objective functional is therefore easy to encode. For the constraint,
namely that the travel should be a tour including every city precisely once, the
situation is more complicated. The easy part is to encode the constraint that
every city is visited exactly once. This can be seen by observing the trivial fact
that in the above notation this is equivalent to stating that every city is entered
precisely once and also left again precisely once. This leads to the constraints

n∑
i=1

xi,j = 1 for all 1 ≤ j ≤ n ,

n∑
j=1

xi,j = 1 for all 1 ≤ i ≤ n .
(1.1)

Until now, the problem is precisely the same as the assignment problem. We
have, however, not yet included the assumption that we have to make a round
trip; as for now the constraints allow for several disconnected round trips, in-
cluding trivial cases where ci,j = 1 for some i, that is, we leave the city i only
to return to it at the same moment.

There are several possibilities to exclude smaller round trips from the set
of feasible solutions. To that end let for the moment x := (xi,j)i,j ∈ {0, 1}n×n
satisfying (1.1) be fixed. Let I ( {1, . . . , n} be some subset of the cities we have
to visit. If the travel defined by x does not include a round trip through the
cities in I, then we must leave the set I at least once. That is, there exists some
i ∈ I and j 6∈ I such that xi,j = 1. Therefore∑

i∈I

∑
j 6∈I

xi,j ≥ 1 .

Because of (1.1), this is equivalent to the inequality∑
i, j∈I

xi,j ≤ |I| − 1 . (1.2)



1.2. EXAMPLES 7

Indeed, the requirement that (1.2) holds for every I ( {1, . . . , n} is equivalent to
the non-existence of subtours. Thus, we have shown that the traveling salesman
problem can be brought into the form of a discrete linear programme. The
formulation adopted here, however, is of no use for any practical purpose: The
number of inequalities we have added equals the number of proper non-empty
subsets of {1, . . . , n}, that is, 2n − 2.

It is possible to formulate the constraints above in such a way that we only
add (n−1)2 additional inequalities to (1.1), but instead add n−1 new variables
ui ∈ R, 2 ≤ i ≤ n, which do not appear in the cost functional. One can show
that the exclusion of smaller round trips is equivalent to the set of inequalities

ui − uj + nxi,j ≤ n− 1 for all i, j ∈ {2, . . . , n} .

In constrast to the formulation above, this leads to a mixed integer programme
with n2 binary variables and n− 1 real variables.





Chapter 2

Linear Programming

2.1 Polyhedra

In this chapter we describe the simplex algorithm, which can be used for solving
linear programmes of the form

cTx→ min subject to Ax ≤ b . (2.1)

Here c ∈ Rn, x ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The inequality Ax ≤ b is
interpreted componentwise, that is,

Ax ≤ b if and only if (Ax)i ≤ bi for every 1 ≤ i ≤ m .

Before turning to the algorithmical solution of (2.1), we first study the prob-
lem more closely.

Definition 2.1.1. Let P ⊂ Rm×n. The set P is a polyhedron, if there exist
A ∈ Rm×n and b ∈ Rm such that

P =
{
x ∈ Rn : Ax ≤ b

}
.

If the polyhedron P is bounded, then it is called a polytope.
Conversely, let A ∈ Rm×n and b ∈ Rm be given. We define

P(A, b) :=
{
x ∈ Rn : Ax ≤ b

}
the polyhedron defined by A ∈ Rm×n and b ∈ Rm. �

Thus, the problem (2.1) can be equivalently formulated as

cTx→ min subject to x ∈ P(A, b) .

The main difference between the two formulations is that in the latter case the
matrix A and the vector b are not given explicitely, but only the set that they
describe.

Lemma 2.1.2. Consider the linear programme cTx → min subject to x ∈
P(A, b). Then there are three possibilities:

9



10 CHAPTER 2. LINEAR PROGRAMMING

1. The set P(A, b) is empty, that is, there exist no feasible variables.

2. The objective function x 7→ cTx has no lower bound on P(A, b).

3. The linear programme admits a solution.

The importance of this result can be grasped from only slightly more com-
plicated optimisation problems, where it does not hold anymore. Consider for
instance the quadratic programme of minimizing the linear objective function
(x1, x2) 7→ x1 subject to the constraints x1 ≥ 0 and x1x2 ≥ 1. Here the admiss-
ible set is non-empty and the objective function is non-negative on this set. Still,
the problem admits no solution, because the second variable tends to infinity if
the first approaches zero.

An additional important property of linear programmes is that solutions (if
existent) can always be found at the boundary of P(A, b). Thus, for the search
for solutions, we may restrict ourselves to the boundary of the polyhedron. In
the following we will see that even further restrictions are possible.

Definition 2.1.3. Let P(A, b) be a non-empty polyhedron and let ξ ∈ Rn.
Assume that

d := max
{
ξTx : x ∈ P(A, b)

}
is finite. Then the set

H(ξ, d) :=
{
x ∈ Rn : ξTx = d

}
is called a supporting hyperplane of the polyhedron P(A, b).

A non-empty set F ⊂ Rn is called a face of the polyhedron P(A, b) if either
F = P(A, b), or there exists a supporting hyperplane H(ξ, d) of P(A, b) such
that F = H(ξ, d)∩P(A, b). If x ∈ Rn is such that {x} is a face of P(A, b), then
x is called a vertex of P(A, b). The vertices of P(A, b) are also called the basic
solutions of the system of inequalities Ax ≤ b.

A face F of P(A, b) is called minimal, if it contains no other face of P(A, b).
In particular, every vertex is a minimal face. �

Proposition 2.1.4. A non-empty set F ⊂ Rn is a minimal face of the poly-
hedron P(A, b), if and only if Ax ≤ b for all x ∈ F (that is, F ⊂ P(A, b)), and
there exists a set of indices B ⊂ {1, . . . ,m} such that

F =
{
x ∈ Rn : (Ax)i = bi for all i ∈ B

}
.

Corollary 2.1.5. All minimal faces of the polyhedron P(A, b) with 0 6= A ∈
Rm×n are affine subspace of Rn (note that 0-dimensional subspaces are sets
containing a single point). Moreover, the dimension of all minimal faces is
n− rankA. If A is a polytope, then all minimal faces are vertices.

Lemma 2.1.6. Let c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. If the linear programme
cT → min subject to Ax ≤ b admits a solution, then there exists some minimal
face F of P(A, b) such that every x ∈ F is a solution.

In particular, if the polyhedron P(A, b) has any vertex (that is, the matrix A
has rank n), then there exists a vertex that solves the linear programme.



2.2. CANONICAL FORM OF LINEAR PROGRAMMES 11

Note that the previous lemma does not claim that every solution of a lin-
ear programme is contained in a minimal face. Nevertheless, it allows us to
restrict the search for minimisers to the set of minimal faces. In addition, Pro-
position 2.1.4 implies that we can find all minimal faces of P(A, b) by solving
subsystems of the equation Ax = b. Since the number of subsystems of Ax = b
is finite, it follows that linear programmes can be solved in finite time by simply
computing all minimal faces (which is a tedious task) and minimising the ob-
jective function x 7→ cTx on these faces (which is easy). In addition, one has
to check whether the objective functional is unbounded below on the feasible
polyhedron P(A, b). While this brute force strategy leads to a finite algorithm,
it is far from being efficient. A better method is the simplex algorithm, which
will be discussed in the next sections.

2.2 Canonical Form of Linear Programmes

Definition 2.2.1. A linear optimisation problem is in canonical form, if it reads
as

cTx→ min subject to Ax = b and x ≥ 0 . �

Remark 2.2.2. Consider the linear programme

cTx→ min subject to Ax ≤ b

with c ∈ Rn, x ∈ Rn, A ∈ Rm×n, and b ∈ Rm.
In the following, we will bring this linear programme into canonical form by

introducing additional slack variables, that is, variables that do not influence
the cost functional, and enlarging the vector c and the matrix A.

To that end note first that the inequality constraint Ax ≤ b can be written
as an equality constraint by introducing the slack variable y ∈ Rn and noting
that

Ax ≤ b if and only if Ax+ y = b and y ≥ 0 .

In addition, we have to introduce a non-negativity constraint for all the occur-
ring variables. This can be achieved by writing x = x̂− x̃ with x̂ ≥ 0 and x̃ ≥ 0,
and noting that

cTx = cT (x̂− x̃) = cT x̂− cT x̃ ,
Ax = A(x̂− x̃) = Ax̂−Ax̃ .

Thus we arrive at the (enlarged) linear programme in canonical form

(cT ,−cT , 0)

x̂x̃
y

→ min

subject to

(A,−A, Id)

x̂x̃
y

 = b and (x̂, x̃, y) ≥ 0 .

Note that the slack variables influence only the constraint, but not the cost
functional. �



12 CHAPTER 2. LINEAR PROGRAMMING

Example 2.2.3. Consider the set of inequalities

x1 − x2 ≤ 1 ,

−2x1 − x2 ≤ 2 ,

x2 ≤ 1 .

In matrix form, these read as 1 −1
−2 −1

0 1

(x1
x2

)
≤

1
2
1

 .

Introducing the slack variable y ∈ R3, y ≥ 0, we obtain

 1 −1 1 0 0
−2 −1 0 1 0

0 1 0 0 1



x1
x2
y1
y2
y3

 =

1
2
1

 , yi ≥ 0 .

Finally, we add the non-negativity constraint for x by writing x = x̂− x̃. Then
we obtain the canonical form

 1 −1 −1 1 1 0 0
−2 −1 2 1 0 1 0

0 1 0 −1 0 0 1




x̂1
x̂2
x̃1
x̃2
y1
y2
y3


=

1
2
1

 , x̂j ≥ 0 , x̃j ≥ 0 , yi ≥ 0 .

�

Remark 2.2.4. An important feature of the method of normalisation described
in Remark 2.2.2 is the fact that the linear programmes in canonical forms it
yields have matrices of full rank, and therefore the minimal faces of the feasible
polyhedron (if non-empty) are vertices. In addition, if b ≥ 0, then one vertex is
the point x̂ = 0, x̃ = 0, y = b. �

2.3 The Simplex Algorithm

We assume in the following that we are given a linear programme in canonical
form, where the matrix A ∈ Rm×n has full rank and n > m (these assumptions
can be satisfied because of Remark 2.2.2). That is, we want to solve the problem

cTx→ min subject to Ax = b and x ≥ 0 , (2.2)

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, n > m, and rank(A) = m.
In addition, we assume for the moment that the feasible polyhedron

{
x ∈

Rn : Ax = b, x ≥ 0
}

is non-empty, which implies that the feasible polyhedron
has some vertex. We will show later, how we can decide whether this assump-
tion is satisfied. More precisely, we will describe an algorithm (again the simplex



2.3. THE SIMPLEX ALGORITHM 13

algorithm, but for a modified problem) that decides whether the feasible poly-
hedron is empty and, in case it is not, constructs a vertex, which we can then
use for the initialisation of the simplex algorithm for the original problem.

Definition 2.3.1. Let B ⊂ {1, . . . , n} be some subset with |B| = m. Define

AB := (aij)1≤i≤m, j∈B

the m×m submatrix of A generated by the indices B.
The matrix AB is called feasible basis, if AB is regular (that is, detAB 6= 0),

and we have
x(B) := A−1B b ≥ 0 .

In this case, x(B) ∈ Rm is called the basic vector corresponding to AB . �

Lemma 2.3.2. Let B ⊂ {1, . . . , n} be such that AB is a feasible basis, and let
x(B) ∈ Rm be the corresponding basic vector. Let moreover x̃(B) ∈ Rm be such
that (x̃(B))j∈B = x(B) and (x̃(B))j∈B′ = 0 (that is, we obtain x̃(B) from x(B)

by inserting zeros at those indices not contained in B. Then x̃(B) is a basic
solution of the system Ax = b, x ≥ 0.

Conversely, for every basic solution x of the system Ax = b, x ≥ 0, there
exists a feasible basis AB with B ⊂ {1, . . . , n} such that x = x̃(B).

Remark 2.3.3. Let x(B) be the basic vector corresponding to some feasible

basis AB . The vector x(B) is called degenerate, if x
(B)
i = 0 for some i ∈ B. In

this case we can replace this index i by any index j ∈ B′ and still obtain the
same basic vector. The possible existence of degenerate basic solutions leads to
some complications in the solution of linear programmes when using the simplex
algorithm. �

For the next result, we introduce some more notation. We define, for given
B ⊂ {1, . . . , n},

B′ := {1, . . . , n} \B and AB′ := (aij)1≤i≤m, j∈B′ .

Moreover, we let

cB := (cj)j∈B and cB′ := (cj)j∈B′ .

Assume now that x(B) ∈ Rm is a basic vector corresponding to some set

B ⊂ {1, . . . , n} and that x(B) is non-degenerate (that is, x
(B)
i > 0 for all i ∈ B).

Choose some index j0 ∈ B′ and consider the vector z(t) ∈ RB′
satisfying zj0 = t

and zj = 0 for j 6= j0. Next, we want to define entries zi, i ∈ B, in such a way
that the vector z(t) becomes admissible for some t > 0. The relation Az(t) = b
implies that

x(B) = A−1B b = A−1B Az(t) = z
(t)
B + t(A−1B A)·,j0 (2.3)

with z
(t)
B denoting the vector corresponding to the components of z(t) lying in

the set B. Because by assumption x(B) > 0, it follows that, for t > 0 small
enough, the vector z(t) also satisfies z(t) ≥ 0 and therefore is feasible for the
linear programme. Moreover, the cost of the vector z(t) equals

cT z(t) = cTBx
(B) − t(cTB(A−1B A)·,j0 − cj0) .



14 CHAPTER 2. LINEAR PROGRAMMING

As t > 0, the costs are smaller than those of the vector x̃(B) if and only if

cj0 − cTB(A−1B A)·,j0 < 0 .

If this inequality holds, it makes sense to replace the vector x̃(B) by z(t). In
addition, we should choose t as large as possible, that is, we set

t := max
{
s > 0 : z(s) is admissible

}
.

This maximum can easily be computed from equation (2.3). Moreover, if this
choice of t is well-defined (that is, t 6= +∞), then the vector z(t) will again be
a basic solution.

These observations form the basis of the simplex algorithm, which is de-
scribed in the following theorem. There, also the cases t = +∞ and x(B)

degenerate are treated.

Theorem 2.3.4. Assume that B ⊂ {1, . . . , n} is such that AB is a feasible
basis, and let x̃(B) be the corresponding basic solution according to Lemma 2.3.2.
Then the following hold:

1. If
cTB′ − cTBA−1B AB′ ≥ 0 ,

then x̃(B) is a solution of (2.2).

2. If there exists j0 ∈ B′ such that

(cB′)j0 − (cTBA
−1
B AB′)j0 < 0 , and (A−1B AB′)·,j0 ≤ 0 ,

then the problem (2.2) is unbounded.

3. Assume that there exist j0 ∈ B′ and ı̃ ∈ B such that

(cB′)j0 − (cTBA
−1
B AB′)j0 < 0 , and x̃

(B)
ı̃ > 0 ,

and for all i ∈ B we have

x̃
(B)
i > 0 whenever (A−1B AB′)i,j0 > 0 .

Define

λ := min

{
x̃
(B)
i

(A−1B AB′)i,j0
: i ∈ B and (A−1B AB′)i,j0 > 0

}
(2.4)

and

y :=


x̃
(B)
i − λ(A−1B AB′)i,j0 , if i ∈ B ,
λ , if i = j0 ,

0 , if i ∈ B′ \ {j0} ,

Let moreover i0 ∈ B be any index for which the minimum in (2.4) is
attained.

Then C := (B \ {i0}) ∪ {j0} is a feasible basis and y = x̃(C) is the basic
solution corresponding to C. Moreover cT x̃(C) < cT x̃(B).



2.3. THE SIMPLEX ALGORITHM 15

4. Assume that there exists some j ∈ B′ with (cB′)j − (cTBA
−1
B AB′)j < 0.

Assume moreover that for every j ∈ B′ with

(cB′)j − (cTBA
−1
B AB′)j < 0 (2.5)

there exists i ∈ B with

(A−1B AB′)i,j > 0 and x̃
(B)
i = 0 . (2.6)

Let j0 ∈ B′ and i0 ∈ B be such that (2.5) and (2.6) are satisfied. Define
C := (B \ {i0}) ∪ {j0}. Then

x̃(C) = x̃(B) .

This last theorem can be used for defining an iterative algorithm for the
solution of the linear programme (2.2). To that end one starts with some feasible
basis AB corresponding to some set B ⊂ {1, . . . , n} (we will discuss below, how
we can obtain one) and then checks, which of the cases of Theorem 2.3.4 applies.

If we are in the case 1, then we have found a solution. Else, we are in at least
one of the cases 2–4 (note that 2 and 3 can occur simultaneously). If we are
in case 2, then the problem admits no solution, and we are done. If we are in
cases 3 or 4, then we change the set B according to the strategy defined there.
In both cases, we remove one index from B and replace it with an index in B′.
Then we repeat this check with the updated set B.

Because the objective functional decreases each time we are in case 3, and
there are only finitely many vertices to be visited during the algorithm, it follows
that case 3 can only occur finitely many times. Thus there are three possibilities
for the algorithm:

1. After a finite occurrence of the cases 3 and/or 4, we finally are in situation
1. Then the last vertex is a solution of the linear programme.

2. After a finite occurrence of the cases 3 and/or 4, we finally are in situation
2. Then the problem has no solution.

3. After a finite occurrence of the cases 3 and/or 4, we arrive at a non-
terminating sequence of the case 4. That is, after a finite number of
changes of the basis B in case 4, we return to a basis already chosen in
a previous step. This phenomenon is known as cycling. In this case, the
algorithm does not terminate.

Remark 2.3.5. It is possible to avoid cycling, if one chooses the indices i0 and
j0 in cases 3 and 4 according to a suitable strategy. The easiest to implement
is Bland’s pivoting rule. Here, one defines j0 as

j0 = min
{
j : (cB′)j − (cTBA

−1
B AB′)j < 0

}
,

and i0 as

i0 = min
{
i :

x̃
(B)
i

(A−1B AB′)i,j0
= λ

}
,

where

λ = min

{
x̃
(B)
i

(A−1B AB′)i,j0
: i ∈ B and (A−1B AB′)i,j0 > 0

}
.

In other words, j0 and i0 are always minimal. �



16 CHAPTER 2. LINEAR PROGRAMMING

Remark 2.3.6 (Simplex tableau). The state of the simplex algorithm can
be represented in the simplex tableau, which is the array

B′

cTBA
−1
B b −cTB′ + cTBA

−1
B AB′

B A−1B b A−1B AB′

This tableau contains all necessary information used in the simplex algorithm.
In particular, the basic solution x(B) corresponding to B and also the value of
the cost functional at x(B) can be read off the tableau, as

x̃(B) = A−1B b and cTx(B) = cTBA
−1
B b . �

Remark 2.3.7. In each step of the simplex algorithm, in order to update the
simplex tableau, one has to compute the matrices and vectors A−1B AB′ , A−1B b,
cTB′−cTBA

−1
B AB′ , and cTBA

−1
B b. Because only two indices in the set B are changed

in each iteration, these can be easily computed from the simplex tableau of the
previous step. The required computations are summarised in Algorithm 1. �

The simplex algorithm needs as input a set of indices B ⊂ {1, . . . , n} such
that AB is a feasible basis. In the following, we show how we such a set can
be obtained. First we note that we can assume without loss of generality that
b ≥ 0. Indeed, if bi0 < 0, then we can simply multiply the i0-th line in A with
−1, that is, we replace ai0,j by −ai0,j for all j.

Consider therefore the canonical linear programme cTx → min subject to
Ax = b and x ≥ 0, and assume that b ≥ 0. Then we can define an auxiliary
programme

1
T y → min subject to Ax+ y = b, x ≥ 0, y ≥ 0 , (2.7)

where 1 ∈ Rm is the m-dimensional vector whose entries are all equal to 1. In
other words, the objective functional is simply the sum of the entries of the
variable y. Because of the constraint y ≥ 0, it follows that 1

T y ≥ 0 for all
admissible y, and 1

T y = 0, if and only if y = 0. Moreover the constraints
Ax+ y = b and x ≥ 0 show that y = 0 if and only if the equation Ax = b holds
for some x ≥ 0. Thus, the minimal value of the auxiliary programme (2.7)
equals 0, if and only if the original problem is feasible. Now let (x0, y0) be a
basic solution of (2.7). If 1T y0 = 0, then also y0 = 0 and thus the only non-zero
components appear in the variable x0. Because by assumption (x0, y0) is basic
and x0 satisfies Ax0 = b and x0 ≥ 0, it follows that x0 is also a basic solution of
the original problem, and therefore x0 a vertex, which we can use as input for
the simplex algorithm.

The main point in introducing the auxiliary problem (2.7) is that this prob-
lem is feasible and has an easy to find feasible basis. Indeed, the point (x, y) =
(0, b) is a basic solution and the corresponding feasible basis is simply the iden-
tity matrix (corresponding to the y-variable). Thus we can use the simplex
algorithm for solving (2.7), and then, if the minimal value of (2.7) turns out
to be zero, use the result as input for the simplex algorithm for the solution of
the original problem. Moreover, if the solution of the auxiliary problem is non-
degenerate, then it corresponds to a feasible basis, which only contains indices



2.3. THE SIMPLEX ALGORITHM 17

Data: c ∈ Rn, A ∈ Rm×n with m < n, b ∈ Rm;
Input: B = (j1, . . . , jm) such that AB is a feasible basis;
Result: Either a solution x of the linear programme cTx→ min subject

to Ax = b and x ≥ 0 or the knowledge that the linear
programme is unbounded;

Initialisation: Set AB := (ai,jk)i,k, let B′ = (j′1, . . . , j
′
m−n) such that

B ∪B′ = {1, . . . , n}, and AB′ := (ai,j′k)i,k. Denote
cB := (cjk)k and cB′ := (cj′k)k. Compute
V = (vi,k)0≤i≤m, 0≤k≤n−m setting

v0,0 := cTBA
−1
B b ,

v0,k := −ck + (cTBA
−1
B AB′)k , for 1 ≤ k ≤ m,

vi,0 := (A−1B b)i , for 1 ≤ i ≤ m,
vi,k := (A−1B AB′)i,k , for 1 ≤ i, k ≤ m.

while there exists 1 ≤ k ≤ n−m with v0,k < 0 do
Let k0 = arg mink

{
j′k : v0,k < 0

}
;

if vi,k0 ≤ 0 for all 1 ≤ i ≤ m then
there exists no solution;
break;

else
Define

λ = min

{
vi,0
vi,k0

: 1 ≤ i ≤ m and vi,k0 > 0

}
,

i0 = arg min
i

{
ji :

vi,0
vi,k0

= λ
}
,

replace ji0 ← k0 and j′k0 ← i0 and set

vi,k ← vi,k −
vi0,kvi,k0
vi0,k0

for
0 ≤ i ≤ m, i 6= i0 ,

0 ≤ k ≤ n−m, k 6= k0 ,

vi,k0 ←
vi,k0
vi0,k0

for 1 ≤ i ≤ m, i 6= i0 ,

vi0,k ← −
vi0,k
vi0,k0

for 1 ≤ k ≤ n−m, k 6= k0 ,

vi0,k0 ←
1

vi0,k0
.

end

end
Define x := 0 ∈ Rn;
foreach i = 1, . . . ,m do

xji ← vi,0;
end

Algorithm 1: Simplex algorithm



18 CHAPTER 2. LINEAR PROGRAMMING

corresponding to the x-variable. This feasible basis is then also feasible for the
original problem and can be used for the initialisation of its simplex tableau.

Remark 2.3.8. Assume that we are given a linear programme of the form
cTx → min subject to Ax ≤ b, and that b ≥ 0. Then the problem is feasible,
because 0 ∈ P(A, b). If we now use the method described in Remark 2.2.2 for
bringing the programme in canonical form, then we obtain the programme

(cT ,−cT , 0)

x̂x̃
y

→ min

subject to

(A,−A, Id)

x̂x̃
y

 = b and (x̂, x̃, y) ≥ 0 .

Then y = b is a vertex and, again, the corresponding feasible basis is just the
identity matrix for the variable y. The initial simplex tableau is then

B′

0 (cT ,−cT )

B b (A,−A)

with B indicating the indices corresponding to y and B′ the indices correspond-
ing to x̂ and x̃. �

2.4 Remarks

In theory, the simplex algorithm is far from being efficient. In fact, it has an
exponential complexity, and it is possible to construct examples of linear pro-
grammes with n variables and 2n constraints, where the simplex algorithm (with
the pivoting rule introduced above) takes 2n iterations. In practice, however,
the simplex algorithm works quite fast. Moreover it has been subject of much
research, and there exist many methods for speeding up the algorithm by using
different, refined pivoting rules (that is, rules for the selection of the indices i0
and j0 in the updating steps).

On the other hand, there exists also a polynomial time algorithm for lin-
ear programming, the ellipsoid method. Being polynomial, one might expect
that this method should work better than the simplex algorithm. In practice,
however, it does not. First, it is difficult to implement (in contrast to the sim-
plex algorithm), and, second, although polynomial, the complexity is of order
O((n+m)9) for A ∈ Rm×n, which does not really help matters much.

The simplex algorithm as implemented in Algorithm 1 is not suited for large
problems that appear in applications. There, often the number of variables is
huge (several hundred thousands), but most are affected only by a comparably
small number of inequalities. Then the matrix A consists mostly of zeros, that
is, it is sparse. The problem in this situation is that the matrix A−1B that is
computed during the simplex algorithm need not be sparse anymore. Then,



2.4. REMARKS 19

instead of working with the simplex tableau, it is better to work directly with
Theorem 2.3.4 and acquire the vectors cTBA

−1
B AB′ and (A−1B AB′)·,j0 that are

needed for the update in a different manner. A typical method is to use an
incomplete LU-factorisation (that is, the Gauß algorithm) and update the lower
and upper matrices similarly as the simplex tableau in Algorithm 1.





Chapter 3

Integer Polyhedra

In the previous chapter, we have studied the solution of continuous linear op-
timisation problems. Before we now turn to the study of discrete linear pro-
grammes, we first discuss what the restriction to discrete solutions means for
the set of feasible solutions.

3.1 Integer Polyhedra

Definition 3.1.1. A set K ⊂ Rn is called convex, if λx+(1−λ)x ∈ K whenever
x ∈ K, y ∈ K, and 0 ≤ λ ≤ 1.

Let L ⊂ Rn be any set. The convex hull of L, denoted as conv(L), is defined
as the smallest convex set containing L. �

Lemma 3.1.2. Let x(i) ∈ Rn, i = 1, . . . , n, be a finite family of points. Then
the convex hull of the set {x(i)}1≤i≤n is a polytope. Moreover, the set of vertices
of this polytope is contained in {x(i)}1≤i≤n.

Definition 3.1.3. A polyhedron P is called rational, if there exist a matrix
A ∈ Qm×n and a vector b ∈ Qm such that P = P(A, b).

In addition, if P is any polyhedron, then we denote by

PI := conv(P ∩ Zn)

the integer hull of P . Moreover, we let PI(A, b) :=
(
P(A, b)

)
I
.

The polyhedron P is called integral, if P = PI . �

Lemma 3.1.4. Assume that P is a polytope. Then so is PI . Also, if P is a
rational polyhedron, then PI is a (rational) polyhedron, too.

The next example shows that this result need not hold, if the polyhedron P
is neither rational nor bounded.

Example 3.1.5. Consider the (non-rational) polyhedron

P =
{

(x, y) ∈ R2 : x ≥ 1, y ≥ 0, −
√

2x+ y ≤ 0
}
.

Then the set PI has infinitely many vertices and therefore is no polyhedron.

21



22 CHAPTER 3. INTEGER POLYHEDRA

Consider in particular the minimization problem
√

2x− y → min subject to (x, y) ∈ PI .

This problem is bounded below by zero and is feasible, as it is easy to see that
PI is non-empty. Still, it admits no solution: Indeed, the infimum of the cost
function is zero. Assume now that this infimum would be attained at some
point (x, y) ∈ PI . Then the infimum would also be attained at a vertex of PI ,
and thus we could assume without loss of generality that (x, y) ∈ Z2. This,
however, would imply that

√
2 were rational. Therefore, the integer problem

has no optimal solution. �

Consider now a discrete linear programme of the form

cTx→ min subject to Ax ≤ b and x ∈ Zn ,

where the matrix A and the vector b are rational. By definition of the integer
hull of a polyhedron, this is equivalent to

cTx→ min subject to x ∈ PI(A, b) ∩ Zn . (3.1)

Because by assumption P(A, b) is a rational polyhedron, the set PI(A, b) is a
polyhedron, too. In particular, the relaxed problem

cTx→ min subject to x ∈ PI(A, b) , (3.2)

where we have omitted the integrality condition, attains solutions at the vertices
of PI(A, b). These vertices, however, are elements of PI(A, b)∩Zn and therefore
also solve the problem (3.1). This shows that (3.1) and (3.2) are equivalent in
the sense that every vertex solution of (3.2) solves (3.1) (and conversely every
solution of (3.1) also solves (3.1)). Because (3.2) is a continuous linear pro-
gramme, we have thus demonstrated that integer linear programming is almost
the same as continuous linear programming.

Still, when one considers again the problem (3.2) and compares it to the lin-
ear programmes studied in the previous chapter, one might notice a small, but
important, difference. For continuous problems, we have always assumed that
the bounds were given explicitely as some inequality Ax ≤ b. In (3.2), how-
ever, the restrictions are only given implicitly by the condition x ∈ PI(A, b).
This implicit definition of the bounds makes the problem much harder. Con-
tinuous linear programmes can be solved in polynomial time (though not really
efficiently), integer problems, in contrast, in general probably cannot. Even
more, already the sub-problem of deciding whether the problem is feasible is a
hard problem. In order to make this statement more precise, we recall some
definitions:

Definition 3.1.6.

• The class P consists of all decision problems that can be solved in poly-
nomial time.

• The class NP consists of all decision problems for which a non-determi-
nistic, polynomial time solution algorithm exists.

Equivalently, a decision problem Π lies in NP, if and only if there exists
another decision problem Π′ with the following properties:



3.2. TOTAL UNIMODULARITY AND TOTAL DUAL INTEGRALITY 23

– The instances of Π′ consist of concatenations p#c with p ∈ Π.

– Whenever p is a yes-instance for Π and c is such that p#c ∈ Π′, then
p#c is a yes-instance for Π′.

– For each no-instance p ∈ Π, there exists a string c such that p#c is
a no-instance for Π′.

– Π′ ∈ P.

The strings c for which p#c ∈ Π′ are called certificates for p.

• A problem Π is NP-hard, if a polynomial algorithm for the solution of Π
implies a polynomial algorithm for every problem in NP.

• A decision problem Π is NP-complete, if it is NP-hard and lies in NP.�

Remark 3.1.7.

• If Π ∈ P, then every instance p can serve as its own certificate. Thus we
have the inclusion P ⊂ NP.

• While the classes P, NP, and NP-complete only encompass decision
problems, where the task is to decide whether some instance p ∈ Π is a
member of some subclass L ⊂ Π, the class NP-hard also includes other
types of problems like optimisation problems.

If a decision problem is NP-hard, but not NP-complete, then there exists
no polynomial time algorithm for its solution (else it would lie in P and
therefore in NP).

• The question whether P = NP is still undecided; it is one of the most
important open problems in complexity theory. �

Proposition 3.1.8. The decision problem whether a system of rational inequal-
ities Ax ≤ b has an integer solution is NP-complete.

In particular, the previous proposition implies that the problem of linear
integer programming is NP-hard. Thus, most probably no efficient (in the
sense of polynomial time) algorithms for the general solution of linear integer
progammes exist. In the next sections we will therefore restrict ourselves to
the study of the special situation where integer programming equals continu-
ous programming, as the corresponding polyhedra coincide. These problems
are solvable in polynomial time by the ellipsoid method, and also efficiently in
practice by the simplex method. The general case will be then treated in the
following chapters.

3.2 Total Unimodularity and Total Dual Integ-
rality

Proposition 3.2.1. Let P be a rational polyhedron. Then the following are
equivalent:



24 CHAPTER 3. INTEGER POLYHEDRA

1. P is an integral polyhedron.

2. Every face of P contains an integer vector.

3. Every minimal face of P contains an integer vector.

4. If ξ ∈ Rn is such that sup
{
ξTx : x ∈ P

}
is finite, then the maximum is at-

tained at some integer vector. In other words, every supporting hyperplane
of P contains an integer vector.

Combining Propositions 2.1.4 and 3.2.1, we see that a rational polyhedron
P = P(A, b) is integral, if every sub-system of the equation Ax = b attains
an integer solution. Thus it makes sense to study the sub-matrices of rational
matrices A ∈ Qm×n in order to decide on the integrality of rational polyhedra.

Definition 3.2.2. A square matrix A ∈ Rm×m is called unimodular, if its
entries are integers and detA = ±1. �

Lemma 3.2.3. The inverse of a unimodular matrix is also unimodular. For
every unimodular matrix U ∈ Rm×m the mappings x 7→ Ux and x 7→ xU are
bijections on Zm. In particular, if U is unimodular and x ∈ Zm, then also
U−1x ∈ Zm.

Definition 3.2.4. A matrix A ∈ Rm×n is totally unimodular, if the determ-
inant of every square sub-matrix is either 0 or ±1. Equivalently, A is totally
unimodular, if every invertible square sub-matrix is unimodular. �

Remark 3.2.5. Note that the entries of totally unimodular matrices are all
either 0 or ±1, as they are precisely the 1× 1 sub-matrices.

Moreover, in view of Remark 2.2.2 it is helpful to note that a matrix A is
totally unimodular, if and only if either of the matrices (A, Idm), (A,−A, Idm),
(A,−A, Idm,− Idm), and AT is unimodular. �

Theorem 3.2.6. Let A ∈ Rm×n be an integer matrix. The matrix A is totally
unimodular, if and only if the polyhedron

P =
{
x ∈ Rn : Ax ≤ b, x ≥ 0

}
is integral for all integer vectors b ∈ Zm.

Example 3.2.7. Let G = (V,E) be a directed graph with vertex set V and
edge set E. Denote, for given vertex v ∈ V by δ+(v) ⊂ E the edges starting in
v, and by δ−(v) ⊂ E the edges ending in v, that is,

δ+(v) =
{
e = (v, w) : w ∈ V, e ∈ E

}
,

δ−(v) =
{
e = (w, v) : w ∈ V, e ∈ E

}
.

Denote by A ∈ RV×E the incidence matrix, defined by

av,e :=


+1 if e ∈ δ+(v) ,

−1 if e ∈ δ−(v) ,

0 else.

Then A is totally unimodular. �



3.2. TOTAL UNIMODULARITY AND TOTAL DUAL INTEGRALITY 25

Example 3.2.8. Let G = (V,E) be an undirected graph with vertex set V and
edge set E. Denote, for v ∈ V , by δ(v) ⊂ E the edges containing the vertex v.
That is, δ(v) =

{
{v, w} : w ∈ V, {v, w} ∈ E

}
. Denote again by A ∈ RV×E the

incidence matrix of G, which for an undirected graph is defined as

av,e :=

{
+1 if e ∈ δ(v) ,

0 else.

Then one can show that A is totally unimodular, if and only if G is bipartite.
Consider now again the assignment problem from Section 1.2.3, written as an

optimisation problem on a graph. Then the incidence matrix of the graph defines
precisely the necessary constraints: A matching between the vertices is described
by the system of equations Ae = 1. Because the graph is bipartite, the matrix A
is totally unimodular. As a consequence, the polytope defined by the equation
Ae = 1 is integer. Thus, in theory, one could use the simplex algorithm for the
solution of the assignment problem. In addition, the total unimodularity of A
implies that the right hand side in the equation Ae = 1 can be replaced by any
integer vector without losing the integrality of the corresponding polyhedron.
Thus also different constraints than “one job per person” can be modelled.

Note, however, that more efficient algorithms for the solution of the assign-
ment problems exist. Still, this result is interesting for theoretical reasons, and
also because the assignment problem is a sub-problem of one formulation of the
much more complicated traveling salesman problem. �

While the total unimodularity of a matrix A implies that the polyhedron
P(A, b) is integral for each integral right hand side b ∈ Zm, the assumption is
too strong if we only want to have integrality for some given, fixed b. In this
case, total dual integrality is the right concept to use.

Definition 3.2.9. Let A ∈ Qm×n and b ∈ Qm. A system Ax ≤ b of linear
inequalities is totally dual integral, if for every integer vector c ∈ Zn for which

sup
{
bT y : AT y = c, y ≥ 0

}
<∞

there exists an integer vector y0 ∈ Zm satisfying AT y0 = c, y0 ≥ 0, and

bT y0 = max
{
bT y : AT y = c, y ≥ 0

}
. �

Remark 3.2.10. Consider a linear programme (the primal programme)

cTx→ min subject to Ax ≤ b .

Then we define its dual to be the linear programme

bT y → max subject to AT y = c and y ≥ 0 .

If both the primal and the dual problem are feasible, then

min
{
cTx : Ax ≤ b

}
= max

{
bT y : AT y = c and y ≥ 0

}
. (3.3)

Even more, if x0 and y0 are feasible solutions of the primal and the dual problem,
then the following statements are equivalent:



26 CHAPTER 3. INTEGER POLYHEDRA

• The vectors x0 and y0 are both optimal solutions.

• cTx0 = bT y0.

• yT0 (b−Ax0) = 0.

Many optimisation algorithms (including the simplex algorithm) are based on
this result relating the primal and the dual problem. �

Using the formulation of the dual programme, the concept of total dual
integrality can be brought in a more natural form: A system of linear inequalities
Ax ≤ b is totally dual integral, if and only if for every integer cost vector c ∈ Zn
the corresponding dual problem has an integer solution. As a consequence, if
both A and b are integral, then (3.3) implies that the optimal value of the primal
problem is integral. This strongly suggests that the optimum is attained at an
integer vector. Indeed, the following result holds:

Proposition 3.2.11. Assume that the system of inequalities Ax ≤ b is totally
dual integral and that b ∈ Zm is an integer vector. Then the polyhedron P(A, b)
is integral.

Note that total dual integrality is a property of systems of inequalities, not
of polyhedra. The next result shows, however, that every rational polyhedron
can be described by a totally dual integral system of inequalities.

Proposition 3.2.12. Let P ⊂ Rn be a rational polyhedron. Then there exist a
matrix A ∈ Qm×n and a vector b ∈ Qm such that P = P(A, b) and the system
Ax ≤ b is totally dual integral.

Corollary 3.2.13. A rational polyhedron P is integral, if and only if there ex-
ists a matrix A ∈ Zm×n and a vector b ∈ Zm such that P = P(A, b) and the
system Ax ≤ b is totally dual integral.



Chapter 4

Relaxations

4.1 Cutting Planes

The idea behind the method of cutting planes for the solution of an integer
linear programme of the form

cTx→ min subject to Ax ≤ b , and x ∈ Zn (4.1)

is the following: First one considers the LP-relaxation of (4.1) defined as

cTx→ min subject to Ax ≤ b , and x ∈ Rn . (4.2)

That is, one simply forgets for the moment about the integrality restriction. The
relaxed problem (4.2) can be solved quite efficiently with the simplex algorithm.
If the solution turns out to be integral, then we are done. This happens, for
instance, if the system of inequalities Ax ≤ b is totally dual integral, and A, b,
and c are integral. Else the solution is a vertex x0 (we may assume without loss
of generality that A has full rank) that does not lie in the integer hull of the
polyhedron P(A, b). Therefore there exists a hyperplane separating the vertex
x0 and the integer polyhedron PI(A, b). This separation can be described by
linear inequalities of the form

aT0 x ≤ b0 < aT0 x0 for all x ∈ PI(A, b)

for some a0 ∈ Zn and b0 ∈ Z. We can now add this new inequality aT0 x ≤ b0 to
the system Ax ≤ b and obtain the new linear programme

cTx→ min subject to Ax ≤ b , aT0 x ≤ b0 , and x ∈ Zn ,

which we can solve. Because the old solution x0 is not admissible for the new
problem, we will obtain a different solution, which, hopefully, is now integral.
Else one can repeat the process. Maybe unexpectedly, this method really works,
provided the new inequalities one adds in each iteration are chosen in a suitable
manner.

27



28 CHAPTER 4. RELAXATIONS

4.1.1 Gomory–Chvátal Truncation

Definition 4.1.1. Let P be a polyhedron. Define P ′ as the intersection of all
integer hulls of rational, affine half-spaces containing P , that is,

P ′ :=
⋂

H∈H(P )

HI with H(P ) :=
{
H = P(ξ, δ) : ξ ∈ Qn, δ ∈ Q, P ⊂ H

}
.

Moreover let P (0) := P ′ and P (i+1) := (P (i))′. The set P (i) is called the i-th
Gomory–Chvátal truncation of P . �

One has the chain of inclusions

P ⊃ P (0) ⊃ P (1) ⊃ · · · ⊃ PI .

A different, but equivalent, way of defining the set P ′ is by considering only
half-planes with integer coefficients. Indeed, it is easy to see that

P ′ =
{
x ∈ Rn : ξTx ≤ bδc for all ξ ∈ Zn, δ ∈ Q with ξT y ≤ δ for all y ∈ P

}
.

Here bδc denotes the largest integer below δ. Even more, the following charac-
terisation holds:

Proposition 4.1.2. Let P = P(A, b) be a polyhedron with A ∈ Qm×n and
b ∈ Rm rational. Then

P ′ =
{
x ∈ Rn : ξTAx ≤ bξT bc for all ξ ∈ Zm with ξ ≥ 0 and ξTA ∈ Zn

}
.

Proposition 4.1.3. Assume that either P is a rational polyhedron or P is a
polytope. Then there exists a number t ∈ N such that P (t) = PI . That is, the
truncation stops after a finite number of steps.

In case the inequality Ax ≤ b is totally dual integral, one can even compute
the truncation in one step:

Proposition 4.1.4. Assume that P = P(A, b) with Ax ≤ b totally dual integ-
ral, A ∈ Qm×n and b ∈ Qm. Then

P ′ =
{
x ∈ Rn : Ax ≤ bbc

}
.

Thus, in principle, for solving an integer linear programme, it is sufficient
to bring the inequalities in a totally dual integral form, truncate them, and
then use any solution algorithm for the relaxed, truncated problem. The only
problem of this approach is that computing a totally dual integral form of an
arbitrary set of inequalities cannot be done efficiently.

4.1.2 Gomory’s Algorithmic Approach

Assume that we are given an integer linear programme in canonical form, that
is,

cTx→ min subject to Ax = b, x ≥ 0, x ∈ Zn . (4.3)

In addition, we assume that A ∈ Zm×n and b ∈ Zm are integral.



4.1. CUTTING PLANES 29

Consider now the LP-relaxation of (4.3), given by

cTx→ min subject to Ax = b, x ≥ 0, x ∈ Rn . (4.4)

If this problem is solved by the simplex method, then we obtain an optimal
solution x̃ and a corresponding subset of indices B ⊂ {1, . . . , n} with |B| = m
such that the matrix AB is a feasible basis for (4.4). In particular,

x̃i =

{
(A−1B b)i if i ∈ B ,
0 if i 6∈ B .

Now let x be any feasible vector for (4.4). Then the equation Ax = b holds, and
therefore, with the notation xB′ := (xj)j∈B′ ,

xi = (A−1B b)i − (A−1B AB′xB′)i for every i ∈ B .

Consequently, if x is a feasible integer vector, then

(A−1B b)i − (A−1B AB′xB′)i ∈ Z for every i ∈ B

Now denote by f : R → [0, 1) the mapping f(t) = t − btc. Then every feasible
integer vector x satisfies

f((A−1B b)i)−
∑
j∈B′

f((A−1B AB′)i,j)xj ∈ Z for every i ∈ B

Because the mapping f takes values in [0, 1) and the feasibility of x implies that
xj ≥ 0 for every j ∈ B′, it follows that every feasible integer vector x satisfies
the system of inequalities

f((A−1B b)i)−
∑
j∈B′

f((A−1B AB′)i,j)xj ≤ 0 ,

or, equivalently, ∑
j∈B′

f((A−1B AB′)i,j)xj ≥ f((A−1B b)i) (4.5)

for every i ∈ B.
Now assume that the optimal solution x̃ of the relaxed problem is not integ-

ral. Denote by I ⊂ B the set of indices i for which x̃i 6∈ Z. For all these indices
we have f(x̃i) > 0. Therefore, because x̃j = 0 for j ∈ B′, it follows that the
inequality (4.5) is violated for every i ∈ I, the left hand side being zero and the
right hand side strictly positive. Thus we can add one of the inequalities (4.5)
for some i ∈ I to our system and repeat the process.

It is also possible to obtain again a system of integral inequalities. Some
manipulation of (4.5) using the fact that Ax = b for every feasible vector x
shows that this inequality is equivalent to adding the integer inequality

xi +
∑
j∈B′

b(A−1B AB′)i,jcxj ≤ b(A−1B b)ic

for some i ∈ I, or, introducing a slack variable y,

y + xi +
∑
j∈B′

b(A−1B AB′)i,jcxj = b(A−1B b)ic, y ≥ 0 .



30 CHAPTER 4. RELAXATIONS

It has been shown by Gomory that certain choices of the inequalities that are
added in that manner indeed lead to a finite solution algorithm for the integer
linear programme.

Remark 4.1.5. The method described above works only for integer linear pro-
grammes, not for mixed integer programmes. There exist, however, modifica-
tions that are also able to treat this more complicated case. �

4.2 Lagrangean Relaxation

The idea of cutting planes was, to relax the integrality condition, but to re-
tain the inequalities Ax ≤ b. The method described in this section, in contrast,
keeps the integrality condition and relaxes some of the inequalities instead. More
precisely, we omit some inequalities and instead reintroduce them in the cost
functional as additional penalty terms. This makes sense, if the problem we
obtain after the deletion of certain inequalities becomes much easier to solve
(preferably by a combinatorial algorithm that does not rely on integer program-
ming). We assume in the following that we are given an integer programme,
but the method works also without any major modifications on mixed integer
programmes.

Suppose we are given an integer linear programme of the form

cTx→ min subject to x ∈ Zn and

{
A(1)x ≤ b(1) ,
A(2)x ≤ b(2) ,

(4.6)

where A(1) ∈ Rm1×n, b(1) ∈ Rm1 , A(2) ∈ Rm2×n, b(2) ∈ Rm2 .
Define now the Lagrange functional L : Rm1

≥0 → R as

L(λ) := inf
{
cTx− λT (b(1) −A(1)x) : x ∈ P(A(2), b(2)) ∩ Zn

}
.

That is, for the minimisation involved in the definition of L we forget about the
first constraint in (4.6), but instead increase the cost by the additional penalty
λT (b(1) −A(1)x) if the condition A(1)x ≤ b(1) is violated.

Now note that the solution x̃ of (4.6) is also admissible for the minimisation
problem

cTx− λT (b(1) −A(1)x)→ min subject to A(2)x ≤ b(2), x ∈ Zn , (4.7)

and, by the admissibility of x̃ for (4.6), b(1) − A(1)x ≤ 0. Because λ ≥ 0, it
follows that

L(λ) ≤ cT x̃− λT (b(1) −Ax̃)

≤ cT x̃ = min
{
cTx : x ∈ Zn ∩ P(A(1), b(1)) ∩ P(A(2), b(2))

}
.

This argumentation being valid for every λ ≥ 0, it follows that also maxλ≥0 L(λ)
is a lower bound for the minimal value of the original minimisation prob-
lem (4.6). More precisely, it is possible to show that the following relation
holds:



4.2. LAGRANGEAN RELAXATION 31

Proposition 4.2.1. Assume that P(A(2), b(2)) is a polytope. Assume in addi-
tion that P(A(2), b(2)) ∩ Zn is non-empty. Then

max
{
L(λ) : λ ∈ Rm1 , λ ≥ 0

}
= min

{
cTx : x ∈ P(A(1), b(1)) ∩ PI(A(2), b(2))

}
.

The last result shows that the maximal value of the Lagrange functional
equals the minimal value of a relaxation of the problem (4.6). In the special
case, where the polyhedron P(A(1), b(1)) is integral, that is, if

P(A(1), b(1)) = PI(A(1), b(1)) ,

it follows that maxλ≥0 L(λ) is precisely the same as the optimal value of the
original problem.

Remark 4.2.2. Let λ∗ be the maximiser of the Lagrange functional and let
x∗ ∈ Zn be a solution of (4.7) with λ replaced by λ∗. Then by definition
A(2)x∗ ≤ b(2). If, in addition, the inequality A(1)x∗ ≤ b(1) is satisfied, then
x∗ is also a solution of (4.6). In general, however, this inequality will not be
satisfied, and therefore x∗ will not be admissible for the original problem. Still,
in some problems it is possible to modify x∗ in such a way that also the first
inequality is satisfied, but the value of the cost functional does not change too
much. More important, however, are applications where one mainly needs an
estimate for the optimal value of the cost functional. For instance, this is the
case for branch-and-bound methods to be discussed in Section 6.1. �

In order to make use of Proposition 4.2.1, it is necessary to find an optimal
Lagrange parameter λ. Because of the special structure of the Langrange func-
tional, this can be done with a gradient based approach, which is described in
the next proposition.

Proposition 4.2.3. Let λ0 ∈ Rm1

≥0 be arbitrary, and let (µ(k))k∈N any sequence

of positive numbers such that limk→∞ µ(k) = 0 and
∑
k∈N µ

(k) = +∞. Define
inductively

x(k) := arg min
x

{
cTx− (λ(k))T (b(1) −A(1)x) : x ∈ PI(A(2), b(2))

}
and

λ(k+1) = λ(k) + µ(k)(A(1)x(k) − b(1)) .

Then the sequence (λ(k))k∈N converges to a maximiser λ∗ of L.

Remark 4.2.4. The method described in Proposition 4.2.3 is a special instance
of a sub-gradient method. More details will be found in the lecture “Continuous
Optimisation.” �

Remark 4.2.5. The condition in Proposition 4.2.3 that the sequence µ(k) con-
verges to zero is not really required. In fact, one only needs that µ(k)‖A(1)‖ < 1
for k sufficiently large, else the algorithm will diverge. �

Remark 4.2.6. The algorithm described in Proposition 4.2.3 requires that the
Lagrange relaxation is solved multiple times with different values of the Lag-
range parameter λ. This is only feasible, if the relaxed problem can be solved
much more efficiently than the original problem. This can happen if the relaxed



32 CHAPTER 4. RELAXATIONS

problem is much smaller than the original one; in this case, however, the estim-
ate of the value of the original problem might not be satisfactory, as a large part
of the inequalities have been relaxed. More important is the situation, where
the relaxed problem can be solved by an efficient combinatorial algorithm. For
an example, see Section 6.1.1. �



Chapter 5

Heuristics

5.1 The Greedy Method

Typical binary optimisation problems can be formulated, or naturally appear,
as optimisation problems on certain classes of subsets of some given finite set.
That is, we are given a finite set E and a class F of subsets of E. In addition,
we have a cost function c : F → R. The goal is to find F ∈ F such that
c(F ) is minimal (or maximal). Moreover, in many situations the function c is
modular, that is, whenever X, Y ∈ F are disjoint and X ∪ Y ∈ F , we have
c(X ∪ Y ) = c(X) + c(Y ).

Definition 5.1.1. Let E be a set and F a class of subsets of E. The pair
(E,F) is an independence system if the following two conditions hold:

• ∅ ∈ F .

• If Y ∈ F and X ⊂ Y , then also X ∈ F .

The sets F ∈ F are called independent, all the others are called dependent. If
X ⊂ E, the maximal independent sets in X are called bases of X (that is, a set
F is a basis of X, if F ∈ F and there exists no G ∈ F with F ( G ⊂ X). �

The following two problems are of main interest for independence systems:

• Maximise the (modular) cost function c over the independence system
(E,F) (maximisation problem over an independence system).

• Minimise the (modular) cost function c over the set of all bases of E with
respect to the independence system (E,F) (minimisation problem over a
basic system).

1. Let G = (V,E) be a connected (undirected) graph with edge set E and
consider the family F of all forests in G written as subsets of E. Then
it is easy to see that the pair (E,F) is an independence system, as every
subgraph of a forest is itself a forest. Thus, the maximisation problem
over (E,F) is the task of finding a maximum weight forest in G.

If the graph G is connected, the bases of E with respect to (E,F) are
precisely the spanning trees of G. The minimisation problem over the
basic system therefore is the task of finding a minimum weight spanning
tree.

33



34 CHAPTER 5. HEURISTICS

2. Traveling Salesman Problem (TSP): Find a minimal Hamiltonian circuit
in a given complete (undirected) graph G = (V,E) with respect to a family
of weights c.

Here one can define the independence system (E,F) as the family of all
subsets of Hamiltonian circuits; obviously, the bases of the set E are then
precisely the Hamiltonian circuits in G. The TSP is therefore the minim-
isation problem over the basic system with respect to (E,F).

3. Knapsack problem: Given non-negative costs ci, 1 ≤ i ≤ n, weights ai,
1 ≤ i ≤ n, and some upper bound b > 0, find a set S ⊂ {1, . . . , n}
such that

∑
i∈S ai ≤ b and

∑
i∈S ci is maximal. This is obviously the

maximisation problem with respect to c over the independence system of
all subsets S of {1, . . . , n} of total weight

∑
i∈S ai at most b.

The greedy algorithm is a heuristic method for finding an approximation
of a solution of either the maximisation or the minimisation problem. The
underlying idea for the maximisation problem is, starting with the empty set
as a candidate, to successively enlarge it by adding the element of the largest
weight. Alternatively, one can start with the whole set as a candidate of the
solution and then remove successively those elements of the smallest weight.
In addition when adding elements, one has to guarantee in each step that the
candidate remains independent. Similarly, if one removes elements, one has to
stop as soon as one arrives at a basis.

Thus we end up with the following two algorithms for the maximisation
problem—the algorithms for the minimisation problem can be written similarly;
only the order of the elements has to be reversed:

Data: An independence system (E,F) and a weight function w on E;
Result: A set F ⊂ E;

Initialisation: Set F := ∅;
Order the elements of E in such a way that w(e1) ≥ w(e2) ≥ . . . ≥ w(en);

foreach i = 1, . . . , n do
if F ∪ {ei} ∈ F then

F ← F ∪ {ei};
end

end

Algorithm 2: Best–in–greedy algorithm for the maximisation problem
over an independence system

Typically, the ordering of the elements is determined by their cost. That is,
w(ei) = c(ei) for all i. In some applications, however, it is advisable to employ
a weight different from the cost. This is for instance the case for the knapsack
problem, where one obtains better results when one uses for the ordering the
relative cost w(ei) := c(ei)/a(ei).

Now the question arises, whether the greedy algorithm is capable of finding
the optimal solution. In most cases it is not. For a certain class of independence
systems, however, it really does find the optimum.



5.1. THE GREEDY METHOD 35

Data: An independence system (E,F) and a weight function w on E;
Result: A basis F ⊂ E;

Initialisation: Set F := E;

Order the elements of E in such a way that w(e1) ≤ w(e2) ≤ . . . ≤ w(en);

foreach i = 1, . . . , n do
if F \ {ei} either is a basis or contains a basis then

F ← F \ {ei};
end

end

Algorithm 3: Worst–out–greedy algorithm for the maximisation problem
over a basis

Definition 5.1.2. An independence system (E,F) is a matroid if, whenever
X, Y ∈ F with |X| > |Y |, there exists x ∈ X \ Y with Y ∪ {x} ∈ F .

Equivalently, (E,F) is a matroid if, whenever F ⊂ E and B, B′ are bases
of F , then |B| = |B′|. �

Remark 5.1.3. Note that the definition of a matroid requires that for each
subset F of E its bases are all of the same size; it is not sufficient that all bases
of the whole set are of equal size. Thus the independence system of all subsets
of Hamiltonian circuits is no matroid (if the underlying complete graph has at
most four vertices), although every Hamiltonian circuit has the same number of
edges. �

Proposition 5.1.4. An independence system (E,F) is a matroid, if and only
if for every modular cost function c : E → R the best–in–greedy algorithm for
the maximisation problem with weights equal to c finds an optimal solution.

Similar results hold for the worst–out–greedy algorithm and also for the
application of the two algorithms to the minimisation problem.

In case the independence system (E,F) is no matroid, the greedy algorithm
can perform arbitrarily badly. Then, also with different orderings, it is most of
the time not possible to find an optimal solution.

Example 5.1.5 (Minimum spanning trees). Consider the problem of find-
ing a minimum weight spanning tree in a graph G = (V,E) with respect to a
cost function c : E → R. In order to apply a greedy algorithm, we first order the
edges with increasing weight. Then, starting with the empty set, we successively
add an edge of smallest weight, unless this would result in a graph containing a
circuit (and thus not being a forest anymore). In principle, we therefore have to
test for circuits whenever we want to add an edge. Such a test can be performed
in O(n) time with n being the number of vertices (noting that a tree can contain
at most n − 1 edges). As at most m tests have to be performed (m being the
number of edges), and the sorting of the edges takes O(m logm) time, the com-
putation time for the whole algorithm amounts to O(mn). One can do better,
however, if one keeps track of the connected components of the candidate tree
during the iteration, because a circuit is formed if and only if the vertices of a
candidate edge belong to the same connected component of the candidate tree.



36 CHAPTER 5. HEURISTICS

With this modification, the whole algorithm can be implemented in O(m log n)
time with m being the number of edges and n the number of vertices.

Because the family of forests in a graph is a matroid, this strategy is guar-
anteed to find an optimal solution. �

5.1.1 Greedoids

The greedy algorithm can also be formulated for a different structure, where the
main axiom defining independence systems is replaced by the axiom defining
matroids.

Definition 5.1.6. Let E be a finite set and F a family of subsets of E. The
pair (E,F) is a greedoid, if the following two conditions hold:

• ∅ ∈ F .

• Whenever X, Y ∈ F with |X| > |Y |, there exists x ∈ X \ Y such that
Y ∪ {x} ∈ F . �

Because of the second axiom, every independent set can be constructed
within F from the empty set by successively adding single elements. Thus it is
again possible to construct candidates for the optimal solution in the maxim-
isation (minimisation) problem by adding elements of largest (smallest) weight.

Data: A greedoid (E,F) and a weight function w on E;
Result: A set F ∈ F ;

Initialisation: Set F := ∅;
Set K :=

{
e ∈ E : {e} ∈ F

}
;

while K 6= ∅ do
Find e ∈ K such that w(e) is maximal;
Set F ← F ∪ {e};
Set K :=

{
e ∈ E \ F : F ∪ {e} ∈ F

}
;

end

Algorithm 4: Best–in–greedy algorithm for the maximisation problem
over a greedoid

Example 5.1.7 (Minimum spanning trees). We consider again the prob-
lem of finding a minimum weight spanning tree in a graph G = (V,E) with
respect to a cost function c : E → R. In contrast to the method described
above, where we have considered the independence system of all forests in G,
we now choose some vertex v ∈ V and consider the greedoid of all trees rooted
in v. Then the best–in–algorithms reads as follows: We start with the tree
T = ({v}, ∅). As long as the vertex set of T is not equal to V , we find the
shortest edge leaving T and add it to T .

Again, this strategy is guaranteed to find an optimal solution. While the
previous method can be implemented in O(m log n) time, this method can be
implemented in O(n2) time (m – the number of edges; n – the number of
vertices). For dense graphs, where m ∼ n2, this is preferable. �



5.2. LOCAL SEARCH 37

5.2 Local Search

In general, greedy and other heuristic methods will not lead to optimal solutions,
but only to reasonably good candidates. Thus one might want to post-process
the output of the heuristic method in order to obtain a result that is closer to the
actual minimum. If the candidate solution is sufficiently good, it is reasonable
to search for the true optimum only in a neighbourhood of this candidate—
whatever neighbourhood means in this case.

The basic assumption of local search algorithms is that a meaningful notion
of closedness is available. In the setting of optimisation problems on a class
F of subsets of a given set E, this means that we can associate with each
admissible set X ∈ F a neighbourhood N (X) ⊂ F . Starting with the output
F of a heuristic method of choice, we then replace F by the minimum of the
weight function w on the neighbourhood N (F ) and repeat this process, until
we arrive at a local optimum, that is, if F itself is the minimum of w on N (F ).
This method may work well, if the neighbourhoods N (F ) are on the one hand
small enough as to allow for a fast minimisation of w, and large enough for the
method not to become trapped too fast in a local minimum.

Data: A family F , a weight function w on F , for each set X ∈ F a
family N (X) ⊂ F , an initial guess X ∈ F ;

Result: A set F ∈ F ;

Initialisation: Set F := X;
Set K :=

{
G ∈ N (F ) : w(G) < w(F )

}
;

while K 6= ∅ do
Choose G ∈ K of minimal weight;
Set F ← G;
Set K ←

{
G ∈ N (F ) : w(G) < w(F )

}
;

end

Algorithm 5: Local search

Alternatively, it is also possible to choose any element G ∈ N (F ) satisfying
w(G) < w(F ). In practice this means that one scans the neighbourhood until
one finds the first element of lower weight than F . Thus each iteration can be
expected to be considerably faster than in the other approach, but, at the same
time, the gain in each step will be smaller, and therefore a larger number of steps
is needed to reach a local minimum. In addition, it is advisable to prescribe a
maximal number of iterations or scans.

Example 5.2.1. Consider the traveling salesman problem, where F is the fam-
ily of all Hamiltonian circuits in a given complete graph G. Then one can define,
for a given number k ≥ 2, the k-neighbourhood Nk(T ) of a tour T as the family
of those tours T ′ that differ from T by at most k edges.

k = 2: First note that two Hamiltonian circuits cannot differ by precisely one
edge. Thus we have only have to consider exchanges of two edges. In
order to find all possible exchanges, it makes sense to scan all pairs of
edges to be replaced and then, for each of those pairs, consider all possible
replacements that again lead to a Hamiltonian circuit. It is easy to see



38 CHAPTER 5. HEURISTICS

Data: A family F , a weight function w on F , for each set X ∈ F a
family N (X) ⊂ F , an initial guess X ∈ F ;

Result: A set F ∈ F ;

Initialisation: Set F := X;
Set K := N (F );

while K 6= ∅ do
Choose G ∈ K;
if w(G) < w(F ) then

Set F ← G;
Set K ← N (G);

else
Set K ← K \ {G};

end

end

Algorithm 6: Local search; alternative

that all pairs of non-consecutive edges can be replaced in a unique man-
ner, while for consecutive edges no replacement exists. Thus we simply
have to enumerate all pairs of non-consecutive edges; the total number of
computations is therefore of order n2.

k = 3: In this case, we have first to scan all pairs of edges like in the case k = 2,
and then all triples. Again, if the three edges to be replaced are con-
secutive, then no replacement exists. Also, if only two are consecutive,
they can be replaced in a unique manner, while, in the general case, four
replacements exist. The total number of computations is of order n3.

As these examples indicate, the size of the neighbourhood Nk(T ) is of order
nk. Thus, local search can only be applied for rather small k. In practice, a
local search with k = 3 often yields good results, especially for graphs satisfying
the triangle inequality. If stuck in a local minimum, though, it can be advisable
to temporarily increase the neighbourhood.

Note, however, that, assuming P 6= NP, it can be shown that for every
k ∈ N there exist examples of weighted graphs, where a local search with k-
neighbourhoods does not yield an optimal result. Even more, it is also im-
possible to guarantee the value of the local optimum to lie within a prescribed
percentage of the true value. �

5.2.1 Tabu Search

One major problem of local search is that the iteration usually gets stuck in a
local minimum. One way of escaping these minima is the enlargement of the
neighbourhood. This enlargement, however, may vastly increase computation
times while often not being sufficient for obtaining better results.

A different approach is to allow the solution also to increase when stuck in
a minimum. For instance, it is possible to choose as an update the minimal
element in N (F ) \ {F}, even if the weight of the element is larger than that of
F . The problem with this idea is that, usually, one step will not be sufficient for
leaving the local minimum. Then it is likely that in the next step we will simply



5.2. LOCAL SEARCH 39

return to the previous iterate. In order to avoid this cycling, it is possible to
declare the elements already visited during the iteration tabu for the update.
Or, in order to ensure that we do not even get near previous iterates, we might
as well declare all the neighbourhoods of all already visited elements tabu. Since
this is very memory consuming and also the computation time depends heavily
on the size of the tabu list (in practice, we will have to decide separately for each
possible update whether it is tabu or not), one typically only stores a limited
number of previous updates in the tabu list.

Data: A family F , a weight function w on F , for each set X ∈ F a
family N (X) ⊂ F , an initial guess X ∈ F ;

Result: A set F ∈ F ;

Initialisation: Set F := X;
Set G := X;
Set K := N (G);
Set T := ∅;
while a stopping criterion is not yet satisfied do

Choose H ∈ K \ T of minimal weight;
Set G← H;
if w(G) < w(F ) then

Set F ← G;
end
Set K ← N (G);
Update the tabu list T ;

end

Algorithm 7: Tabu search

Apart from the choice of the neighbourhoods and the initial guess, there
are two additional parameters that determine the performance of the method:
the tabu list and the stopping criterion. If the tabu list is too large, then the
algorithm can be very time and memory consuming. On the other hand, if the
tabu list is too small, then there is the possibility of cycling. For the stopping
criterion, the simplest choice is to prescribe a maximal number of iterations.
Another common choice is to stop the iteration after a prescribed number of
iterations without decreasing the objective function. All parameters depend
heavily on the problem one wants to solve and, usually, have to be found by
performing a large number of test runs.

5.2.2 Simulated Annealing

Similarly as tabu search, also simulated annealing allows the weight of the it-
erates to increase temporarily. The difference is that we do not scan the whole
neighbourhood of an iterate, but, as in the second approach to local search, we
choose the first candidate of smaller weight than the present iterate. In addi-
tion, we also allow updates of larger weight, but only with a certain probability
depending on the weight difference and a temperature, which decreases during
the iteration, until some freezing temperature is reached.

The idea behind this method comes from theoretical physics, where similar
models are used for describing controlled cooling with phase transitions and



40 CHAPTER 5. HEURISTICS

cristallisation phenomena. Also the notions of temperature and freezing are
due to this motivation.

Data: A family F , a weight function w on F , for each set X ∈ F a family
N (X) ⊂ F , an initial guess X ∈ F , an initial temperature T > 0;

Result: A set F ∈ F ;

Initialisation: Set F := X;
Set G := X;

while freezing temperature not yet reached do
Choose a random H ∈ N (G);
if w(H) < w(G) then

Set G← H;
if w(H) < w(F ) then

Set F ← H;
end

else
choose a random number α ∈ [0, 1];
if α < exp

(
(w(F )− w(H))/T

)
then

Set G← H;
end

end
Update the temperature T ;

end

Algorithm 8: Simulated annealing

It can be shown that, for suitable updates of the temperature, simulated
annealing will (almost surely) indeed find the global optimum; there is, however,
no bound on the running time. Indeed, in practical applications one has to run
the algorithm for a very long time and decrease the temperature very slowly in
order to obtain reasonable results. Also, a good choice of the decrease of the
temperature has usually to be found in a long series of test runs.



Chapter 6

Exact Methods

6.1 Branch-and-Bound

Assume that we are given a binary linear programme

cTx→ min subject to Ax ≤ b and x ∈ {0, 1}n . (6.1)

Then it is, in principle, possible to solve the problem by considering all admiss-
ible values of x; testing whether the vector x is feasible; if it is, evaluating the
objective functional at x; and in the end, selecting from all those values the
minimal one.

The problem being binary, the enumeration of the admissible vectors x can
be performed in a quite structured way, giving rise to the following recursion:
Select some index 1 ≤ i0 ≤ n and define two smaller problems by simply fixing
the value of xi0 to the two different possibilities. That is, consider the two
problems

cTx→ min subject to Ax ≤ b and x ∈ {0, 1}n , and xi0 = 0 ,

cTx→ min subject to Ax ≤ b and x ∈ {0, 1}n , and xi0 = 1 .

Equivalently, these problems can be written as the two smaller binary pro-
grammes

∑
i6=i0

cixi → min subject to

∑
i6=i0

Ai,jxi ≤ bj for all j ,

xi ∈ {0, 1} for all i 6= i0 ,

(6.2)

and

∑
i 6=i0

cixi + ci0 → min subject to

∑
i 6=i0

Ai,jxi ≤ bj −Ai0,j for all j ,

xi ∈ {0, 1} for all i 6= i0 .
(6.3)

Test whether the two programmes (6.2) and (6.3) are feasible. If neither is, then
also the original programme (6.1) has an empty domain. If only one problem
turns out to be feasible, then the solution of that programme will also be the

41



42 CHAPTER 6. EXACT METHODS

solution of the original one. Finally, if both problems are feasible, then compute

the solutions x(0) (with x
(0)
i0 = 0) and x(1) (with x

(1)
i0 = 1) and the corresponding

values v(0) = cTx(0) and v(1) = cTx(1). If v(0) ≤ v(1), then x(0) solves the original
problem; else we obtain the solution x(1).

Each of the sub-problems (6.2) and (6.3) can be approached by the same
method. If we decide to do so, then we indeed arrive at an enumeration method,
consecutively, or in parallel, computing all possible values of the problem. More
formally, this method can be described as follows:

Data: Binary linear programme:
P0 = (cTx→ min subject to Ax ≤ b, x ∈ {0, 1}n)

Result: Either a solution x or the knowledge that the linear programme
is not feasible;

Initialisation: Define the list of problems L := {P0}, set V := +∞,
z := ∅.

while L 6= ∅ do
Choose any problem P ∈ L and set L ← L \ {P};
Find a partition P = P1∪̇P2;
foreach i = 1, 2 do

if you can decide easily that Pi is not feasible then
do nothing;

else if you can easily minimise Pi then
compute a minimiser x;
if cTx < V then

set V ← cTx and z ← x;
end

else
set L ← L ∪ {Pi};

end

end

end
If z = ∅, then the linear programme P0 is not feasible, else x is a solution
and V its value.

Algorithm 9: Enumeration method

Obviously, this approach will, in general, be not very efficient. A simple
observation, however, can significantly reduce the computation time and make
this approach efficient. Assume to that end that we already know some upper
bound U for the value of the original problem (6.1). Such a value can, for
instance, be obtained by finding any feasible vector x̂ and setting U := cT x̂.
Another possibility is to simply set U := +∞. Then, if we can show that
the minimal value of some sub-problem Pi is for sure larger than V , we can
simply discard the problem. That is, we need not perform a further branching
of the problem Pi, if we can be sure that every feasible solution x of Pi satisfies
cTx > V .



6.1. BRANCH-AND-BOUND 43

Data: Binary linear programme:
P0 = (cTx→ min subject to Ax ≤ b, x ∈ {0, 1})

Input: Any upper bound V for the value of P0; if no upper bound is
given, set V := +∞;

Result: Either a solution x or the knowledge that the linear programme
is not feasible;

Initialisation: Define the list of problems L := {P0}, set z := ∅.
while L 6= ∅ do

Choose any problem P ∈ L and set L ← L \ {P};
Find a partition P = P1∪̇P2 (branching);
foreach i = 1, 2 do

if you can decide easily that Pi is not feasible then
do nothing;

else if you can easily minimise Pi then
compute a minimiser x;
if cTx < V then

set V ← cTx and z ← x;
end

else
compute a lower bound L for the cost of every feasible solution
of the problem Pi (bounding);
if L > V then

do nothing;
else

set L ← L ∪ {Pi};
end

end

end

end
If z = ∅, then the linear programme P0 is not feasible, else x is a solution
and V its value.

Algorithm 10: Brand-and-Bound method

With this modification, we discard all the branches of the search tree that
cannot contain the true solution. This can speed up the algorithm a lot, provided
the following two conditions are satisfied: First, the computation of a lower
bound must not be too costly, else the computation time will increase rather
than decrease. Second, the lower bound should be as close as possible to the
actual minimum of P . This will strongly increase the probability that we can
actually discard a branch.

The easiest way for implementing the bounding step is to simply solve the
LP -relaxation of the considered problem. That is, if the problem Pi reads as

c̃T x̃→ min subject to Ãx̃ ≤ b̃ and x̃ ∈ {0, 1}k ,

we consider instead the relaxation

c̃T x̃→ min subject to Ãx̃ ≤ b̃ and 0 ≤ x̃ ≤ 1 . (6.4)

The latter problem can for instance be solved with the simplex algorithm. Be-
cause the solution is sought for on the polytope P(Ã, b̃), which is larger than



44 CHAPTER 6. EXACT METHODS

the polytope of the binary problem, the value of the relaxed problem is smaller
or equal the value of the boundary problem. Thus we can use it as the lower
bound L in the bounding step. In addition, if the relaxed problem turns out
to be infeasible, then so is the binary problem. Also, if the solution of the re-
laxation is binary, then it already solves the binary problem. Thus, in fact, the
relaxation (6.4) can be used for all the tasks necessary in the bounding step.

In order to obtain better lower bounds L, it makes sense to use some Lagran-
gean relaxation of the sub-problem Pi instead of the simple LP -relaxation. Of
course, this is only possible, if the problem we are trying to solve has some nice
structure, where we can easily identify sub-problems that can be solved with
combinatorial algorithms. One such problem is the traveling salesman problem,
where it is possible to seperate the constraints in such a way that the problem to
be solved in the Lagrangean relaxation is that of finding some minimum weight
spanning tree.

6.1.1 Application to the Traveling Salesman Problem

The following considerations largely follow the presentation in Korte and Vygen,
2000.

Consider again the Traveling Salesman Problem (TSP): Given a complete
(undirected) graph G with n vertices and costs ci,j > 0, 1 ≤ i < j ≤ n,
attached to the edge between i and j, find a Hamiltonian circuit C in G such
that c(C) is minimal. The TSP can be equivalently formulated as the binary
linear programme (cf. Section 1.2.4)∑

i,j

xi,jci,j → min

subject to the constraints

0 ≤ xi,j ≤ 1 for all 1 ≤ i < j ≤ n ,
k−1∑
i=1

xk,i +

n∑
i=k+1

xi,k = 2 for all 1 ≤ k ≤ n ,

∑
i<j∈I

≤ |I| − 1 for all ∅ 6= I ( {1, . . . , n} ,

(6.5)

and the additional condition

xi,j ∈ {0, 1} for all 1 ≤ i < j ≤ n . (6.6)

In order to perform a branching in the TSP, the easiest way is to select some

edge e = (i, j) and set P = P
(+)
e ∪̇P (−)

e , where P
(+)
e contains the additional con-

dition that the tour contains the edge e (i.e., xi,j = 1), and P
(−)
e the condition

that the tour does not contain e (i.e., xi,j = 0). Iterating the branching, we
see that every node in the search tree can be written as a problem of the form
PX,Y with X,Y ⊂

{
(i, j) : 1 ≤ i < j ≤ n

}
, X ∩Y = ∅, where X denotes the set

of all those edges that we include in the admissible tours, and Y the edges we
exclude.



6.1. BRANCH-AND-BOUND 45

Each problem PX,Y can again be written as TSP with a modified cost func-
tion c(X,Y ). To that end define C := 1 +

∑
i<j ci,j and let

c
(X,Y )
i,j :=


ci,j if (i, j) ∈ X ,

ci,j + C if (i, j) 6∈ (X ∪ Y ) ,

ci,j + 2C if (i, j) ∈ Y .

Then a tour for the problem PX,Y satisfies the constaints that it contains every
edge in X and no edge in Y , if and only if its modified weight is strictly smaller
than (n + 1 − |X|)C. In addition, in this case, the original and the modified
cost of the tour differ by precisely (n− |X|)C.

Because of these considerations, if we want to apply a branch-and-bound
method for the solution of the TSP, we only have to find an efficient method for
obtaining good lower bounds for the value of a TSP. A simple LP -relaxation,
that is, the solution of the optimisation problem respecting the bounds (6.5) but
not the integrality condition (6.6), is not advisable because of the excessively
large number of inequalities in (6.5).

Definition 6.1.1. Let G be a complete graph with vertex set V = {1, . . . , n}.
A 1-tree in G is a graph consisting of a spanning tree of the vertices {2, . . . , n}
and two edges between the vertex 1 and the vertex set {2, . . . , n}. �

It is easy to see that every Hamiltonian circuit is a 1-tree. Conversely, a 1-
tree is a Hamiltonian circuit, if and only if the degree of every vertex is precisely
2. Moreover, it turns out that the family of 1-trees can be easily characterised:

Lemma 6.1.2. The set of vectors x = (xi,j)i,j with xi<j ∈ {0, 1} describes a
1-tree, if and only if

n∑
i,j=1
i<j

xi,j = n ,

n∑
k=2

x1,k = 2 ,

∑
i<j∈I

xi,j ≤ |I| − 1 for all ∅ 6= I ⊆ {2, . . . , n} .
(6.7)

A similar characterisation of Hamiltonian circuits is also available:

Lemma 6.1.3. The set of vectors x = (xi,j)i<j with xi,j ∈ {0, 1} describes a
Hamiltonian circuit, if and only if

n∑
i,j=1
i<j

xi,j = n ,

i−1∑
k=1

xk,i +

n∑
k=i+1

xi,k = 2 for all i = 1, . . . , n ,

∑
i<j∈I

xi,j ≤ |I| − 1 for all ∅ 6= I ( {1, . . . , n} .

Thus, the theory of Lagrangean relaxation implies the following result (note
that we relax a set of equations, not inequalities; thus the Lagrange parameters
may also be negative):



46 CHAPTER 6. EXACT METHODS

Theorem 6.1.4 (Held and Karp). Consider a TSP with weights ci,j > 0.
For every λ = (λ2, . . . , λn) ∈ Rn−1 the value

L(c, λ)

:= min
{∑
i<j

ci,jxi,j+

n∑
i=2

λi

(i−1∑
k=1

xk,i+

n∑
k=i+1

xi,k−2
)

: (xi,j)i<j satisfies (6.7)
}

is a lower bound for the value of the problem.
Define moreover

HK(c) := max
{
L(c, λ) : λ ∈ Rn−1

}
.

Then

HK(c) = min

{
cTx : 0 ≤ x ≤ 1 ,

i−1∑
k=1

xk,i +

n∑
k=i+1

xi,k = 2 for all 1 ≤ i ≤ n ,

∑
i<j∈I

xi,j ≤ |I| − 1 for all ∅ 6= I ⊆ {2, . . . , n}
}
.

In particular, HK(c) provides a lower bound for the value of the TSP.

Theorem 6.1.5 (Wolsey). If the weigths ci,j satisfy the triangle inequality

ci,j + cj,k ≥ ci,k for all i, j, k,

that is, the TSP is metric, then HK(c) is at least 2/3 of the value of the TSP.

In order to take advantage of Theorem 6.1.4, one has to be able to compute
the value L(c, λ) fast for different values of λ ∈ Rn−1. To that end, define for
arbitrary λ1 ∈ R the modified cost

c
(λ)
i,j := ci,j + λi + λj .

Then computing L(c, λ) is equivalent to finding a minimal 1-tree with respect
to the modified weight (c̃i,j)i<j . Indeed, define

M(c, λ) := min
{∑
i<j

c
(λ)
i,j xi,j : (xi,j)i,j satisfies (6.7)

}
. (6.8)

Then

M(c, λ) = L(c, λ) + 2

n∑
i=1

λi .

Moreover, the minimisation problem in (6.8) can be solved by finding a minimal
spanning tree on the vertices {2, . . . , n}, and then connecting the vertex 1 with
that tree by simply adding two edges of minimal weight from 1 to {2, . . . , n}. For
the computation of a minimal spanning tree, a greedy algorithm (cf. Section 5.1)
can be applied, with which the problem can be solved in O(n2) time. For the
maximisation of the Lagrange functional L(c, λ), one can then use the sugradient
method presented in Proposition 4.2.3.



6.2. DYNAMICAL PROGRAMMING 47

6.2 Dynamical Programming

In many cases of discrete optimisation problems, it is possible to compute the
optimal solution recursively by solving smaller sub-problems and then assemble
these partial solutions to an optimum of the full problem.

6.2.1 Shortest Paths

A classical example is that of finding the shortest paths in a weighted graph from
one given vertex s to all the other vertices. Then, if the shortest path between
s and t passes through the vertex r, necessarily, the sub-graph starting in s and
ending in r has to be the shortest path from s to r. One can take advantage of
this observation, if one considers the sub-problems that consist of finding the
shortest paths consisting of at most k edges, 1 ≤ k ≤ |V | − 1, from the vertex
s to all the other vertices. Then it is easy to compute the shortest paths of at
most k+1 edges given those of at most k edges: One scans through all the edges
(r, t) of the graph, tests whether attaching this edge to the shortest path from s
to r of at most k edges would decrease the length of the currently shortest path
from s to t, and, in case it would, replaces the shortest path accordingly. Since
every shortest path may contain at most |V | − 1 edges (at least, if the weights
of the edges are all positive), this algorithm will find all the shortest paths after
at most |V | − 1 iterations.

Data: A (directed) graph G = (V,E), positive weights w(e), e ∈ E, and
a vertex s ∈ V ;

Result: For each vertex t ∈ V reachable from s the length l(t) of the
shortest path from s to t and the previous vertex p(t) lying on
this path;

Initialisation: Set l(s) = 0 and l(t) = +∞ for all t ∈ V \ {s};
for i = 1, . . . , |V | − 1 do

for each e = (r, t) ∈ E do
if l(t) > l(r) + w(e) then

l(t)← l(r) + w(e);
p(t)← r;

end

end

end

Algorithm 11: Shortest paths in a directed graph

Remark 6.2.1. In fact, the positivity of the weights is not required for the
algorithm to work. It yields the correct result also in case the graph G contains
some negative edges, as long as there are no cycles in G of total negative length.�

6.2.2 The Knapsack Problem

Similar ideas can also be applied to the knapsack problem. Recall that here
the task is to find a subset S ⊂ {1, . . . , n} maximising

∑
j∈S cj subject to the

constraint
∑
j∈S aj ≤ b. Assume now that all the costs cj are positive integers,



48 CHAPTER 6. EXACT METHODS

and define for 0 ≤ i ≤ n and k ∈ N ∪ {0} the number J(i, k) as

J(i, k) = min
{∑
j∈S

aj : S ⊂ {1, . . . , i} and
∑
j∈S

cj = k
}
.

That is, J(i, k) is the minimal weight of a subset of {1, . . . , i} such that the total
cost of this set equals precisely k. Then

min
{∑
j∈S

cj : S ⊂ {1, . . . , n},
∑
j∈S

aj ≤ b
}

= max
{
k ∈ N : J(n, k) ≤ b

}
.

Moreover, J(i, ·) can be computed from J(i− 1, ·) by

J(i, k) = min
{
J(i− 1, k), J(i− 1, k − ci) + ai

}
.

Thus one arrives at an algorithm of complexity O(nC), where C is an a–priori
estimate of the maximal value of the knapsack problem—for instance one can
choose C =

∑
j cj . A better bound can usually be obtained using the Best–

in–greedy Algorithm 2 with weights wj = cj/aj : One can show that the value
Cgreedy of the greedy solution is at least half the maximal value of the knapsack
problem. Therefore setting C := 2Cgreedy provides a guaranteed upper bound.

Remark 6.2.2. Note that, in case one sets C :=
∑n
j=1 cj , in Algorithm 12 the

maximal weight b is only needed for the assembly of the solution, but not for
the definitions of J and s. Therefore the algorithm can be very efficient, if one
wants to compute the optimal values for different maximal weights. �

Remark 6.2.3. One may also exchange the roles of c and a in the algorithm
and base the dynamical programme on the function

J̃(i, k) = max
{∑
j∈S

cj : S ⊂ {1, . . . , i} and
∑
j∈S

aj = k
}
.

Then one arrives at an algorithm of complexity O(nb). �



6.2. DYNAMICAL PROGRAMMING 49

Data: n ∈ N, values ci ∈ N, 1 ≤ i ≤ n, weights ai ∈ N, 1 ≤ i ≤ n, and a
maximal weight b ∈ N;

Result: A set S ⊂ {1, . . . , n} such that
∑
i∈S ai ≤ b and

∑
i∈S ci is

maximal;

Initialisation: Choose an upper bound C ∈ N of the value of the
maximisation problem;

Set J(0, 0) := 0 and J(0, k) := +∞ for k = 1, . . . , C;

for i = 1, . . . , n do
for j = 0, . . . , C do

if j < ci then
Set s(i, j) := 0 and J(i, j) := J(i− 1, j);

else if J(i− 1, j − ci) + ai ≤ J(i− 1, j) then
Set s(i, j) := 1 and J(i, j) := J(i− 1, j − ci) + ai;

else
Set s(i, j) := 0 and J(i, j) := J(i− 1, j);

end

end

end

Let j = max
{

0 ≤ k ≤ C : J(n, k) ≤ b
}

;
Set S := ∅;
for i = n, . . . , 1 do

if s(i, j) = 1 then
S ← S ∪ {i};
j ← j − ci;

end

end

Algorithm 12: Dynamical programming for the knapsack problem with
integer coefficients





Appendix A

Graphs

In the following, we recall the main notions from graph theory that are used in
these notes.

A.1 Basics

A (undirected) graph is a triple G = (V,E,Ψ), where V and E are finite sets (the
vertices and the edges of the graph), and Ψ: E →

{
W : W ⊂ V

}
is a mapping

satisfying #Ψ(e) = 2 for every e ∈ E. That is, the mapping Ψ assigns to every
edge E precisely two vertices. If two edges are assigned the same vertices, that
is, if Ψ(e) = Ψ(ẽ) for some e 6= ẽ ∈ E, then these edges are called parallel.
Typically, we assume that the graphs we consider do not contain parallel edges
(they are simple). In this case, one can (and we do) identify the edge e with
its image Ψ(e) ⊂

{
W ⊂ V : #W = 2

}
and write G = (V,E), omitting the

mapping Ψ. Two vertices v and w are adjacent, if {v, w} ∈ E; the edge {v, w}
is then said to join v and w. If v is a vertex and e = {v, w} an edge, then e is
said to be incident with v. By δ(v) we denote the set of edges incident with v.
The degree of v is the number of edges incident with v, that is, the degree of v
equals #(δ(v)). More general, for every subset X ⊂ V we define

δ(X) :=
{
{v, w} ∈ E : v ∈ X, w 6∈ X

}
.

A directed graph is a triple G = (V,E,Ψ) with Ψ: E →
{

(v, w) ∈ V × V :

v 6= w
}

. As in the case of undirected graphs, two edges e 6= ẽ are called parallel
if Ψ(e) = Ψ(ẽ). If a directed graph contains no parallel edges, then we again
identify edges with their images and write G = (V,E) with E ⊂ V × V . Note
that the edges (v, w) and (w, v) with v 6= w ∈ V are not parallel. Similarly as
for undirected graphs, we say that two vertices v 6= w are adjacent, if either
(v, w) or (w, v) is an edge (note that in directed graphs these two edges are
different). We say that the edge (v, w) leaves v and enters w. We define

δ+(v) :=
{
e ∈ E : e = (v, w) for some w ∈ V

}
,

δ−(v) :=
{
e ∈ E : e = (w, v) for some w ∈ V

}
,

the sets of edges leaving and entering v, repectively. The out-degree of v is
defined as #(δ+(v)); the in-degree as #(δ−(v)). More general, for every subset

51



52 APPENDIX A. GRAPHS

X ⊂ V we define

δ(X)+ :=
{

(v, w) ∈ E : v ∈ X, w 6∈ X
}
,

δ(X)− :=
{

(w, v) ∈ E : v ∈ X, w 6∈ X
}
.

If G = (V,E) is a directed graph, then the underlying undirected graph is the
graph G′ = (V,E′) with the same set of vertices and edges of the form {v, w}
with (v, w) ∈ E.

Let G = (V,E) be a (directed) graph. A sub-graph of G is a (directed) graph
G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E. We say that G′ is the sub-graph of G
induced by V ′, if

E′ =
{
{u, v} : u, v ∈ V ′ and {u, v} ∈ E

}
or

E′ =
{

(u, v) : u, v ∈ V ′ and (u, v) ∈ E
}
.

That is, the sub-graph G′ of G is induced by V ′ if it contains all the edges of G
that join vertices in V ′. We say that the sub-graph is spanning, if V ′ = V .

We say that a graph G = (V,E) is complete, if either E =
{
{v, w} : v 6= w ∈

V
}

in the undirected case, or E = V ×V \
{

(v, v) : v ∈ V
}

in the directed case.
That is, a complete graph is a maximal simple graph for a given vertex set; the
addition of any edge would destroy its simplicity.

A.2 Paths, Circuits, and Trees

In the following we always assume that G = (V,E) is either a directed or an
undirected graph.

A walk in G is a sequence

W = (v1, e1, v2, e2, v3, . . . , vk, ek, vk+1)

such that vi ∈ V , ei ∈ E, and for every i we have ei = {vi, vi+1} if G is
undirected or ei = (vi, vi+1) (that is, the edges lead from one vertex to the next
vertex). The walk is closed, if v1 = vk+1.

A path in G is a walk where all the visited vertices are different. We often
identify a path (v1, e1, v2, . . . , vk, ek, vk+1) with the subgraph

P := ({v1, . . . , vk+1}, {e1, . . . , ek})

of G.
A circuit or cycle is a closed walk where all the visited vertices apart from

the last and first one are different. As in the case of paths, we identify a circuit
(v1, e1, v2, . . . , vk, ek, v1) with the subgraph

C := ({v1, . . . , vk}, {e1, . . . , ek})

of G, thus forgetting about the starting vertex.
A Hamiltonian path is a path that visits all the vertices in G (it is spanning);

similarly, a Hamiltonian circuit is a circuit that visits all the vertices in G.



A.2. PATHS, CIRCUITS, AND TREES 53

The length of a path or a circuit is the number of its edges. The distance
between two vertices v and w, denoted by distG(v, w) or simply dist(v, w), is
the length of the shortest path from v to w (or, equivalently, the length of
the shortest walk from v to w). If no path from v to w exists, then we set
dist(v, w) := +∞. If G is an undirected graph, then dist(v, w) = dist(w, v); for
a directed graph, this symmetry need not hold. Note that we always have that
dist(v, v) = 0 for all v ∈ V , because P = ({v}, ∅) is also a path in G. For fixed
v ∈ V , the vertices w for which dist(v, w) < +∞ are called reachable from v.

In many optimisation problems, we are in addition given a cost function
c : E → R ∪ {+∞}. In this case, we define

distc(v, w) := min
{∑
e∈F

c(e) : P = (W,F ) is a path from v to w
}
.

In addition, we extend the function c to the class of all subsets of E setting

c(F ) :=
∑
e∈F

c(e) .

With this notation we have

distc(v, w) := min
{
c(P ) : P is a path from v to w

}
.

An undirected graph G is called connected if all vertices w ∈ V are reachable
from some (or, equivalently, every) vertex v ∈ V ; else it is called disconnected.
The maximal connected subgraphs of G are called the connected components of
G.

An undirected graph is a forest, if it contains no circuits as subgraphs; a tree
is a connected forest. A leaf in a tree is a vertex of degree 1.

Proposition A.2.1. Let G be an undirected graph with n vertices. The follow-
ing statements are equivalent:

1. G is a tree.

2. G has n− 1 edges and contains no circuits.

3. G has n− 1 edges and is connected.

4. If v 6= w are vertices in G, then there exists a unique path from v to w in
G.

5. G is connected, but the removal of any edge makes G disconnected.

6. G contains no circuit, but the addition of any edge not already contained
in G creates a circuit.





Index

Symbols
1-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B
Basic Solution . . . . . . . . . . . . . . . . . . 10
Basic Vector . . . . . . . . . . . . . . . . . . . . 13
— , Degenerate . . . . . . . . . . . . . . . . . 13
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Branch-and-Bound. . . . . . . . . . . . . .41

C
Canonical Form. . . . . . . . . . . . . . . . .11
Certificate . . . . . . . . . . . . . . . . . . . . . . 23
Circuit. . . . . . . . . . . . . . . . . . . . . . . . . .52
— , Hamiltonian . . . . . . . . . . . . . . . . 52
Connected Component . . . . . . . . . . 53
Convex Hull . . . . . . . . . . . . . . . . . . . . 21
Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Cycling . . . . . . . . . . . . . . . . . . . . . 15, 39

D
Decision Problem . . . . . . . . . . . . . . . 23
Degree . . . . . . . . . . . . . . . . . . . . . . . . . . 51
— , In- . . . . . . . . . . . . . . . . . . . . . . . . . 51
— , Out- . . . . . . . . . . . . . . . . . . . . . . . 51
Dynamical Programming. . . . . . . .47

E
Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
— , Incident . . . . . . . . . . . . . . . . . . . . 51
— , Parallel . . . . . . . . . . . . . . . . . . . . 51
Epigraph . . . . . . . . . . . . . . . . . . . . . . . . 2

F
Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
— , Minimal . . . . . . . . . . . . . . . . . . . . 10
Feasible Basis . . . . . . . . . . . . . . . . . . .13
Feasible Variable . . . . . . . . . . . . . . . . . 1
Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 53
— , Maximum Weight . . . . . . . . . . 33
Function

— , Convex . . . . . . . . . . . . . . . . . . . . . . 2
— , Cost. . . . . . . . . . . . . . . . . . . . . . . . .1
— , Indicator . . . . . . . . . . . . . . . . . . . . 2
— , Modular. . . . . . . . . . . . . . . . . . . .33
— , Objective . . . . . . . . . . . . . . . . . . . .1

G
Gomory–Chvátal Truncation . . . . 28
Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 51
— , Complete. . . . . . . . . . . . . . . . . . .52
— , Connected. . . . . . . . . . . . . . . . . .53
— , Directed. . . . . . . . . . . . . . . . . . . .51
— , Disconnected . . . . . . . . . . . . . . . 53
— , Simple . . . . . . . . . . . . . . . . . . . . . 51
— , Undirected . . . . . . . . . . . . . . . . . 51
Greedoid . . . . . . . . . . . . . . . . . . . . . . . 36

H
Hyperplane
— , Supporting . . . . . . . . . . . . . . . . . 10

I
Independence System . . . . . . . . . . . 33
Integer Hull. . . . . . . . . . . . . . . . . . . . .21

L
Lagrange Functional . . . . . . . . . . . . 30
Lagrange Parameter . . . . . . . . . . . . 31
Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Local Search . . . . . . . . . . . . . . . . . . . . 37

M
Matrix
— , Incidence . . . . . . . . . . . . . . . . . . . 24
— , Totally Unimodular . . . . . . . . 24
— , Unimodular . . . . . . . . . . . . . . . . 24
Matroid . . . . . . . . . . . . . . . . . . . . . . . . 35
Method
— , Branch-and-Bound . . . . . . . . . 41
— , Greedy . . . . . . . . . . . . . . . . . . 4, 33
— , Local Search . . . . . . . . . . . . . . . 37

55



56 INDEX

N
Neighbourhood . . . . . . . . . . . . . . . . . 37

O
Optimal Matching . . . . . . . . . . . . . . . 5
Optimisation
— , Binary . . . . . . . . . . . . . . . . . . . . . . 1
— , Combinatorial . . . . . . . . . . . . . . . 1
— , Continuous . . . . . . . . . . . . . . . . . . 1
— , Convex . . . . . . . . . . . . . . . . . . . . . . 2
— , Free . . . . . . . . . . . . . . . . . . . . . . . . . 2
— , Linear . . . . . . . . . . . . . . . . . . . . . . . 3
— , Non-smooth . . . . . . . . . . . . . . . . . 3
— , Quadratic . . . . . . . . . . . . . . . . . . . 2
— , Restricted . . . . . . . . . . . . . . . . . . . 2
— , Smooth. . . . . . . . . . . . . . . . . . . . . .3

P
Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
— , Hamiltonian . . . . . . . . . . . . . . . . 52
— , Length of a. . . . . . . . . . . . . . . . .53
— , Shortest . . . . . . . . . . . . . . . . . . . . 47
Polyhedron . . . . . . . . . . . . . . . . . . . . . . 9
— , Feasible . . . . . . . . . . . . . . . . . . . . 13
— , Integral . . . . . . . . . . . . . . . . . . . . 21
— , Rational. . . . . . . . . . . . . . . . . . . .21
Polytope . . . . . . . . . . . . . . . . . . . . . . . . . 9
Problem
— , Assignment . . . . . . . . . . . . . . . . . .5
— , Knapsack . . . . . . . . . . . . 4, 34, 47
— , Set Packing . . . . . . . . . . . . . . . . . 5
— , Traveling Salesman . . 5, 34, 37,

44
Programme
— , Integer . . . . . . . . . . . . . . . . . . . . . . 1
— , Linear . . . . . . . . . . . . . . . . . . . . . . . 3
— , Second Order Cone . . . . . . . . . . 3

R
Relaxation
— , Lagrangean . . . . . . . . . . . . . 30, 45
— , LP . . . . . . . . . . . . . . . . . . . . . . . . . 27

S
Set
— , Convex . . . . . . . . . . . . . . . . . . 2, 21
— , Dependent . . . . . . . . . . . . . . . . . 33
— , Independent . . . . . . . . . . . . . . . . 33
Simplex Algorithm. . . . . . . . . . . . . .14
Simplex Tableau . . . . . . . . . . . . . . . . 16

Simulated Annealing . . . . . . . . . . . . 39
Slack Variable . . . . . . . . . . . . . . . . . . 11
Sub-Graph. . . . . . . . . . . . . . . . . . . . . .52
— , Spanning . . . . . . . . . . . . . . . . . . . 52
Subgradient Method . . . . . . . . 31, 46

T
Tabu . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Tabu Search . . . . . . . . . . . . . . . . . . . . 38
Temperature . . . . . . . . . . . . . . . . . . . . 39
— , Freezing . . . . . . . . . . . . . . . . . . . . 39
Totally Dual Integral . . . . . . . . . . . 25
Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
— , Spanning . . . . . . . . 33, 35, 36, 46
Triangle Inequality. . . . . . . . . . . . . .46

V
Vertex . . . . . . . . . . . . . . . . . . . . . . 10, 51
— , Adjacent . . . . . . . . . . . . . . . . . . . 51

W
Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 52


	Introduction
	Classification of Optimisation Problems
	Examples
	Knapsack Problem
	Set Packing
	Assignment Problem
	Traveling Salesman


	Linear Programming
	Polyhedra
	Canonical Form of Linear Programmes
	The Simplex Algorithm
	Remarks

	Integer Polyhedra
	Integer Polyhedra
	Total Unimodularity and Total Dual Integrality

	Relaxations
	Cutting Planes
	Gomory–Chvátal Truncation
	Gomory's Algorithmic Approach

	Lagrangean Relaxation

	Heuristics
	The Greedy Method
	Greedoids

	Local Search
	Tabu Search
	Simulated Annealing


	Exact Methods
	Branch-and-Bound
	Application to the Traveling Salesman Problem

	Dynamical Programming
	Shortest Paths
	The Knapsack Problem


	Graphs
	Basics
	Paths, Circuits, and Trees


