
Markus Grasmair

Continuous Optimisation

Lecture Notes

Summer 2012

Computational Science Center
University of Vienna

A-1090 Vienna, Austria

Preface

These notes are mostly based on the following book and lecture notes:

• J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, and Claudia
A. Sagastizábal, Numerical Optimization, Springer, Berlin, 2nd edition,
2006.

• Otmar Scherzer and Frank Lenzen, Optimierung, Vorlesungsskriptum WS
2008/09, University of Innsbruck, Austria, 2009.

The chapter on the conjugate gradient method in addition uses:

• Otmar Scherzer, Numerische Mathematik, Vorlesungsskriptum SS 2010,
University of Vienna, Austria 2010.

• Jonathan Richard Shewchuk, An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain, Edition 1 1

4 , School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

The section on the Levenberg–Marquardt method uses some of the results
in:

• Barbara Kaltenbacher, Andreas Neubauer, and Otmar Scherzer, Iterat-
ive Regularization Methods for Nonlinear Ill-posed Problems, de Gruyter,
Berlin, 2008.

The chapter on interior point methods is based on:

• James Renegar, A Mathematical View of Interior-Point Methods in Con-
vex Optimization, MPS/SIAM Series on Optimization, SIAM, Philadelphia
(PA), 2001.

i

Contents

1 Basic Ideas and Concepts 1
1.1 General Situation . 1
1.2 Optimality Conditions . 2
1.3 Convergence . 5
1.4 Steepest Descent . 7

2 Line Search 11
2.1 General Scheme . 11
2.2 Choice of the Step Size . 13

2.2.1 Armijo . 13
2.2.2 Goldstein and Price . 14
2.2.3 Wolfe . 15
2.2.4 Choice of the Constants and Comments 18

2.3 Interpolation and Extrapolation 18

3 Higher Order Methods 21
3.1 Newton’s Method . 21

3.1.1 Drawbacks of Newton’s Method 22
3.2 Quasi-Newton Methods . 24

3.2.1 One-dimensional Motivation 24
3.2.2 Higher-dimensional Generalisation 25

3.3 Levenberg–Marquardt Method 28
3.4 Trust Region . 32

4 Conjugate Gradient Methods 35
4.1 Linear Conjugate Gradients . 35
4.2 Non-linear Conjugate Gradients 38

5 Constrained Optimisation 41
5.1 Equality Constraints . 41

5.1.1 Line Search . 44
5.2 Equality and Inequality Constraints 47

6 Interior Point Methods 51
6.1 Barrier Functions . 51
6.2 Barrier Methods . 52

6.2.1 Short-step Method . 53
6.2.2 Long-step Method . 55

iii

List of Algorithms

1 Steepest descent with exact line search. 8
2 Basic setup of a minimisation algorithm. 9
3 Sketch of a line search algorithm. 11
4 Line search with Armijo’s rule. 14
5 Line search according to Goldstein and Price. 15
6 Wolfe’s line search. 17
7 Newton’s method. 22
8 Newton’s method with line search. 23
9 Quasi-Newton method. 26
10 Sketch of a trust region method. 33
11 Conjugate Gradient method. 37
12 Non-quadratic Conjugate Gradient method. 39
13 Newton’s method for problems with equality constraints. 44
14 Newton’s method with line search for constrained problems 46
15 Short-step barrier method. 54

v

List of Figures

1.1 Stationary points that are no local minima. 4
1.2 Results of the steepest descent method 8

2.1 Armijo’s rule . 13
2.2 Goldstein and Price line search. 14
2.3 Unfeasible line search . 16
2.4 Wolfe’s line search. 17

3.1 Newton’s method and the secant method 25

vii

Chapter 1

Basic Ideas and Concepts

1.1 General Situation

The main goal of this lecture is the presentation of different methods for the
minimisation of a given function f : Rn → R, possibly subject to additional
constraints.

Free Optimisation

Here we assume that we are given f : Rn → R. The task is to find

x∗ ∈ R
n such that f(x∗) is minimal.

This is the problem we will be interested in in the first half of the lecture before
turning to the vastly more complicated situation of constrained optimisation
problems. In addition, we assume for the most part of the lecture that the
function f we want to minimise is differentiable or even two times differentiable.
Then, instead of minimising f , we may try to find stationary points of f , that
is, points where the derivative of f vanishes. Thus, we replace the minimisation
problem by the problem of solving an equation, which in many cases is a task
that is easier to approach.

Constrained Optimisation

The minimisation problem becomes more difficult, if the minimum is required
to lie in a specific subset of Rn described by some equality and inequality con-
straints. That is, find

x∗ ∈ argmin
{

f(x) : x ∈ C
}

where x ∈ C :⇐⇒
{

cj(x) ≤ 0 , j ∈ I ,
cj(x) = 0 , j ∈ E ,

for some functions cj : R
n → R, j ∈ I (inequality constraints), and cj : R

n → R,
j ∈ E (equality constraints).

Additional Complications

In practise, there arise several complications we have to keep in mind:

1

2 CHAPTER 1. BASIC IDEAS AND CONCEPTS

For one, we often do not have direct access to the function f . Instead, we
only have a black-box that takes the argument x and returns the value f(x),
hopefully also the derivative of f at x, and, if we are very lucky, the second
order derivative. In addition, the evaluation of f and its derivatives can be very
time consuming. Then it is necessary to use sophisticated methods that can
find the minimum (or a good approximation) with as few as possible calls of the
function f .

A second problem is that the number of unknowns can be huge. In a mod-
erately sized problem we may easily have a few thousand unknowns, but also
problems with several million unknowns appear in practical applications. Then
already the storage of all the necessary data may pose severe problems—for
instance the Hessian, which is required in the (standard) Newton method would
be a 106 × 106 matrix.

Finally, in many practical applications one not really wants to obtain an
optimum, but rather a near optimum that is stable with respect to small per-
turbations. This can be due to the fact that the function f to be optimised
arises out of some modelling of the real world, which cannot be done exactly; it
is almost certain that some modelling errors have occurred. In addition, all the
numerical calculations (at least in continuous optimisation) are not performed
exactly but only within a certain accuracy. If the minimum one obtains is very
sensitive with respect to these errors, then this numerical optimum might be
quite different from the true optimum one would want to obtain. As a remedy,
one can either try to adapt the optimisation method in such a way that the
iterations will be comparably stable and then end the iteration prematurely,
or modify (regularise) the function f in order to obtain more stable (but still
useful) results. This last problem and approaches to its solution will not be
dealt with during this lecture.

1.2 Optimality Conditions

We now introduce some (standard) mathematical definitions that will be re-
quired throughout these notes.

We denote by Ck(Rn) the space of k-times continuously differentiable func-
tions on R

n. If f ∈ C1(Rn), we denote by ∇f : Rn → R
n the gradient of f ,

defined by

∇f(x) :=
(

∂if(x)
)

1≤i≤n
=













∂f

∂x1

(x)

...
∂f

∂xn

(x)













.

If f ∈ C2(Rn), we denote by Hf : R
n → R

n×n the Hessian of f , defined by

Hf (x) :=
(

∂2ijf(x)
)

1≤i,j≤n
=















∂2f

∂x1
∂x1

(x) . . .
∂2f

∂x1
∂xn

(x)

...
...

∂2f

∂xn
∂x1

(x) . . .
∂2f

∂xn
∂xn

(x)















.

1.2. OPTIMALITY CONDITIONS 3

Whenever f ∈ C2(Rn), the Hessian is a symmetric matrix, that is, Hf (x)
T =

Hf (x).
Recall that, given x̂ ∈ R

n, the gradient ∇f(x̂) provides the best approxim-
ation of the function f near x̂ by a linear function. That is, the mapping

x 7→ f(x̂) +∇f(x̂) (x− x̂)
is the linear (more accurately: affine) function that yields the best description
of f locally around the point x̂. Similarly, the gradient and the Hessian together
provide the best quadratic approximation of f via the mapping

x 7→ f(x̂) +∇f(x̂) (x− x̂) + 1

2
(x− x̂)THf (x̂) (x− x̂) .

If A ∈ R
n×n is a symmetric matrix, then we say that A ≥ 0 or that A is

positive semi-definite, if xTAx ≥ 0 for every x ∈ R
n. One can show that A ≥ 0,

if and only if all eigenvalues of A are non-negative. In addition, we say that
A ≥ B, if (A−B) ≥ 0, or, equivalently, xTAx ≥ xTBx for every x ∈ R

n.
Similarly, we say that A > 0 or that A is positive definite, if xTAx > 0 for

every x ∈ R
n\{0}, and A > B, if (A−B) > 0. Again, one can show that A > 0,

if and only if all eigenvalues of A are positive (that is, strictly larger than zero).
Let f ∈ C1(Rn) and x∗ ∈ R

n. We say that x∗ is a stationary point of f (or
critical point), if ∇f(x∗) = 0. We say that x∗ is a local minimum of f , if there
exists some ε > 0 such that f(x∗) ≤ f(x) for every x ∈ R

n with ‖x∗ − x‖ < ε.
In case f(x∗) < f(x) for every x ∈ R

n \ {x∗} with ‖x∗ − x‖ < ε we say that x∗

is a strict local minimum.

Proposition 1.2.1 (Necessary Conditions). Assume that x∗ is a local min-
imum of the function f : Rn → R.

1. If f ∈ C1(Rn), then x∗ is a stationary point of f .

2. If f ∈ C2(Rn), then additionally Hf (x
∗) ≥ 0.

Proposition 1.2.2 (Sufficient Conditions). Assume that f ∈ C2(Rn) and
that x∗ is a stationary point of f . If Hf (x

∗) > 0, then x∗ is a local minimum
of f .

Most algorithms in continuous optimisation do not aim for the actual min-
imisation of the cost function f , but instead only search for stationary points x∗,
possibly with the additional restriction that Hf (x

∗) ≥ 0 (note, however, that
the latter is only possible, if we have access to the Hessian). More precisely, the
result of most algorithms to be presented in this lecture is a point x∗ε for which
‖∇f(x∗ε)‖ < ε, where ε > 0 is some threshold either specified by the user or the
algorithm.

Remark 1.2.3. There is a slight difference between the necessary condition and
the sufficient condition for local minima: The former states that Hf (x

∗) ≥ 0,
while in the latter we require strict positivity of Hf (x

∗). Consider for instance
the function f(x) := 2x6− 3x4, which has a local maximum at x∗ = 0 although
f ′(0) = 0 and f ′′(0) = 0 (cf. Figure 1.1, left). Similarly, the function f(x, y) :=

x2−y4 has a stationary point at (x∗, y∗) = (0, 0) and Hf (x
∗, y∗) =

(

2 0
0 0

)

≥ 0.

Still, the point (x∗, y∗) is no local minimum (cf. Figure 1.1, right). In practical
applications, however, this will hardly every make any difference. �

4 CHAPTER 1. BASIC IDEAS AND CONCEPTS

−1 −0.5 0 0.5 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.1: Stationary points with positive semi-definite Hessian that are no
local minima.

Minima of Convex Functions

There is one important class of functions, where the necessary and sufficient
conditions for a minimiser are equivalent: convex functions. We will now briefly
recall the most important properties of convex functions that are relevant for
optimisation.

A function f : Rn → R is convex, if

f
(

λx+ (1− λ)y
)

≤ λf(x) + (1− λ)f(y) for all x, y ∈ R
n and 0 < λ < 1 .

Proposition 1.2.4. Assume that f ∈ C1(Rn) is convex. Then x∗ is a global
minimum of f , if and only if x∗ is a stationary point of f .

A function f : Rn → R is strictly convex, if

f
(

λx+ (1− λ)y
)

< λf(x) + (1− λ)f(y) for all x 6= y ∈ R
n and 0 < λ < 1 .

A function f : Rn → R is uniformly convex, if there exists c > 0 such that

f
(

λx+ (1− λ)y
)

+ c‖x− y‖2λ(1− λ) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ R
n, and 0 < λ < 1.

Let f ∈ C2(Rn) and x ∈ R
n. The function f is locally elliptic, if Hf (x) > 0

for every x ∈ R
n.

Proposition 1.2.5. Let f ∈ C2(Rn).

• The function f is convex, if and only if Hf (x) ≥ 0 for every x ∈ R
n.

• If f is locally elliptic, then f is strictly convex.

• The function f is uniformly convex, if and only if there exists c > 0 such
that Hf (x) ≥ c Id for every x ∈ R

n.

Proposition 1.2.6. Let f : Rn → R be convex.

• Every local minimum of f is already a global minimum.

• If f is strictly convex, then it has at most one minimum.

• If f is uniformly convex, then it has precisely one minimum.

1.3. CONVERGENCE 5

1.3 Convergence

In this lecture we will always face the following situation: The cost function f
to be minimised is fixed and we possibly have also access to its gradient and
Hessian. We will discuss different algorithms A that receive as input some initial
guess of the solution xinit and a set of parameters P, and return a sequence

x(k) := A(k, xinit,P) ∈ R
n ,

which should hopefully approximate the solution (or critical point!) x∗ ∈ R
n as

the iteration number k tends to infinity.

Definition 1.3.1. We say that the algorithm A is globally convergent (to x∗),
if, for some suitably chosen set of parameters P, the sequence x(k) converges to
x∗ independent of the initial guess xinit.

We say that the algorithm is locally convergent (to x∗) or, simply, convergent,
if there exists some ε > 0 such that, for some suitably chosen set of parameters
P, the sequence x(k) converges to x∗ whenever the initial guess satisfies ‖xinit−
x∗‖ < ε. �

Obviously, globally convergent algorithms are preferable, because usually we
cannot guarantee that the initial guess is already close to the true solution. In
addition, in case of a locally convergent algorithm, the set of initial guesses that
lead to a convergent sequence may be arbitrarily small.

After having shown that some algorithm is convergent, one may ask the ques-
tion, how fast the iterates x(k) converge to x∗. There are two related approaches
to the estimation of convergence rates: Q-convergence and R-convergence.

Definition 1.3.2. Assume that (x(k))k converges to x∗ and x∗ 6= x(k) for every
k. We define for 1 ≤ p < ∞ the p-quotient convergence factor or Q-factor of
the sequence (x(k))k as

Qp := Qp

(

(x(k))k
)

:= lim sup
k→∞

‖x(k+1) − x∗‖
‖x(k) − x∗‖p .

The number

OQ := OQ

(

(x(k))k
)

:= inf
{

p ≥ 1 : Qp

(

(x(k))k
)

= +∞
}

is called the Q-convergence order of the sequence (x(k))k. �

Remark 1.3.3. The Q-factor depends on the actual choice of the norm ‖·‖
on R

n, while the Q-convergence order does not. Note that in some cases, it
may make sense to replace the Euclidean norm on R

n by a different one, for
instance the 1-norm ‖x‖1 :=

∑

i|xi| or the ∞-norm ‖x‖∞ := maxi|xi|. Also,
in some cases the analysis can become easier (and more natural), if one applies

a weighted Euclidean norm of the form ‖x‖A :=
√
xTAx, where A ∈ R

n×n

is symmetric and positive definite. This happens for instance in the study of
conjugate gradient methods. �

Remark 1.3.4. There exists some p0 ≥ 1 such that Qp

(

(x(k))k
)

= 0 for all

1 ≤ p < p0 and Qp

(

(x(k))k
)

= +∞ for all p0 < p < +∞. �

6 CHAPTER 1. BASIC IDEAS AND CONCEPTS

Of particular importance are the convergence orders 1 and 2:

1. The convergence of an algorithm A is

• super-linear if Q1 = 0,

• linear if 0 < Q1 < 1,

• sub-linear if Q1 ≥ 1.

2. The convergence of an algorithm A is

• super-quadratic if Q2 = 0,

• quadratic if 0 < Q2 < +∞,

• sub-quadratic if Q2 = +∞ and OQ = 2.

Lemma 1.3.5. Assume that the sequence (x(k))k converges Q-linearly to x∗.
Then, for every Q1 < q < 1, there exists a constant C > 0 and an index k0 such
that

‖x(k) − x∗‖ ≤ Cqk for every k ≥ k0 .

This means that the error of a linear convergent algorithm decreases by a
constant factor q < 1 in each step. Put differently, the number of correct digits
of the solution increases by a constant number in each step. Similarly, in case
of quadratic convergence, we can say that the number of correct digits roughly
doubles in each iteration.

A different approach for the measurement of the accuracy of an algorithm
is that of R-convergence:

Definition 1.3.6. Assume that the sequence (x(k))k converges to x∗.
We define for 1 ≤ p <∞ the p-root factor or R-factor of the sequence (x(k))k

as

Rp := Rp

(

(x(k))k
)

:=







lim sup
k→∞

‖x(k) − x∗‖1/k if p = 1 ,

lim sup
k→∞

‖x(k) − x∗‖1/pk

if p > 1 .

The number

OR := OR

(

(x(k))k
)

:= inf
{

p ≥ 1 : Rp

(

(x(k))k
)

= 1
}

is called the R-convergence order of the sequence (x(k))k. �

Here for logRp < C < 0 one has

‖x(k) − x∗‖ ≤ exp(Cpk)

for p > 1 and k sufficiently large, or

‖x(k) − x∗‖ ≤ exp(Ck)

for k sufficiently large and p = 1.
Note the conceptual difference between Q-convergence and R-convergence.

The former measures the improvement of the solution in each step, while the
latter measures the quality of the approximation directly. It is in principle
possible that a sequence has a very good convergence behaviour with respect to
R-convergence, while its Q-convergence is only sublinear.

1.4. STEEPEST DESCENT 7

1.4 Steepest Descent

As indicated in Section 1.2, the goal of most optimisation algorithms is the
search for stationary points, that is, the solution of the equation

∇f(x) = 0 . (1.1)

Among the simplest methods for the solution of the (usually non-linear!) equa-
tion (1.1) are fixed point iterations, which, given an initial guess x(1) and a step
size t ∈ R compute

x(k+1) := x(k) − t∇f(x(k)) . (1.2)

Lemma 1.4.1. Assume that the function f ∈ C2(Rn) is locally elliptic and
the equation (1.1) has a solution. Then the iteration defined in (1.2) converges
Q-linearly, if t > 0 is sufficiently close to zero.

Example 1.4.2. Consider the (trivial) example, where f : Rn → R is defined
as f(x) := 1

2x
TAx for some positive definite, symmetric matrix A ∈ R

n×n.
Then ∇f(x) = Ax for all x ∈ R

n. Thus, the iteration (1.2) reads as

x(k+1) = x(k) − tAx(k) = . . . =
(

I − tA
)(k)

x(1) .

Thus the sequence x(k+1) converges to zero, the unique minimiser of f , provided
that ‖I − tA‖ < 1, where ‖·‖ denotes any matrix norm on R

n×n. In addition,
one has the estimate

‖x(k+1)‖ ≤ ‖I − tA‖k‖x(1)‖ (1.3)

for all k.
Consider for instance the choice ‖·‖ := ‖·‖2, the spectral norm, which is

defined as
‖B‖2 := max

{

σ : σ is a singular value of B
}

.

Then the estimate for the norm of xk+1 is sharp in the sense that there exists
an initial vector x(1) for which the estimate (1.3) holds with equality. Thus, in
the worst case, the fastest (though still linear) convergence is obtained if the
step length t > 0 is chosen such that the norm ‖I − tA‖2 is minimal.

Now recall that the singular values of a matrix B are the eigenvalues of the
matrix B∗B and, therefore, non-negative real numbers. In the particular case of
a symmetric matrix B, which we consider here, the singular values of the matrix
coincide with the absolute values of its eigenvalues. Moreover, if λ1 ≥ . . . ≥ λn
are the eigenvalues of A, then 1− tλ1, . . . , 1− tλn are the eigenvalues of I − tA.
This shows that

‖I − tA‖2 = max
{

|1− tλ1|, |1− tλn|
}

.

Minimising this expression for t, we see that the minimal value is obtained for
t∗ := 2/(λ1 + λn), in which case

‖I − t∗A‖2 =
λ1 − λn
λ1 + λn

=
1− λn

λ1

1 + λn

λ1

< 1 .

This value is small, if all the eigenvalues of A are of approximately the same size,
while it becomes close to 1, as the ratio between smallest and largest eigenvalue
of A is close to zero, that is, if the matrix A is ill-conditioned.

For a concrete example showing the behaviour of the iterates x(k) see Fig-
ure 1.2. �

8 CHAPTER 1. BASIC IDEAS AND CONCEPTS

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1.2: Contour plot of the function f defined in Example 1.4.2 and the
result of the first 15 iterations of the steepest descent method (1.2) with A =
(

1 −1
−1 7

)

, x(1) = (2,−1.8), and t = 0.25 (left hand side) and t = 0.125 (right hand
side).

One major reason, why the fixed point iteration (1.2) performs that badly,
is that it completely neglects the fact that our main goal is the minimisation of
the function f . An obvious point, where this additional information could be
used, is the choice of the step size. First, instead of having a fixed step size, we
may decide to choose different step sizes t(k) in each iteration. Then it makes
sense to choose the step size t(k) in such a way that the function value at the
next iterate becomes minimal, that is, f

(

x(k) − t∇f(x(k))
)

→ min. If we do
so, then we end up with the steepest descent method described in Algorithm 1.
Note, however, that, usually, we cannot compute the minimum of f along the
line in direction ∇f(x(k)) exactly. Instead, we have to content ourselves with
finding sufficiently good approximations of the optimal step size. Methods for
finding such approximations will be discussed in Chapter 2.

Data: a cost function f : Rn → R and its gradient ∇f ;
an initial guess xinit;
Result: x∗ ∈ R

n;

Initialisation: set x(1) := xinit, k = 1;

while convergence criterion not yet satisfied do
compute d(k) := −∇f(x(k));
compute t(k) := argmin

{

f(x(k) + td(k)) : t ≥ 0
}

;

define x(k+1) := x(k) + t(k)d(k);
k ← k + 1;

end

define x∗ := x(k);

Algorithm 1: Steepest descent with exact line search.

At this point, one might ask the question, why we should insist on choosing
the updates precisely in direction of the (negative) gradient. Indeed, although
there is some motivation behind this choice apart from the discussion above,
if we have better search directions available, we should make use of them. If
we do so, we end up with Algorithm 2, which is the basic structure of many
optimisation methods.

1.4. STEEPEST DESCENT 9

Data: a cost function f : Rn → R;
an initial guess xinit;
Result: x∗ ∈ R

n;

Initialisation: set x(1) := xinit, k = 1;

while convergence criterion not yet satisfied;
do

find a search direction d(k) ∈ R
n;

compute a reasonable step size t(k) ∈ R;
define x(k+1) := x(k) + t(k)d(k);
k ← k + 1;

end

define x∗ := x(k);

Algorithm 2: Basic setup of a minimisation algorithm.

As indicated above, there is one reason apart from the motivation by the
fixed point iteration why the choice of the gradient as a descent direction makes
sense. By definition of the gradient, we have, for t ∈ R and d ∈ R

n small
enough,

f(x+ td) ≈ f(x) + t〈∇f(x), d〉 .
That is, for d sufficiently small, say ‖d‖ ≤ δ, the decrease of the function f in
direction d is approximated by the inner product 〈∇f(x), d〉. Because we aim
for the minimisation of f , one idea is therefore to find d ∈ R such that

〈∇f(x), d〉 → min subject to ‖d‖ ≤ δ . (1.4)

If the norm ‖·‖ is the Euclidean norm, then the solution of this minimisation
problem is the negative gradient of f (or, to be precise, d = −δ∇f(x)/‖∇f(x)‖,
but at that point we are only interested in finding a direction). Note, how-
ever, that different choices of the norm in (1.4) lead to other optimal descent
directions. For instance, if we choose ‖d‖ := ‖d‖1 =

∑

i|di|, then

d = ±ei with i ∈ argmax
{

|∂jf(x)| : 1 ≤ j ≤ n
}

,

and the sign of d depends on the sign of ∂if(x).

Chapter 2

Line Search

2.1 General Scheme

In this chapter, we assume that we are already given a search direction d ∈ R
n

and our task is to find a good step size t. We can therefore say that we want to
minimise the function

t 7→ g(t) := f(x+ td) .

Here it is necessary to stress again the additional complications involved in this
task. Most of all, we should keep in mind that we do not have any analytical
formula for the function g. All that we usually have is a black box that takes
the value x + td and returns the value g(t) = f(x + td) and, possibly, also the
derivative g′(t) = 〈∇f(x + td), d〉. Thus, trial and error based on these values
is the only viable strategy.

Simply speaking, all line search algorithms consist of two sub-algorithms:
First, an algorithm that, given the values t > 0, g(t), and, possibly, g′(t),
decides whether the step size t is too large, too small, or acceptable. Second,
an algorithm that computes a new candidate for the step size if the former
candidate has been rejected. Thus, on a very basic level, line search algorithms
read as the one summarised in Algorithm 3. The question is now, how to
construct the two sub-algorithms.

Initialisation: set tL = 0 and tR = +∞;
choose some initial t > 0;

while t not satisfactory do
if t is too small then

tL ← t;
else

tR ← t;
end
compute new t ∈ (tL, tR);

end
define t∗ := t;

Algorithm 3: Sketch of a line search algorithm.

11

12 CHAPTER 2. LINE SEARCH

First we note that the classification sub-algorithm has to satisfy at least the
following properties.

1. For each t > 0, either t is classified as too small, or t is classified as too
large, or t is accepted.

2. There is some upper bound tmax such that every t > tmax is classified as
too large. Thus it cannot happen that the step size increases to +∞ and
the line search fails to terminate (note that the upper bound need not be
given explicitly).

3. Whenever tL is classified as too small and tR is classified as too large, there
exists a non-empty open interval I ⊂ [tL, tR] such that every element in I
is classified as satisfactory (thus the algorithm has a chance to terminate
for suitable updates of t).

Note that these three properties do not imply that the result will be a good
choice for a step size; they are merely required for obtaining any result at all.

Example 2.1.1. An easy example of a classification sub-algorithm that satis-
fies these three properties and is not completely unreasonable is the following:

Let ε > 0 be fixed. We say that

• t is too small, if g′(t) < −ε,

• t is too large, if g′(t) > +ε,

• t is acceptable, if |g′(t)| ≤ ε.

This method works, provided that g′(t) → ∞ as t → ∞ (which is an as-
sumption often justified in applications). Also, at first glance, it looks at least
reasonable: if g′(t) < 0, then we know that the value of g will decrease if we
slightly increase g. Thus, indeed, t may be deemed as too small. Similarly, if
g′(t) > 0, then we can decrease the value of g by decreasing t; thus t is probably
too large. In addition, we ensure the termination of the algorithm, because
we stop the iteration already when g′ is very close to zero, but not necessarily
precisely equal to zero.

At second glance, however, one might notice one major flaw of the method:
We never check, whether we have actually decreased the function value at all!
Indeed, with this method it is quite likely that the result will be a local minimum
whose value is larger then the value at the point we have started with. Thus, it
is (slightly) better to use a refined method, which also checks whether we have
decreased g. We might therefore say that

• t is too small, if g(t) < g(0) and g′(t) < −ε,

• t is too large, if g(t) ≥ g(0) or g′(t) > +ε,

• t is acceptable, if g(t) < g(0) and |g(t)| ≤ ε. �

Although the method described in Example 2.1.1 indeed yields a result that
is smaller than the current function value and probably close to a local minimum
of g, there are several good reasons, why it should not be used in practise. The
most important reason is: We do not actually want to minimise the function

2.2. CHOICE OF THE STEP SIZE 13

g(t)

g(0)+m1tg
′(0)

g(0)+tg′(0)

tR tR
tt

Figure 2.1: Armijo’s rule. A step size is declared too large, if the actual decrease
of the function value is much smaller than the predicted decrease.

g. Instead, our goal is the minimisation of f , and the reason why we consider
the minimisation of g at all is that we want to find a good step size in order
to accelerate the convergence of the algorithm as a whole. Thus we should not
spend too much time within the line search.

2.2 Choice of the Step Size

In the following, we will always assume that g′(0) < 0. This assumption is reas-
onable in all applications, because it simply means that d is a descent direction.

2.2.1 Armijo

One main criterion in all modern line search algorithms is that the actual de-
crease of the function g is (at least) of the same order as the expected decrease.
The expected decrease for a step size t > 0 is given by the derivative of g at
zero, multiplied by t. Thus we should consider a step size too large, if the dif-
ference g(t)− g(0) is much larger than tg′(0) (note that g′(0) is assumed to be
negative!).

In practise, this means that we choose some 0 < m1 < 1 and say that a step
size t is too large, if

g(t) > g(0) +m1tg
′(0) . (2.1)

The condition (2.1) is called Armijo’s rule. For an illustration see Figure 2.1.
In principle, this condition alone can already be used for the classification step
in a line search algorithm. Then we end up with the simple Algorithm 4.

14 CHAPTER 2. LINE SEARCH

Initialisation: choose some t > 0 and 0 < m1 < 1;

while g(t) > g(0) +m1tg
′(0) do

decrease t;
end
define t∗ := t;

Algorithm 4: Line search with Armijo’s rule.

g(t)
g(0)+m2tg

′(0)

g(0)+m1tg
′(0)

g(0)+tg′(0)

tR tR

tL

tt

Figure 2.2: Goldstein and Price line search. In addition to Armijo’s rule, a step
size is declared too small, if the actual decrease of the function value is not much
smaller (or even larger) than the predicted decrease.

The usage of Armijo’s rule alone can be dangerous, because it never declares
a step size to be too small. Thus a good (meaning: sufficiently large) initial-
isation of t at the beginning of the line search is extremely important; else it
is possible that the number of iterations of the algorithm is exceedingly large.
Typically, a constant initialisation (say, t = 1) is chosen. However, this only
works, if we either have a good understanding of the function we want to op-
timise, or the algorithm that determines the search direction at the same time
yields a step length. This is for instance the case in the Newton method and its
derivatives, where the step length t = 1 is asymptotically optimal and the main
task of the line search is to increase the region of convergence of the method.

2.2.2 Goldstein and Price

The second classification sub-algorithm we discuss is based on Armijo’s rule,
but, in addition, introduces a criterion that decides whether a step size is too
small. Again this criterion compares the actual decrease with the expected
decrease. The difference is now that we declare the step size too small if the
actual decrease is not much smaller than the expected one. The idea is that, in

2.2. CHOICE OF THE STEP SIZE 15

this case, it should be possible to decrease the value of g further by increasing
t.

In practise, this means that we choose two numbers 0 < m1 < m2 < 1 and
say that:

• t is too large if g(t) > g(0) +m1tg
′(0),

• t is too small if g(t) < g(0) +m2tg
′(0),

• t is acceptable, if

m2g
′(0) ≤ g(t)− g(0)

t
≤ m1g

′(0) .

These three conditions are called the rule of Goldstein and Price. An interpret-
ation of these condition is shown in Figure 2.2. The method is summarised in
Algorithm 5.

Initialisation: set tL = 0 and tR = +∞;
choose some initial t > 0;
declare t inacceptable;
fix 0 < m1 < m2 < 1;

while t is inacceptable do
if g(t) > g(0) +m1tg

′(0) then
set tR ← t;
choose new t ∈ (tL, tR);

else if g(t) < g(0) +m2tg
′(0) then

set tL ← t;
choose new t ∈ (tL, tR);

else
declare t acceptable;

end

end
define t∗ := t;

Algorithm 5: Line search according to Goldstein and Price.

2.2.3 Wolfe

The two methods discussed above only use the function values g(0) and g(t), as
well as the derivative g′(0) for determining the step length, but not the derivative
of g at other points. It is reasonable to assume that the additional usage of
gradient information may lead to better results of the line search provided that
the cost of computing derivatives is not too large. We will, however, still base
the decision whether a step size is too large on Armijo’s rule and only use the
gradient information for declaring step sizes too small.

Now, the seemingly obvious possibility of declaring a step size t too small,
if the derivative g′(t) is below some negative threshold close to zero, cannot
be used, as it may lead in some situations to an impossibility of finding any
acceptable step size at all. We cannot guarantee that there is a value t∗ satisfying
Armijo’s rule such that g′(t∗) ≈ 0 (see Figure 2.3). Because of Armijo’s rule

16 CHAPTER 2. LINE SEARCH

g(t)

g(0)+m1tg
′(0)

g(0)+tg′(0)

tRtL

t

Figure 2.3: Impossibility of basing a line search on Armijo’s rule and smallness
of the derivative.

g(t) ≤ g(0) + m1tg
′(0), we only obtain that all the values between g′(0) and

m1g
′(0) are attained. Indeed, if t̂ denotes the smallest positive value for which

Armijo’s rule is satisfied exactly, that is, g(t̂) = g(0)+m1tg
′(0), then, necessarily,

g′(t̂) ≥ m1g
′(0) > g′(0). Moreover, the mean value theorem implies that g′

attains, in the interval (0, t̂), all values in the range (g′(0), g′(t̂)).

The argumentation above implies that we can only obtain a convergent line
search algorithm with Armijo’s rule and gradient information, if we declare a
step length t acceptable, if g′(t) ≥ m1g

′(0). One possibility is to call a step size
t too small, if the derivative g′(t) is smaller than m2g

′(0), where m2 is larger
than the constant in Armijo’s rule but still smaller than 1.

That is, we choose two numbers 0 < m1 < m2 < 1 and say that:

• t is too large if g(t) > g(0) +m1tg
′(0),

• t is too small if g(t) ≤ g(0) +m1tg
′(0) and g′(t) < m2g

′(0),

• t is acceptable, if g(t) ≤ g(0) +m1tg
′(0) and g′(t) ≥ m2g

′(0).

This leads to Wolfe’s line search. An interpretation of these conditions is
provided in Figure 2.4. The method is summarised in Algorithm 6.

While in general Wolfe’s line search should be preferred over the other meth-
ods, in situations where the evaluation of g′ takes considerably more time than
the evaluation of g alone the method of Goldstein and Price should take pre-
cedence. Note moreover that Wolfe’s line search is very well suited for the
Quasi-Newton methods to be discussed in the next chapter, as its usage ensures
super-linear convergence of the algorithm.

2.2. CHOICE OF THE STEP SIZE 17

g(t)

g(0)+m2tg
′(0)

g(0)+m1tg
′(0)

g(0)+tg′(0)

tR tR

tL tL

tt

Figure 2.4: Wolfe’s line search. In addition to Armijo’s rule, one compares the
derivative of g at t with the derivative of g at the origin.

Initialisation: set tL = 0 and tR = +∞;
choose some initial t > 0;
declare t inacceptable;
fix 0 < m1 ≤ m2 < 1;

while t is inacceptable do
if g(t) > g(0) +m1tg

′(0) then
set tR ← t;
choose new t ∈ (tL, tR);

else if g′(t) < m2g
′(0) then

set tL ← t;
choose new t ∈ (tL, tR);

else
declare t acceptable;

end

end
define t∗ := t;

Algorithm 6: Wolfe’s line search.

18 CHAPTER 2. LINE SEARCH

2.2.4 Choice of the Constants and Comments

In all three methods described above, it is necessary to fix some constants (either
only m1 or both m1 and m2). While in theory arbitrary choices 0 < m1 < m2 <
1 are possible, in practise it makes sense to obey the restrictions

0 < m1 <
1

2

and, for Goldstein and Price,

1

2
< m2 < 1 .

One major reason is that this guarantees that for quadratic functions g the
optimal step size will not be rejected. Indeed, assume that g(t) = −at+ bt2 for
some a, b > 0. This function attains its minimum at the point t∗ = a/(2b), and
the minimal value is g(t∗) = −a2/(4b) = −at∗/2. This point satisfies Armijo’s
rule, if and only if

−at
∗

2
= g(t∗) ≤ g(0) +m1t

∗g′(0) = −m1at
∗ ,

that is, if and only ifm1 ≤ 1/2. Similarly, the second condition in the Goldstein–
Price rule is satisfied, if and only if m2 ≥ 1/2.

This choice of the constant is particularly important, if the direction d is
obtained by a Newton type method (see Chapter 3), where the function f is
locally approximated by a quadratic function. In this situation all the good
properties of the method are destroyed, if these restrictions are not satisfied.

In addition, in all the discussed methods it is advisable to add two further
stopping criteria: Stop the iteration if tL becomes too large, and also if the
difference tR − tL becomes too small.

2.3 Interpolation and Extrapolation

While the above methods provide criteria for when to stop the search for a good
step size, they do not tell how one should proceed when a step size is rejected.
The selection of the next candidate for the step size in the line search is the
topic of this section. Here we always assume that we are already given some
first candidate 0 < t(1) < +∞.

The computation of the step size can be subdivided in two different phases.
The first phase is that of extrapolation, which occurs as long as the upper bound
tR is +∞. The second phase is that of interpolation, when both tL and tR are
finite numbers.

The simplest methods for extrapolation and interpolation are the following:

• Extrapolation: Fix a > 1 and define t(k+1) := atL.

• Interpolation: Set t(k+1) := (tL + tR)/2.

While these methods do work, they are typically not very efficient. At least if we
do not only have access to g but also to g′, it is most of the time better to base
the computation of t(k+1) on an approximation of the function g obtained from
the values of g and g′ at the previous iterates t(k) and t(k−1) (with t(0) := 0).

2.3. INTERPOLATION AND EXTRAPOLATION 19

Possibly the best method for computing t(k+1) is to fit a cubic function ψ in
such a way that

ψ(t(k)) = g(t(k)) , ψ(t(k−1)) = g(t(k−1)) ,

ψ′(t(k)) = g′(t(k)) , ψ′(t(k−1)) = g′(t(k−1)) .

Then one can define t(k+1) as the local minimum of ψ provided it exists and
satisfies the desired restriction tL < t(k+1) < tR (note that a cubic function has
at most one local minimum and never a global minimum).

For the computation of the local minimum of the fitting polynomial ψ define

p := g′(t(k)) + g′(t(k−1))− 3
g(t(k))− g(t(k−1))

t(k) − t(k−1)
,

set

D := p2 − g′(t(k))g′(t(k−1)) and d := −
√
D sgn(t(k) − t(k−1)) .

If the discriminant D is smaller then zero, then ψ has no local minimum. Else
the local minimum is

tmin = t(k) + r(t(k−1) − t(k)) , where r :=
d+ p− g′(t(k))

2d+ g′(t(k−1))− g′(t(k)) .
(2.2)

• Extrapolation: Fix a > 1. If tmin defined in (2.2) exists define

t(k+1) := max{tmin, atL} ,

else set t(k+1) := atL.

• Interpolation: Fix 0 < θ < 1/2. If tmin defined in (2.2) exists define

t(k+1) := max
{

min{tmin, tR − θ(tR − tL)}, tL + θ(tR − tL)
}

,

else set t(k+1) := (tL + tR)/2.

Thus it is guaranteed that the lower bound in the extrapolation phase always
increases by a constant factor a > 1. Similarly, in the interpolation phase, the
next step size will always be in the interval (tL, tR), but never too close to the
boundaries tL and tR. Note that the constants a > 1 and 0 < θ < 1/2 should
never be chosen too small, as this could lead to a large number of required
iterations. Again it has to be stressed that the line search is only a very small
part of the optimisation algorithm.

Chapter 3

Higher Order Methods

3.1 Newton’s Method

The idea behind Newton’s method is to approximate the cost function f first
locally by a quadratic function and then to minimise this quadratic function
exactly. An iteration of this procedure then leads to a theoretically extremely
efficient algorithm.

Assume that x ∈ R
n is given and that f ∈ C2(Rn). A Taylor expansion of

f around x yields

f(x+ d) = f(x) +
〈

∇f(x), d
〉

+
1

2
dTHf (x)d+ o(|d|2) .

Thus the mapping

d 7→ f(x) +
〈

∇f(x), d
〉

+
1

2
dTHf (x)d

provides a good approximation of f around x. In order to minimise this ap-
proximation (if possible), we compute the zeros of its gradient, which is given
by

d 7→ ∇f(x) +Hf (x)d .

Thus the stationary points d of the approximation satisfy the equation

Hf (x) d = −∇f(x) .

The basic Newton method now simply uses the vector d for defining the next
iteration (see Algorithm 7).

Theorem 3.1.1. Assume that f ∈ C2(Rn) and that Hf (x
∗) is invertible. Then

Newton’s method converges locally Q-superlinear. If in addition f ∈ C3(Rn),
then the convergence is locally Q-quadratic.

Note that this result does not claim that we have global convergence . Indeed,
for arbitrary initialisation xinit, we can expect Newton’s method to diverge. One
possibility for obtaining a higher probability of convergence is the combination
of Newton’s method with one of the line search algorithms of the previous
chapter. Typically, the rules of Wolfe or Goldstein and Price are used, but it is

21

22 CHAPTER 3. HIGHER ORDER METHODS

Data: a cost function f : Rn → R;
an initial guess xinit;
Result: x∗ ∈ R

n;

Initialisation: set x(1) := xinit, k = 1;

while convergence criterion not yet satisfied do
define d(k) by solving the equation

Hf (x
(k)) d(k) = −∇f(x(k))

define x(k+1) := x(k) + d(k);
k ← k + 1;

end

define x∗ := x(k);

Algorithm 7: Newton’s method.

also possible to rely solely on Armijo’s rule, as Newton’s method not only yields
a direction, but also a theoretically optimal guess for the step size, namely t = 1.
Also, the divergence of Newton’s method is due to too large step sizes and not
too small ones (which are the main problem of Armijo’s rule).

Recall here the discussion in Section 2.2.4. If one combines Newton’s method
with a line search, then it is absolutely necessary to guarantee that the initial
guess t = 1 will be classified as acceptable step size when one is already close
to the actual minimum. Else the quadratic, but possibly also the superlinear
convergence, will be lost, which is the one major reason why Newton’s method
is used at all. For the line searches discussed before, the acceptance of the initial
guess t = 1 can be guaranteed, if the constants m1 and m2 are chosen such that
0 < m1 < 1/2 and, in the case of Goldstein and Price, 1/2 < m2 < 1.

The resulting method is summarised in Algorithm 8. In the case of a strictly
convex target function f , one can also derive a global convergence result. We
will state the theorem only for the case of Wolfe’s line search, but analogous
results also hold for the other two methods.

Theorem 3.1.2. Assume that f ∈ C2(Rn) is strictly convex with (unique) min-
imiser x∗ and Hf (x

∗) is invertible. Then Newton’s method with line search based
on Wolfe’s rule converges globally Q-superlinear to x∗, if the line search is ini-
tialised with t = 1 and the parameters satisfy 0 < m1 < 1/2 and m1 < m2 < 1.
If f ∈ C3(Rn), the convergence is Q-quadratic.

3.1.1 Drawbacks of Newton’s Method

Apart from the divergence of the method unless combined with a line search,
there are at least two additional problems that make the usage of Newton’s
method problematic in many applications. First, the motivation of the method
itself—first approximation of f by a quadratic function, then minimisation of
the approximation—is reasonable, only if the quadratic approximation of f at
x has a minimum. This is the case, only if the Hessian Hf (x) is positive semi-
definite. Now note that the Hessian Hf (x) is positive semi-definite for every

3.1. NEWTON’S METHOD 23

Data: a cost function f : Rn → R;
an initial guess xinit;
Result: x∗ ∈ R

n;

Initialisation: set x(1) := xinit, k = 1;

while convergence criterion not yet satisfied do
define d(k) by solving the equation

Hf (x
(k)) d(k) = −∇f(x(k))

find a good step size t(k) by applying a line search with direction d(k)

and initialisation t = 1;
define x(k+1) := x(k) + t(k)d(k);
k ← k + 1;

end

define x∗ := x(k);

Algorithm 8: Newton’s method with line search.

x ∈ R
n, if and only if f is convex. Thus, one can say that Newton’s method

makes only sense for the minimisation of convex functions.

Even for convex functions, problems arise if they are not strictly convex.
Then, at some points x, the Hessian Hf (x) will only be positive semi-definite,
but not positive definite. That is, at least one eigenvalue is zero, which im-
plies that the matrix Hf (x) is not invertible. Then the solution of the equation
Hf (x)d = −∇f(x) becomes problematic, in particular so, if one accounts for un-
avoidable rounding errors in the numerical solution. Thus, in this case Newton’s
method is not even well-defined.

Different problems arise, if one applies Newton’s method to non-convex prob-
lems. Then, at some points x, the HessianHf (x) will be indefinite. The problem
at these points is that, although Hf (x) might be invertible and thus the Newton
direction d = −Hf (x)

−1∇f(x) well-defined, the direction d need not be a des-
cent direction. Then, instead of yielding a better direction than simple steepest
descent, Newton’s method provides in a sense the worst possible choice of a
direction. In particular, this direction should not be used as the input of a line
search algorithm. Thus, before starting the line search, it is at least necessary
to check whether d is a descent direction, which is equivalent to testing whether
〈∇f(x), d〉 < 0. If it is not, then one has to choose a different direction, for
instance the negative gradient of f at x.

The second large problem in Newton’s method is that, even if everything
works in theory, that is, the function f is strictly convex, we still have to solve
a linear equation Hf (x)d = −∇f(x) for obtaining the descent direction d in
each step. If the number of unknowns n is large, then it is not advisable to
find d by inverting the matrix Hf (x) and multiplying the inverse with −∇f(x).
Instead one should use any one of the many existing algorithms for the solution
of systems of linear equations.

If f is strictly convex and, consequently, Hf (x) positive semi-definite, clas-
sically the Cholesky decomposition of Hf (x) is used. That is, one computes a
lower triangular matrix L such that Hf (x) = LLT , and then solves the equation

24 CHAPTER 3. HIGHER ORDER METHODS

Hf (x)d = −∇f(x) by first solving Le = −∇f(x) for e by forward substitution,
and then LT d = e by backward substitution.

Even better, if slightly less known, is the LDL-decomposition: We decom-
pose the Hessian into

Hf (x) = LDLT ,

where L is a lower triangular matrix with all diagonal entries equal to 1, and D
a diagonal matrix with positive entries (provided Hf (x) > 0). The point is that
this decomposition avoids the computation of square roots that appear in the
Cholesky decomposition. Because of numerical errors, it cannot be guaranteed
that the matrix stays positive definite during the Cholesky algorithm; thus it
is in principle possible that the numerical realisation has to compute squares
of negative numbers, at which point the algorithm will break down. Also, an
LDL-decomposition can be possible even in cases where the matrix Hf (x) itself
is not positive definite—then, however, the entries of D need not be positive.

Whatever method one uses for computing the descent direction d in Newton’s
method, the computation time has to be taken into account when one studies
the efficiency of the method. For decomposition methods, the time is typically
of order n3; iterative methods like conjugate gradients may often be faster. In
addition, problems will arise when the matrix Hf (x) is ill-conditioned, because
then an accurate solution of the equation Hf (x)d = −∇f(x) is impossible.

In the following two sections we discuss two methods that have been de-
veloped specifically to counter these two problems of Newton’s method: the
necessity of solving a large linear system in each step and the possibility that
the obtained direction need not be a descent direction.

3.2 Quasi-Newton Methods

3.2.1 One-dimensional Motivation

Newton’s method is often encountered not in the context of non-linear optim-
isation, but rather in that of the solution of non-linear equations. There one
is given a non-linear mapping G : R → R and one is interested in finding some
x ∈ R satisfying G(x) = 0. The idea is to employ an iterative algorithm, defin-
ing the next iterate x(k+1) by approximating the function G around x(k) linearly
by G(x) ≈ G(x(k)) + G′(x(k))(x − x(k)), and then solving the linear equation
G(x(k)) +G′(x(k))(x− x(k)) = 0 for x. That is, one defines the next iterate as

x(k+1) = x(k) − 1

G′(x(k))
G(x(k)) .

Now, the computation of the derivative G′(x(k)) can be avoided by noting that

G′(x(k)) ≈ G(x(k))−G(x(k−1))

x(k) − x(k−1)
.

Using this additional approximation, we then obtain the next iterate as

x(k+1) = x(k) − x(k) − x(k−1)

G(x(k))−G(x(k−1))
G(x(k)) .

3.2. QUASI-NEWTON METHODS 25

x(k)

x(k+1)

x(k)x(k−1)

x(k+1)

Figure 3.1: Comparison of the one-dimensional Newton method (left) and the
secant method (right).

More intuitively, the idea behind this approach is to approximate the function
G (or its graph) near x(k) by the secant through the points

(

x(k), G(x(k))
)

and
(

x(k−1), G(x(k−1))
)

and then to find the zero of this line. Hence the name:
secant method. See also Figure 3.1

Now note that Newton’s method for an optimisation problem f(x) → min
is precisely the same as Newton’s method for the equation f ′(x) = 0. Thus, in
the one-dimensional case, we may use the iteration

x(k+1) = x(k) − x(k) − x(k−1)

f ′(x(k))− f ′(x(k−1))
f ′(x(k))

for minimising f , thereby avoiding any computation of second order derivatives.
This simplification, however, comes at a price: instead of quadratic convergence,
one only has super-linear convergence (more precisely, the Q-convergence order
equals the golden section (

√
5+ 1)/2). Note, moreover, that the secant method

for one-dimensional optimisation problems also has an interpretation that is
very similar to that of Newton’s method. In Newton’s method, we have approx-
imated the function f by its best quadratic approximation near x(k), and then
minimised this approximation. Here, we also use a quadratic approximation f̃
of f which is then minimised, but now we construct the function f̃ in such a
way that it satisfies the equations

f̃(x(k)) = f(x(k)) ,

f̃ ′(x(k)) = f ′(x(k)) ,

f̃ ′′(x(k))(x(k) − x(k−1)) = f ′(x(k))− f ′(x(k−1)) . (3.1)

3.2.2 Higher-dimensional Generalisation

For generalising the one-dimensional secant method to higher dimensions we
basically use the same ideas: We approximate the function f near x(k) by a
quadratic function of the form

f̃(x(k) + d) = f(x(k)) +
〈

∇f(x(k)), d
〉

+
1

2
dTM (k)d

26 CHAPTER 3. HIGHER ORDER METHODS

and define the search direction d(k) as the minimiser of the function f̃ , which
can be computed by solving the equation

M (k)d = −∇f(x(k))
for d. This approach makes sense, if the following conditions are satisfied:

• The matrix M (k) is symmetric and positive definite for all k.

• The equation M (k)d = −∇f(x(k)) can be solved without too much effort.

• The matrix M (k) in some sense approximates the Hessian Hf (x
(k)); else

we cannot expect good convergence rates.

Note that the positive definiteness guarantees that

〈∇f(x(k)), d(k)〉 = −
〈

∇f(x(k)), (M (k))−1∇f(x(k))
〉

< 0 ,

that is, d(k) is a descent direction.
An even better approach is to directly approximate the inverse of the Hessian

instead of the Hessian itself. Then, instead of solving a linear system in each
step, we only have to perform a matrix–vector multiplication. In addition,
usually, the approximation W (k+1) of Hf (x

(k+1))−1 is built up inductively from
W (k) by adding a correction term B(k), which only uses information about the
iterations k and k − 1. Moreover, one usually requires that the matrix W (k+1)

satisfies the secant equation

W (k+1)
(

∇f(x(k+1))−∇f(x(k))
)

= x(k+1) − x(k) ,

which gives the matrixW (k+1) at least some chance of approximating the inverse
of the Hessian (cf. (3.1)). Thus we obtain the method described in Algorithm 9.

Data: a cost function f : Rn → R;
initial guess xinit;
Result: x∗ ∈ R

n;

Initialisation: set x(1) := xinit, k = 1, W (1) = Id;

while convergence criterion not yet satisfied do
compute

d(k) = −W (k)∇f(x(k))
find a good step size t(k) by applying a line search with direction d(k)

and initialisation t = 1;
define x(k+1) := x(k) + t(k)d(k);
compute a correction term B(k);
define W (k+1) :=W (k) +B(k);
k ← k + 1;

end

define x∗ := x(k);

Algorithm 9: Quasi-Newton method.

The most important methods for computing the update B(k) are those due
to Broyden, Fletcher, Goldfarb, Shanno, and Davidon, Fletcher, Powell. Denote
in the following

sk := x(k+1) − x(k) , yk := ∇f(x(k+1))−∇f(x(k)) .

3.2. QUASI-NEWTON METHODS 27

Davidon–Fletcher–Powell (DFP)

Define

B(k) :=
sks

T
k

〈yk, sk〉
− W (k)yky

T
kW

(k)

〈yk,W (k)yk〉
.

Note here that sk ∈ R
n×1 is a column vector and therefore the product sks

T
k ∈

R
n×n is a matrix. Similarly, W (k)yk ∈ R

n×1 is a column vector and yTkW ∈
R

1×n a row vector, and thus, again, the product W (k)yky
T
kW

(k) is a matrix.
Note moreover that the matrix W (k) is symmetric, and therefore yTkW

(k) =

yTkW
(k)T = (W (k)yk)

T .

Broyden–Fletcher–Goldfarb–Shanno (BFGS)

Here

B(k) := −sky
T
kW

(k) +W (k)yks
T
k

〈yk, sk〉
+

(

1 +
〈yk,W (k)yk〉
〈yk, sk〉

)

sks
T
k

〈yk, sk〉
.

Of these two methods, (DFP) is the older one, but (BFGS) is used more
widely nowadays.

Remark 3.2.1. It is interesting to note that the two methods are in some
sense dual to each other: If, starting with the identity matrix, one iteratively
computes updates using (BFGS), but exchanges the roles of sk and yk, then the
resulting matrix is precisely the inverse of the matrix obtained with (DFP). �

Theorem 3.2.2. Assume that W (k) is positive definite and W (k+1) = W (k) +
B(k) is computed from W (k) using either of the rules (BFGS) or (DFP). Then
W (k+1) is positive definite, if and only if 〈yk, sk〉 > 0.

Remark 3.2.3. Using the notation of line search algorithms, the condition
〈yk, sk〉 > 0 from Theorem 3.2.2 translates to the condition t(k)

(

g′(t(k)) −
g′(0)

)

> 0, or, as t(k) > 0, the condition g′(t(k)) > g′(0). Because W (k) is

positive definite, it follows that d(k) is a descent direction, that is, g′(0) < 0.
Thus it is easy to check that the condition g′(t(k)) > g′(0) is necessarily satisfied,
if a line search is performed using Wolfe’s rule (with any parameters satisfying
0 < m1 < m2 < 1). �

Theorem 3.2.4. Assume that f ∈ C3(Rn) and x∗ ∈ R
n satisfies ∇f(x∗) = 0

and Hf (x
∗) > 0. Consider the Quasi-Newton method with updates of W (k)

according to BFGS and a line search with Wolfe’s rule using parameters 0 <
m1 < 1/2 and m1 < m2 < 1 and an initialisation t = 1. If x(k) converges to
x∗, then the convergence is Q-super-linear.

Remark 3.2.5. If the dimension n of the problem becomes too large, then it
will be impossible to store the whole matrix W (k). Or, if storage is no problem,
still the multiplications W (k)∇f(x(k)) for the new descent direction andW (k)yk
in DFP might take unreasonably long (storage and time needed are both of

28 CHAPTER 3. HIGHER ORDER METHODS

order O(n2)). Note, however, that we can compute the product of W (k) and a
vector z ∈ R

n also as

W (k)z = z +

k−1
∑

j=1

B(j)z = z +

k−1
∑

j=1

〈z, sTk 〉
〈yk, sk〉

sk −
k−1
∑

j=1

〈z,W (k)yk〉
〈yk,W (k)yk〉

W (k)yk .

Thus, in fact it is only necessary to store the vectors sk, W
(k)yk ∈ R

n, and
the numbers 〈yk, sk〉, 〈yk,W (k)yk〉 ∈ R, and one only has to perform 2k inner
products, scalar multiplications, and additions for the computation ofW (k)z. If
k ≪ n, this observation greatly enhances the performance of the Quasi-Newton
method: Computation time and storage are both of order O(nk) for the kth

iteration. The same idea can also be applied to BFGS.

In addition, this representation quite naturally gives rise to an adaptation
to the limited memory situation where either the number of iterations becomes
large or the available memory is not much larger than n: Instead of storing all the
vectors sk and W (k)yk, one prescribes some number m ∈ N a–priori and only
stores the last m vectors sk−m+1, . . . , sk and W (k−m+1)yk−m+1, . . . ,W

(k)yk,
thus obtaining a fixed computation time and storage size of order O(mn). �

3.3 Levenberg–Marquardt Method

A problem often encountered in optimisation is that of parameter identification.
Here, the assumption is that one is given a function

Φ: Rn × R
p → R

q , (x, u) 7→ v ,

which relates parameters x ∈ R
n and an input datum u ∈ R

p with an output or
measurement datum v ∈ R

q.

Then one collects a number of measurement data v(r) ∈ R
q, r = 1, . . . , s,

corresponding to (known) input data u(r) ∈ R
p, r = 1, . . . , s. Now one wants

to find the set of parameters x∗ ∈ R
n that have generated these data. That is,

one wants to solve the system of equations

Φ(x, u(r)) = v(r) for all 1 ≤ r ≤ s (3.2)

for the vector x.

The classical example is that of linear regression, where the model Φ is linear
(or rather affine). Here one wants to find a matrix A ∈ R

q×p and a vector b ∈ R
q

such that

Au(r) + b = v(r) for all 1 ≤ r ≤ s .

This is a linear equation for the unknowns (A, b) ∈ R
(q×p)×p, which is overde-

termined if the number of data points is larger than the number of free paramet-
ers, that is, if rs > q(p+1). In this case, this equation can only be solved exactly,
if the model is consistent with the data. This assumption, however, is hardly
ever justified, because, first, a linear model is usually only a first approximation
of reality and, second, the data v(r) can usually only be measured with some
finite accuracy. Then, instead of trying to solve the system of equations exactly,
which is impossible, one only tries to solve it approximately by minimising the

3.3. LEVENBERG–MARQUARDT METHOD 29

squared data misfit. That is, one finds (A, b) satisfying

1

2

s
∑

r=1

‖Au(r) + b− v(r)‖2 → min .

In the case of non-linear models Φ, the problems are even larger than in
the linear setting. Thus one arrives at considering the non-linear least squares
problem

f(x) :=
1

2

s
∑

r=1

‖Φ(x, u(r))−v(r)‖2 =
1

2

s
∑

r=1

q
∑

j=1

(

Φj(x, u
(r))−v(r)j

)2 → min . (3.3)

In order to solve the minimisation problem (3.3) in the non-linear case, it is
possible to apply a Newton iteration. To that end, we need the gradient and
the Hessian of the function f . Note here that, in contrast to the optimisation
problems discussed before, we have some knowledge of the function f to be
minimised. It is only the model Φ that is assumed to be given only by some
black-box.

Computing the gradient of f is quite easy. One has

∇f(x) =
s

∑

r=1

DxΦ(x, u
(r))T

(

Φ(x, u(r))− v(r)
)

=

s
∑

r=1

q
∑

j=1

(

Φj(x, u
(r))− v(r)j

)

∇xΦj(x, u
(r)) .

Now the Hessian is also quite straightforward. Here one obtains

Hf (x) =

s
∑

r=1

q
∑

j=1

∇xΦj(x, u
(r))∇xΦj(x, u

(r))T

+

s
∑

r=1

q
∑

j=1

(

Φj(x, u
(r))− v(r)j

)

∇2
xxΦj(x, u

(r)) . (3.4)

Here, ∇2
xxΦj denotes the Hessian of the function Φj with respect to the x

variable only.
In principle, it is possible to apply a Newton iteration with this gradient and

this Hessian, that is, to apply the iteration

Hf (x
(k))d(k) = −∇f(x(k)) ,
x(k+1) = x(k) + d(k) .

From a computational point of view, one difficulty can be the fact that in each
iteration step the Hessian of Φ has to be computed, which may be difficult
to obtain. One possibility of circumventing the evaluation of the Hessian is
the usage of Quasi-Newton methods. Because of the special structure of Hf ,
however, is is possible to obtain a good estimate for values of x that are almost
solutions of (3.2).

The HessianHf (x) consists of two terms: In the first term, only the gradients
of the functions Φj enter. The second term is a weighted sum of the Hessians of

30 CHAPTER 3. HIGHER ORDER METHODS

the functions Φj , but the weights are precisely the residuals Φj(x, u
(r))− v(r)j).

Therefore, if we are close to a solution of the system (3.2), the second term
almost vanishes and the first term alone provides a good estimate of Hf (x).

This idea of replacing Hf by

G(x) :=

s
∑

r=1

q
∑

j=1

∇xΦj(x, u
(r))∇xΦj(x, u

(r))T (3.5)

for the definition of the update d(k) in the Newton iteration gives rise to the
Gauß–Newton method, which is defined by the the iteration

G(x(k))d(k) = −∇f(x(k)) ,
x(k+1) = x(k) + d(k) .

Obviously, this method can also be combined with a line search for determining
a step size.

Remark 3.3.1. Note that neither Gauß nor Newton have considered this al-
gorithm. The name comes rather from the fact that a variant of Newton’s
method is applied to the solution of a (non-linear) least squares problem, and
Gauß is possibly the first who has applied least squares to parameter identifica-
tion problems (despite that the first publication concerning least squares is due
to Legendre). �

The convergence properties of the Gauß–Newton depend strongly on the
properties (and validity) of the model Φ. In the case where a solution x∗ of (3.2)
exists, the equation Hf (x

∗) = G(x∗) holds. Therefore, if Hf (x
∗) is positive

definite, one can use the results concerning the Newton iteration, which imply
that the method converges (locally near x∗) at least super-linearly.

If the equation (3.2) has no solution, one cannot expect that the Hes-
sian Hf (x

∗) at a minimiser of f coincides with G(x∗). Thus the algorithm
cannot be expected to converge even with super-linear speed. In practise,
however, the method shows reasonable convergence properties, if the Hessi-
ans ∇xxΦj(x

∗, u(r)) have entries that are much smaller than the inverse of the

residual |Φj(x
∗, u(r))− v(r)j | and the matrix G(x∗) is well conditioned.

If these conditions are not satisfied, however, it can happen that the method
does not converge at all, because then the vector d(k) may be almost orthogonal
to the (negative) gradient of f and thus hardly a descent direction at all. This
situation, however, often occurs in practise, in particular if the model Φ has the
property that large variations of the parameter x may lead only to comparably
small variations of the output v = Φ(x, u), that is, the problem of solving the
equation (3.2) is ill-conditioned (or even ill-posed).

In order to ensure that the direction d(k) is a descent direction, it is possible
to consider a regularisation of the equation G(x)d = −∇f(x). Note that the
matrix G(x) is positive semi-definite, because

dTG(x)d =

s
∑

r=1

q
∑

j=1

dT∇xΦj(x, u
(r))∇xΦj(x, u

(r))T d

=

s
∑

r=1

q
∑

j=1

〈d,∇xΦj(x, u
(r))〉2 ≥ 0

3.3. LEVENBERG–MARQUARDT METHOD 31

for every d ∈ R
n. Thus, for every λ > 0 the matrix λ Id+G(x) is strictly

positive definite. In particular, the (strict) positive definiteness implies that a
direction defined by the regularised matrix λ Id+G(x) will indeed be a descent
direction for f . This idea gives rise to the Levenberg–Marquardt (or regularised
Gauß–Newton) method, which is defined by the iteration

(

λk Id+G(x
(k))

)

d(k) = −∇f(x(k)) ,
x(k+1) = x(k) + d(k) ,

where (λk)k∈N is a sequence of positive regularisation parameters.
The final question is, how to choose the regularisation parameters λk. One

possibility is to use a constant sequence, that is, λk = λ0 for some fixed λ0
(which still has somehow to be defined, though), and add some flexibility to the
method by performing a line search.

Similarly, one can define a sequence λk beforehand, for instance defining
λk = λ0/k for some fixed λ0. In this case, it is advisable to choose the sequence
in such a way that

∑

k λk = +∞. A different class of parameter selection
rules defines the step size λk using the step size λk−1 and the residual f(xk−1),
possibly also λk−2 and f(xk−2). In these cases, no line search is necessary.

Finally, it is possible (and makes sense) to consider the Levenberg–Marquardt
method as a special instance of a trust region method (see Section 3.4 below)
and use the ideas to be developed there.

Remark 3.3.2. In the case of parameter estimation, the right hand side typ-
ically are data that are obtained by some measurement process. If the model is
sufficiently accurate, then the only reason why one cannot obtain a solution of
the problem is that the data cannot be measured with arbitrary precision, but
instead are subject to some measurement errors.

Now assume that one knows that the measurement error is of size δ > 0,
that is, there exist some (hypothetical, unknown) true data v̂(r), r = 1, . . . , s,
such that the given data satisfy ‖v(r)− v̂(r)‖ ≤ δ for all r. Moreover, we assume
that the model is consistent, that is, there exists a unique set of parameters
x̂ ∈ R

n with Φ(x̂, u(r)) = v̂(r) for all r. Then

f(x̂) =
s

∑

r=1

‖Φ(x̂, u(r))− v(r)‖2 =
s

∑

r=1

‖v̂(r) − v(r)‖2 ≤ sδ2 .

In order to incorporate this quantitative knowledge about the true solution into
the Levenberg–Marquardt method, it is possible to stop the iteration as soon
as f(xk) ≤ sδ2. Then one can be sure that the obtained approximation xk of x̂
is consistent in the sense that the measured data v(r) can have originated from
the parameters xk and the input data u(r) with the noise level δ. In addition, if
the equation (3.2) is ill-posed (or severely ill-conditioned), the results obtained
this way can be expected to be better than the results obtained by actually
minimising f . Also, under some additional conditions, it is possible to give
some estimates for the error ‖xk − x̂‖ in dependence of the noise level δ.

Note that this does not apply directly to the case of linear regression, where
one typically assumes that the error in the data is due to some random effects
(instead of deterministic measurement errors). Still, if one has some (statistical)
model of the data error, it is also there possible to formulate a meaningful
stopping criterion for the Levenberg–Marquardt method. �

32 CHAPTER 3. HIGHER ORDER METHODS

3.4 Trust Region

The idea of trust region methods is to approximate the function f near the
current iterate x(k) by some model f̃ and then to minimise this model on a
ball centred at x(k) of radius t(k) > 0. Here, the radius t(k) is chosen in such a
way that the model f̃ looks like a good approximation of f on that ball. Put
differently, one looks for a set, where the model f̃ is a valid description of the
function f to be minimised and then computes the exact minimiser of the model
f̃ on this trust region.

We note first that steepest descent combined with a line search can be seen
as a special case of a trust region method. Indeed, consider the approximation
of f near x by the affine function

d 7→ f̃(x+ d) := f(x) +
〈

∇f(x), d
〉

.

Minimisation of f̃ over a ball of radius t centred at x yields

d := argmin
{

f(x) + 〈∇f(x), d̃〉 : d̃ ∈ R
n, ‖d̃‖ ≤ t

}

= −t ∇f(x)‖∇f(x)‖ .

That is, we obtain precisely the steepest descent method with step size t. Now
recall that one main criterion for the choice of the step size in linear search
algorithm is Armijo’s rule, which rejects a proposed step size t as too large,
if the predicted decrease of the cost function is much larger than the actual
decrease. This discrepancy between prediction and reality indicates that the
chosen model is not very accurate at a distance t from x. Thus line search
algorithms can be interpreted as test for the validity of the affine approximation
f(x+ td) ≈ f(x) + t〈∇f(x), d〉.

Usually, trust region methods do not work with linear approximations, but
rather with quadratic ones, that is, approximations of the form

f(x+ d) ≈ f̃(x+ d) := f(x) +
〈

∇f(x), d
〉

+
1

2
dTG(x)d (3.6)

for some symmetric matrix G(x) ∈ R
n×n. For instance, one may use G(x) =

Hf (x), or, in the case of parameter estimation, the matrix G defined there. Note
that we do not require the matrix G to be positive definite or even semi-definite.

With this approximation, one iteration of a trust region method typically
looks as follows:

1. Compute a minimiser d of the approximation f̃ of f defined in (3.6) subject
to the constraint ‖d‖ ≤ t.

2. Compute the size of the predicted and the actual update,

∆f̃ := f̃(x+ d)− f̃(x) = 〈∇f(x), d〉+ 1

2
dTG(x)d ,

∆f := f(x+ d)− f(x) .

3. If the size of the actual update ∆f is not much smaller than the predicted
update ∆f̃ , define the new iterate as x+ d. Else retain the old iterate x,
but decrease the size t of the trust region.

3.4. TRUST REGION 33

Mimicking Armijo’s rule, one usually rejects an update if ∆f > m∆f̃ , where
0 < m < 1 is some constant fixed a–priori (note that ∆f̃ will be negative,
unless x itself minimises f̃). In contrast to steepest descent combined with line
search, where, usually, the computation of the direction is separated from the
computation of the step size, here both direction and step size are computed
within the same iteration, but the iterate x is not necessarily updated in every
step.

If one only uses the steps described above, the algorithm will not be very
efficient, as the step size t is only allowed to decrease and never to increase. In
practise, one usually increases the size of the trust region whenever an update
step d is deemed acceptable. In addition, one usually increases and decreases
the radius t by some fixed factor. Then one obtains the method summarised in
Algorithm 10.

Data: a cost function f : Rn → R;
initial guess xinit;
radius tinit of initial trust region;
parameters 0 < m < 1 and 0 < a1 < 1 < a2;
Result: x∗ ∈ R

n;

Initialisation: set x(1) := xinit, t
(1) := tinit, k = 1;

while convergence criterion not yet satisfied do
compute

d(k) := argmin
{

〈∇f(x(k)), d〉+ 1

2
dTG(x(k))d : ‖d‖ ≤ t(k)

}

;

compute

∆(k) :=
f(x(k) + d(k))− f(x(k))

〈∇f(x(k)), d(k)〉+ 1
2d

(k)TG(x(k))d(k)
;

if ∆(k) > m then
set x(k+1) := x(k) + d(k);
set t(k+1) := a2t

(k);
else

set x(k+1) := x(k);
set t(k+1) := a1t

(k);
end
k ← k + 1;

end

define x∗ := x(k);

Algorithm 10: Sketch of a trust region method.

The major difficulty in the trust region method is the computation of the
steps d(k). In contrast to steepest descent and also Newton’s method, it is in
general not possible to compute d(k) analytically. The difficulty is that we do
not have a free optimisation problem, but rather the constrained problem

f(x) +
〈

∇f(x), d
〉

+
1

2
dTG(x)d→ min subject to ‖d‖ ≤ t . (3.7)

34 CHAPTER 3. HIGHER ORDER METHODS

For that reason, it makes sense to look for optimisation methods for constrained
problems.

Replacing the constraint ‖d‖ ≤ t by the equivalent, but differentiable, con-
straint ‖d‖2 ≤ t2, we consider the Lagrangian L : Rn × R→ R,

L(d, λ) := f̃(x+ d) +
λ

2

(

‖d‖2 − t2
)

.

For fixed λ satisfying λ > −λmin with λmin denoting the smallest eigenvalue of
G(x) the function d 7→ L(·, λ) has a unique minimiser d∗(λ), which satisfies

(

G(x) + λ Id
)

d∗(λ) = −∇f(x) . (3.8)

Theorem 3.4.1. Let λ∗ ≥ λ0 := max{0,−λmin} and let d∗(λ∗) be as in (3.8).
If either

∥

∥d∗(λ∗)
∥

∥ < t and λ∗ = 0, or
∥

∥d∗(λ∗)
∥

∥ = t, then d∗(λ∗) solves (3.7).
Moreover, the mapping λ 7→ L(d∗(λ), λ) is concave on [λ0,+∞), smooth, and
attains its maximum at λ∗.

This last result states that instead of solving (3.7) we may also maximise the
concave function λ 7→ L(d∗(λ), λ), which can be done efficiently using Newton’s
method (for the minimisation of −L(d∗(·), ·)), provided that the minimiser d
of (3.7) satisfies ‖d‖ = t. To that end, we have to compute the first and second
derivative of the mapping λ 7→ H(λ) := −L(d∗(λ), λ). First note that the
equation (G(x) + λ Id)d∗(λ) = −∇f(x) implies that

H(λ) = −L(d∗(λ), λ) = 1

2

〈

∇f(x), (G(x) + λ Id)−1∇f(x)
〉

+ λ
t2

2
.

Using the fact that

∂λ

[

(G(x) + λ Id)−1∇f(x)
]

= −(G(x) + λ Id)−2∇f(x) ,

we obtain

H ′(λ) = −1

2

〈

∇f(x), (G(x) + λ Id)−2∇f(x)
〉

+
t2

2

= −1

2
‖(G(x) + λ Id)−1∇f(x)‖2 + t2

2

As a consequence,

H ′′(λ) =
〈

(G(x) + λ Id)−1∇f(x), (G(x) + λ Id)−2∇f(x)
〉

=
[

(G(x) + λ Id)−1∇f(x)
]T

(G(x) + λ Id)−1
[

(G(x) + λ Id)−1∇f(x)
]

.

It is also possible to solve the equation ‖d∗(λ)‖ = t or the equivalent equation
1/‖d∗(λ)‖ = 1/t. Here, one can apply Newton’s method for the solution of non-
linear equations.

Remark 3.4.2. Obviously, the ideas of Quasi-Newton methods can be com-
bined with a trust region method and one can also consider models of f , where
G(x) is built using a similar inductive strategy as for Quasi-Newton methods.
Note, however, that here we want to approximate the Hessian itself and not
its inverse. This can be achieved using the duality principle described in Re-
mark 3.2.1.

Also, note that one of the strong points of the trust region method is that
the positive definiteness of the matrix G(x) (or the Hessian Hf (x) for the basic
method) is not required. �

Chapter 4

Conjugate Gradient

Methods

4.1 Linear Conjugate Gradients

The conjugate gradient (CG) method is in its standard form a method for solving
the linear equation

Ax = b ,

where A ∈ R
n×n is a symmetric and positive definite matrix. Because of the

positive definiteness and symmetry of A, this equation can be reformulated as
a quadratic optimisation problem. Define to that end the mapping Φ: Rn → R,

Φ(x) :=
1

2
xTAx− xT b . (4.1)

Then ∇Φ(x) = Ax− b, which shows that x∗ ∈ R
n is a critical point of Φ, if and

only if x∗ satisfies Ax∗ = b. Moreover, the Hessian of Φ is simply the positive
definite matrix A, showing that Φ is strictly convex and therefore x∗ := A−1b
its unique minimiser.

There is more to the function Φ: Because A is positive definite, the mapping
〈·, ·〉A : Rn × R

n → R,

〈x, y〉A := xTAy = 〈x,Ay〉
defines a scalar product on R

n. The corresponding norm

‖x‖A :=
√

〈x, x〉A =
√
xTAx

is called the energy norm induced by A. Rewriting the functional Φ, one can
show that

Φ(x)− Φ(x∗) =
1

2
‖x− x∗‖2A .

Thus, minimising Φ is equivalent to minimising the squared distance to the
solution of the equation Ax = b measured in the energy norm.

In order to minimise Φ, we apply the ideas of the previous chapters. That
is, we use an iterative method alternately finding descent directions d(k) and
applying a line search along d(k). Now assume for the moment that we have

35

36 CHAPTER 4. CONJUGATE GRADIENT METHODS

already found the k-th iterate x(k) and the descent direction d(k) along which
we want to search for the next iterate. In Chapter 2, the reason for developing
the sophisticated heuristics was that we did not have an analytic formula of
the function to be minimised. Here the situation is different. Computing the
derivative of Φ along d(k) we obtain

∂tΦ(x
(k) + td(k)) =

〈

∇Φ(x(k) + td(k)), d(k)
〉

=
〈

A(x(k) + td(k))− b, d(k)
〉

= t
〈

Ad(k), d(k)
〉

+
〈

Ax(k) − b, d(k)
〉

.

Setting this derivative to 0, it follows with the abbreviation

r(k) := Ax(k) − b

that we should choose the step size t(k) as

t(k) := − 〈r
(k), d(k)〉

〈Ad(k), d(k)〉 .

The question remains, how to choose the descent direction d(k). We have
seen in the first chapter that employing the gradient of Φ is not advisable, as
the number of necessary iterations becomes unreasonably large. One problem
is that often the descent directions will coincide with directions already chosen
in a previous step. It would be preferable, if we were able to compute a step in
one direction only once and then not to move again in this direction for the rest
of the algorithm. For general non-quadratic minimisation problems, this is not
possible; in the case of the quadratic functional Φ, it is.

In the CG method, the direction d(k) is chosen to be a linear combination
of the previous direction d(k−1) and the residual r(k) (which is at the same time
the gradient of Φ at x(k)) in such a way that d(k) and d(k−1) are orthogonal with
respect to the scalar product 〈·, ·〉A (in other words: conjugate with respect to
A). That is, one defines

d(k) := r(k) + βkd
(k−1) with βk ∈ R such that 〈Ad(k), d(k−1)〉 = 0 .

Explicitly, we obtain the coefficient

βk = − 〈r
(k), Ad(k−1)〉

〈Ad(k−1), d(k−1)〉 .

Definition 4.1.1. Let r ∈ R
n. The kth Krylov-space of A with respect to r is

defined as
Kk(A, r) := span

{

r,Ar,A2r, . . . , Ak−1r
}

.

That is, Kk(A, r) is the space spanned by the vectors that one obtains by iter-
atively applying the matrix A to r. In particular, we set K1(A, r) := Rr and
K0(A, r) := {0}. �

Theorem 4.1.2. Let A ∈ R
n×n be symmetric and positive definite and let

Φ: Rn → R be as in (4.1). Let x(0) ∈ R
n be arbitrary and consider the it-

eration (the CG method)

x(k+1) = x(k) − 〈r(k), d(k)〉
〈Ad(k), d(k)〉d

(k)

4.1. LINEAR CONJUGATE GRADIENTS 37

with r(k) := Ax(k) − b, d(0) = r(0), and

d(k) = r(k) − 〈r(k), Ad(k−1)〉
〈Ad(k−1), d(k−1)〉d

(k−1) ,

where we assume that the iteration is stopped if r(k) = 0.

If r(k) = 0, then x(k) = x∗ = A−1b. Else, the Krylov space Kk(A, r
(0)) has

dimension k and x(k) minimises Φ on the affine space x(0) +Kk(A, r
(0)).

Corollary 4.1.3. The CG method described in Theorem 4.1.2 finds the solution
x∗ of the equation Ax = b in at most n steps.

Some reformulation yields the method described in Algorithm 11.

Data: a positive definite and symmetric matrix A ∈ R
n×n;

some b ∈ R
n;

an initial guess xinit;
Result: the solution x∗ ∈ R

n of Ax = b;

Initialisation: set x(0) := xinit, r
(0) = Ax(0) − b, d(0) = r(0), k = 0;

while r(k) 6= 0 do
define

αk = − ‖r(k)‖2
〈Ad(k), d(k)〉 ;

x(k+1) = x(k) + αkd
(k) ;

r(k+1) = r(k) + αkAd
(k) ;

βk+1 =
‖r(k+1)‖2
‖r(k)‖2 ;

d(k+1) = r(k+1) + βk+1d
(k) ;

k ← k + 1;
end

define x∗ := x(k);

Algorithm 11: Conjugate Gradient method.

Remark 4.1.4. One of the big advantages of the conjugate gradient method
is that it is in fact a black-box method: The matrix A is never needed in the
computations; one only needs to know how to compute the product Ad(k). �

Remark 4.1.5. Theoretically, solving an equation with the conjugate gradient
method is not very efficient, because it requires more operations than for in-
stance a Cholesky or LDL decomposition. In addition, the convergence after n
steps is purely theoretical, as it only holds when all the computations are per-
formed in exact arithmetic without any rounding errors. In practise, however, it
performs much better, because one can, and should, make use of the advantage
of iterative methods: One need not stop only when the residual equals zero, but
rather when the residual is sufficiently small. �

38 CHAPTER 4. CONJUGATE GRADIENT METHODS

Remark 4.1.6. One problem of the CG method is that the convergence speed
depends heavily on the condition of the matrix A. In order to improve the per-
formance, usually the method is not applied directly to the equation Ax = b,
but rather to a transformed problemM−1Ax =M−1b, where the (easily invert-
ible) matrix M is chosen in such a way that M−1A is much better conditioned
than A. This approach is called preconditioning.

In theory, a slightly different approach is required, as the matrix M−1A
will not be symmetric any more. To that end one can consider a Cholesky
factorisation M = LLT of the positive definite and symmetric matrix M and
then apply the CG method to the equation L−1AL−T x̂ = L−1b and solve LTx =
x̂. It is possible to rewrite the resulting algorithm in a such a way that one only
needs the original matrix M and never its factorisation. �

4.2 Non-linear Conjugate Gradients

In principle, it is also possible to apply the idea of the CG method to non-
quadratic optimisation problems. One chooses search directions d(k) as a suit-
able linear combination of the negative gradient ∇f(x(k)) and the previous
search direction d(k−1), that is, one defines

d(k) = −∇f(x(k)) + βkd
(k−1)

for some suitable βk−1 ∈ R, and then performs a line search along d(k) to obtain
the next iterate x(k+1).

The question remains how to choose βk−1, as conjugacy has no real meaning
in the non-quadratic case (note that the Hessian of f does not remain constant).
There are two common choices. The first, Fletcher–Reeves (F-R), simulates the
quadratic case. It uses

βk :=
‖∇f(x(k))‖2
‖∇f(x(k−1))‖2 .

The second, Polak–Ribière (P-R), tries to obtain conjugacy with respect to the
(unknown) matrix Hf (x

(k+1)). It is defined by

βk :=

〈

∇f(x(k))−∇f(x(k−1)),∇f(x(k))
〉

‖∇f(x(k−1))‖2 .

In theory, (F-R) is more reliable and there exist examples where (P-R) does not
converge. In most practical applications, (P-R) converges faster than (F-R).

There is a close connection between the CG method and the Quasi-Newton
method with limited memory described in Remark 3.2.5: If one uses BFGS,
but re-initialises the matrix W (k) in each step to the identity (that is, one only
stores the vectors sk and W (k)yk), then the resulting algorithm can be seen as
a CG method where the coefficients βk−1 are chosen as

βk =

〈

∇f(x(k))−∇f(x(k−1)),∇f(x(k))
〉

〈

∇f(x(k))−∇f(x(k−1)), d(k−1)
〉 .

4.2. NON-LINEAR CONJUGATE GRADIENTS 39

Data: a cost function f : Rn → R;
an initial guess xinit;
Result: x∗ ∈ R

n;

Initialisation: set x(0) := xinit, choose some threshold ε > 0;
set d(0) := −∇f(x(0)), k = 0;

while ‖∇f(x(k))‖ > ε do
find a good step size t(k) by applying a line search with direction d(k);
set x(k+1) := x(k) + t(k)d(k);
define d(k+1) = −∇f(x(k+1)) + βk+1d

(k);
if

〈

d(k+1),∇f(x(k+1))
〉

≥ 0 then
d(k+1) ← −∇f(x(k+1));

end
k ← k + 1;

end

define x∗ := x(k);

Algorithm 12: Non-quadratic Conjugate Gradient method.

Chapter 5

Constrained Optimisation

We now treat the solution of constrained optimisation problems, where we aim
for the minimisation of a cost function f : Rn → R over some subset C ⊂ R

n.
Moreover, we assume that the set C is given by means of equality and inequality
constraints such that

C =
{

x ∈ R
n : cj(x) ≤ 0 for j ∈ I and cj(x) = 0 for j ∈ E

}

for some (sufficiently smooth) functions cj : R
n → R. As for the cost function

f , we assume that also the constraints are only given through some black box,
which, given x ∈ R

n, returns the values cj(x), ∇cj(x), and Hcj (x).

5.1 Equality Constraints

We first consider the situation that is easier to treat, where we have only equality
constraints, say cj : R

n → R, j = 1, . . . ,m. Then we have to solve the problem

f(x)→ min subject to cj(x) = 0 for all j = 1, . . . ,m . (5.1)

As before, we restrict ourselves to the search of local minima of f on C. In
contrast to the setting of free optimisation, however, for constrained optimisa-
tion the condition ∇f(x∗) = 0 is not necessary for x∗ to be a minimiser of f
on C. Indeed, while it is still necessary that the derivative of f in directions
along C vanishes, the function f the function f may vary freely in directions
that lead away from the set C. Now note that the negative gradients −∇cj(x)
of the functions cj surely lead away from C, as −∇cj is the direction of steepest
descent of cj and the set C is the zero set of all functions cj . If the set C and
the functions cj are sufficiently “nice” (the constraints are qualified at x∗), then
these are in fact the only directions leading away from C. In this case, a neces-
sary condition for x∗ to minimise f on C is that ∇f(x∗) is a linear combination
of the negative gradients −∇cj(x∗). In other words: there exist parameters λj ,
j = 1, . . . ,m, such that

∇f(x∗) = −
m
∑

j=1

λj∇cj(x∗) .

41

42 CHAPTER 5. CONSTRAINED OPTIMISATION

Definition 5.1.1. The mapping L : Rn × R
m → R,

L(x, λ) := f(x) +
m
∑

j=1

λjcj(x)

is called the Lagrangian of the problem (5.1). The parameter λ ∈ R
m is called

Lagrange multiplier. �

Proposition 5.1.2. Assume that x∗ is a local minimiser of f subject to the
constraints cj(x

∗) = 0 for all j (that is, cj(x
∗) = 0 for every j and there exists

ε > 0 such that f(x∗) ≤ f(x) for every x ∈ R
n satisfying |x − x∗| < ε and

cj(x) = 0 for every j). Assume moreover that the cost function f and the
constraints cj are C2 and that the vectors ∇cj(x∗), j = 1, . . . ,m, are linearly
independent. Then there exists λ∗ ∈ R

m such that the Karush–Kuhn–Tucker
(KKT) condition

∇xL(x
∗, λ∗) = ∇f(x∗) +

m
∑

j=1

λ∗j ∇cj(x∗) = 0 (5.2)

hold. The pair (x∗, λ∗) is called a primal–dual solution of (5.1).

Example 5.1.3. Consider the function c : R2 → R, c(x1, x2) = x22 − x31. Then
the set C =

{

(x1, x2) ∈ R
2 : c(x1, x2) = 0

}

consists of those pairs (x1, x2)

satisfying x1 ≥ 0 and x2 = ±x3/21 . This set has a singularity at the point
(0, 0), although the function c is everywhere differentiable. At (0, 0), however,
we have ∇c(x1, x2) = (0, 0), which is not linearly independent.1 If f : R2 → R

is any function whose minimum on C is attained at (0, 0), then a Lagrange
multiplier can exist only if (0, 0) is already a stationary point of f . For instance
the function f : R2 → R, f(x1, x2) = x1 attains its unique minimum on C at
the point (0, 0), but ∇f(0, 0) = (1, 0). �

Example 5.1.4. Consider the functions cj : R
2 → R, i = 1, 2,

c1(x1, x2) = x21 + x22 − 1 , c2(x1, x2) = (x1 − 2)2 + x22 − 1 .

The zero set of the first function is a circle of radius one centred at (0, 0), the zero
set of the second function a circle of radius one centred at (2, 0). In particular,
the set C defined by the functions c1 and c2 consists of only the point (1, 0).
However, we have ∇c1(1, 0) = (2, 0), whereas ∇c2(1, 0) = (−2, 0), which shows
that the two gradients are not linearly independent; the linear space spanned
by these vectors is only R(1, 0).

Now let f : R2 → R be any function. Then its minimum on C obviously
has to be attained at (1, 0), the only point in C. A Lagrange multiplier for
the minimisation of f on C, however, can only exist, if ∇f(1, 0) is an element
of R(1, 0), which need not be the case. For instance, the function f(x1, x2) =
x2 has the gradient ∇f(1, 0) = (0, 1), which cannot be written as a linear
combination of ∇c1(1, 0) and ∇c2(1, 0), showing that in this case no Lagrange
multipliers can exist. �

1Recall that a set {v1, . . . , vk} of vectors is linearly independent, if the condition
∑

j λjvj =

0 implies that λj = 0 for every j; else it is called linearly dependent. In the case of a set

{v1} containing the single element v1, linear independence means that λ1v1 = 0 implies that

λ1 = 0. This holds true, if and only if v1 6= 0. Thus the set {v1} is linearly independent if

v1 6= 0, but linearly dependent if v1 = 0.

5.1. EQUALITY CONSTRAINTS 43

In the following, we will always assume that the conditions of Proposi-
tion 5.1.2 are satisfied, that is, the vectors ∇cj(x∗) are linearly independent.
Denote now for ease of notation by c : Rn → R

m the vector valued function
whose components are the constraints cj . Then the last proposition states that
we should search for solutions (x∗, λ∗) ∈ R

n × R
m of the system

∇xL(x
∗, λ∗) = 0 ,

c(x∗) = 0 ,
(5.3)

in order to find local minimisers of f on C, or, equivalently, that we should
search for stationary points of the Lagrangian L(x, λ).

The solution of (5.3) can for instance be found by Newton’s method for the
solution of non-linear equations. That is, we iteratively linearise (5.3) and solve
the ensuing linear system for the primal–dual pair (x, λ). Let ∇c : Rn → R

n×m

be the matrix of the derivatives of c, that is,

(

∇c(x)
)

ij
= ∂icj(x) .

Moreover, denote by ∇2
xxL : Rn × R

m → R
n×n the Hessian of the Lagrangian

with respect to the x variable, which equals

∇2
xxL(x, λ) = Hf (x) +

m
∑

j=1

λjHcj (x) .

Then Newton’s method consists in choosing some initial values x(1) ∈ R
n

and λ(1) ∈ R
m and inductively setting

x(k+1) := x(k) + d(k) , λ(k+1) := λ(k) + µ(k) ,

where the pair (d(k), µ(k)) ∈ R
n × R

m solves the system

(

∇2
xxL(x

(k), λ(k)) ∇c(x(k))
∇c(x(k))T 0

)(

d(k)

µ(k)

)

= −
(

∇xL(x
(k), λ(k))

c(x(k))

)

. (5.4)

Now recall that

∇xL(x
(k), λ(k)) = ∇f(x(k)) +∇c(x(k))λ(k) .

Moreover,

(

∇c(x(k))λ(k)
0

)

=

(

∇2
xxL(x

(k), λ(k)) ∇c(x(k))
∇c(x(k))T 0

)(

0
λ(k)

)

.

Inserting these expressions in (5.4) we obtain the equivalent formulation

(

∇2
xxL(x

(k), λ(k)) ∇c(x(k))
∇c(x(k))T 0

)(

d(k)

λ(k) + µ(k)

)

= −
(

∇xf(x
(k))

c(x(k))

)

,

or, using the fact that λ(k) + µ(k) = λ(k+1),

(

∇2
xxL(x

(k), λ(k)) ∇c(x(k))
∇c(x(k))T 0

)(

d(k)

λ(k+1)

)

= −
(

∇xf(x
(k))

c(x(k))

)

.

44 CHAPTER 5. CONSTRAINED OPTIMISATION

Data: a cost function f : Rn → R;
a initial guesses xinit and λinit;
constraints c : Rn → R

m

Result: a primal–dual pair (x∗, λ∗) ∈ R
n × R

m;

Initialisation: set x(1) := xinit, λ
(1) := λinit, k = 1;

while convergence criterion not yet satisfied do
define d(k) and λ(k+1) by solving the equation

(

∇2
xxL(x

(k), λ(k)) ∇c(x(k))
∇c(x(k))T 0

)(

d(k)

λ(k+1)

)

= −
(

∇xf(x
(k))

c(x(k))

)

where L(x, λ) = f(x) + λT c(x);
define x(k+1) := x(k) + d(k);
k ← k + 1;

end

define x∗ := x(k) and λ∗ := λ(k);

Algorithm 13: Newton’s method for problems with equality constraints.

Thus one sees that the Lagrange multiplier plays a far less important role than
the primal variable x. In Newton’s algorithm, it basically only appears in the
term ∇2

xxL(x
(k), λ(k)).

See Algorithm 13 for a summary of Newton’s method.
Note that the linear system to be solved in each step of the constrained

Newton method has a completely different character from those solved in the
unconstrained case. In the latter situation, we could expect the matrix describ-
ing the system to be positive definite in a neighbourhood of the solution, which
allowed the application of the CG method for its solution, but also a Cholesky or
LDL-decomposition. In the constrained setting, in contrast, the matrix cannot
be positive definite. Also, it can only be positive semi-definite, if ∇c(x(k)) = 0,
a situation that we have excluded a–priori. Thus, neither CG nor Cholesky are
possible (to be precise, CG is possible, but not necessarily convergent).

5.1.1 Line Search

Similarly as Newton’s method for unconstrained problems, also the constrained
version enjoys local quadratic convergence (both to the primal solution x∗ and
the dual solution λ∗). On the other hand, it also shares all the problems of the
unconstrained method, in particular its tendency to diverge if the initial guess is
not already quite close to the actual solution. Here, this is even a larger problem
than in the unconstrained case: While it is often possible to choose a good initial
primal value x(1) (which need not satisfy the constraints), finding a good initial
guess for the multiplier λ(1) can be difficult, because an interpretation of the
multiplier often is not readily available.2 Thus, it seems reasonable to combine
the method with some line search algorithm. In the following, a method is
described that performs a line search only for the update of the primal variable

2Note, however, that in certain economic situations, where the constraints describe bounds

on the availability of certain specified goods, it is possible to interpret the corresponding

Lagrange multipliers as fair prices of said goods.

5.1. EQUALITY CONSTRAINTS 45

x(k), while the (less important) dual variable λ(k) is updated as in the original
algorithm.

When trying to perform a line search for a constrained minimisation problem,
one faces a major difficulty: All line search algorithms are based on the fact that
one aims for the minimisation of some functional on R

n. Here this is not the
case, as we have the additional restriction that the minimiser x∗ should satisfy
c(x∗) = 0. Put differently, the system (5.3) we try to solve is not the optimality
condition of some function g : Rn × R

m → R. Even though we only perform
a line search for the update of the x variable, we cannot simply use the cost
function f , because it cannot tell us anything about the closeness to the set C,
which we require. In order to use a line search algorithm nevertheless, we have
to artificially introduce some cost or merit function G : Rn → R that tells us
whether some proposed step size is adequate. This approach, however, can only
work, if the merit function has the same local minima as the original constrained
problem or, at least, if every original solution is also a minimiser of G.

Definition 5.1.5. Let x∗ be a local minimiser of the constrained problem (5.1).
A function G : Rn → R is an exact penalty function at x∗, if x∗ is a local
minimiser of G. �

One possibility for a merit function is to use, for some σ > 0, the function
Gσ : R

n → R defined as

Gσ(x) := f(x) + σ|c(x)| , (5.5)

where |·| denotes the Euclidean norm on R
m. Thus Gσ at the same time pen-

alises a large cost function f and deviations from the set C (through the term
|c(x)|). Then the following result holds:

Lemma 5.1.6. Assume that the pair (x∗, λ∗) is a primal-dual solution of (5.3)
and ∇2

xxL(x
∗, λ∗) > 0. If σ > |λ∗|, then x∗ is a local minimiser of Gσ. In other

words, in this case the penalty function Gσ is exact at x∗.

Assuming that we are already close to a primal-dual solution of the minim-
isation problem we want to solve, the last result indicates that we should choose
the parameter σ in such way that it is larger than the norm of the current Lag-
range multiplier. Because the size of the Lagrange multiplier will usually change
during the iteration, this also means that the parameter σ might also change
over the iterations. In order to apply the line search algorithms of Chapter 2,
we still need the gradient of the merit function Gσ. We have

∇Gσ(x) = ∇f(x) + σ∇c(x) c(x)

|c(x)| .

A sketch of resulting method is given in Algorithm 14.
There are still some issues with Algorithm 14. For one, no indication is given

how one should choose the parameters σ(k). Theoretical convergence results can
for instance be derived under the conditions that σ(k) > |λ(k+1)| + σ̂ for some
fixed σ̂ > 0 independent of the index k, that σ(k) ≥ σ(k−1) for all k and the
values of σ(k) only change a finite number of times. In practise, however, it will
be better if the parameters are also allowed to decrease; else the convergence
may turn out to be overly slow.

46 CHAPTER 5. CONSTRAINED OPTIMISATION

Data: a cost function f : Rn → R;
a initial guesses xinit and λinit;
constraints c : Rn → R

m

Result: a primal–dual pair (x∗, λ∗) ∈ R
n × R

m;

Initialisation: set x(1) := xinit, λ
(1) := λinit, k = 1;

while convergence criterion not yet satisfied do
define d(k) and λ(k+1) by solving the equation

(

∇2
xxL(x

(k), λ(k)) ∇c(x(k))
∇c(x(k))T 0

)(

d(k)

λ(k+1)

)

= −
(

∇xf(x
(k))

c(x(k))

)

where L(x, λ) = f(x) + λT c(x);
choose some σ(k) > |λ(k+1)|;
find some suitable step-size t(k) by performing a line search in
direction d(k) for the merit function Gσ(k) with initialisation t = 1;
define x(k+1) := x(k) + t(k)d(k);
k ← k + 1;

end

define x∗ := x(k) and λ∗ := λ(k);

Algorithm 14: Newton’s method with line search for problems with
equality constraints.

Second, d(k) need not necessarily be a descent direction for Gσ(k) . In the
special case where ∇2

xxL(x
(k), λ(k)) is positive definite and σ(k) > |λ(k+1)|, how-

ever, it is. While the positive definiteness can usually not be guaranteed, it is
possible to replace the matrix ∇2

xxL(x
(k), λ(k)) by some positive definite approx-

imation M (k) similarly as for quasi-Newton methods and compute the direction
d(k) using this approximation M (k). Then at least the descent property of the
direction d(k) holds. There is, however, no canonical method for the definition
of the matrices M (k). The problem of finding practicable constructions is still
a matter of ongoing research.

Finally, it may happen that the line search, though yielding a larger neigh-
bourhood around the solution (x∗, λ∗) in which the method converges, destroys
the quadratic convergence of the unmodified Newton method. It may happen
that the step size t(k) = 1, which should be optimal sufficiently close to the
solution, might be rejected by any sensible line search. The problem is that the
search direction and the merit function are not directly related. One possible
remedy is to modify the merit function and use, for some µ ∈ R

m and σ > 0,
the function

Gµ,σ := f(x) + µT c(x) + σ|c(x)| . (5.6)

If µ is sufficiently close to λ∗ and σ > |λ∗ − µ|, also the penalisation with Gµ,σ

is exact at x∗ and d(k) is a descent direction if ∇2
xxL(x

(k), λ(k)) (or M (k)) is
positive definite and σ ≥ |λ(k+1) − µ|. Moreover, the step size t = 1 will be
acceptable for a line search with Armijo’s rule provided that 0 < m1 < 1/2.

A different possibility is to use the augmented Lagrangian, defined as

G̃µ,σ := f(x) + µT c(x) +
σ

2
|c(x)|2 (5.7)

5.2. EQUALITY AND INEQUALITY CONSTRAINTS 47

as merit function. This function is exact at x∗, if µ = λ∗ and σ is sufficiently
large. In contrast to (5.6), however, exactness fails to hold, if µ does not coincide
with the optimal Lagrange parameter λ∗.

Remark 5.1.7. The method described above strictly separates the definition
of the search direction (which uses the KKT conditions) and the objective func-
tion for the line search. In principle, however, one could also use a unified
approach, where search direction and step size are both defined by any of the
functions defined in (5.5), (5.6), and (5.7). While at first glance this seems reas-
onable, this approach also has its problems. The functions in (5.5) and (5.6)
are differentiable only outside of the set C and therefore Newton’s method most
probably will not converge quadratically. In the case of the augmented Lag-
rangian, which is as smooth as the functions f and c, a different problem arises:
Exactness only holds, if the parameter µ equals the unknown Lagrangian λ∗.
Thus, the augmented Lagrangian only works if one changes the parameter µ,
and therefore the function to be minimised, during the algorithm. Also, the
parameter σ has to be large in order to ensure exactness, which can slow down
the convergence of the method. �

5.2 Equality and Inequality Constraints

The situation is considerably more difficult, if we have not only equality con-
straints, but also inequality constraints. That is, we have to solve

f(x)→ min subject to

{

cj(x) = 0 for j ∈ E ,
cj(x) ≤ 0 for j ∈ I ,

(5.8)

where the functions cj , j ∈ E, describe the equality constraints and the functions
cj , j ∈ I, the inequality constraints. The equality constraints can be treated
in precisely the same manner as in the setting discussed in Section 5.1. The
inequality constraints, however, require more consideration.

Assume now that x∗ is a local solution of (5.8) and j ∈ I. Then either we
have cj(x

∗) = 0 (the constraint is active at x∗) or cj(x
∗) < 0 (the constraint is

inactive at x∗). In the latter case, the condition cj(x) ≤ 0 is satisfied in a whole
neighbourhood of x∗ and thus can (locally) be discarded. On the other hand, if
cj(x

∗) = 0, then the derivative of the cost function f in direction ∇cj(x∗) may
be negative without violating the local minimality of f .

Denote in the following by

I0(x∗) =
{

j ∈ I : cj(x
∗) = 0

}

the set of active constraints at x∗. Then the considerations above show that the
gradient of f at x∗ may have the form

∇f(x∗) = −
∑

j∈E∪I0

λj∇cj(x∗)

with λj ≥ 0 whenever j ∈ I0.
The next result shows that, for qualified constraints, such a representation

of ∇f(x∗) is indeed a necessary condition for a local solution of the restricted

48 CHAPTER 5. CONSTRAINED OPTIMISATION

minimisation problem. Again, we define the Lagrangian L : Rn ×R
E∪I → R as

L(x, λ) := f(x) +
∑

j∈E∪I

λjcj(x) .

Proposition 5.2.1. Assume that x∗ is a local minimiser of (5.8) and that f
and the constraints cj are C2. If the vectors ∇cj(x∗), j ∈ E ∪ I0, are linearly
independent, then there exists λ∗ ∈ R

E∪I such that the KKT-condition

∇f(x∗) +
∑

j∈E∪I

λ∗j∇cj(x∗) = 0 ,

cj(x
∗) = 0 for j ∈ E ,

cj(x
∗) ≤ 0 for j ∈ I ,
λ∗j ≥ 0 for j ∈ I0 ,
λ∗j = 0 for j ∈ I \ I0







































(5.9)

holds. The pair (x∗, λ∗) is called a primal–dual solution of (5.8).

An equivalent way of writing this system, is the following set of equalities
and inequalities, which hides the set of active constraints in the last equation:

∇f(x∗) +
∑

j∈E∪I

λ∗j∇cj(x∗) = 0 ,

cj(x
∗) = 0 for j ∈ E ,

cj(x
∗) ≤ 0 for j ∈ I ,
λ∗j ≥ 0 for j ∈ I ,

∑

j∈I

λ∗jcj(x
∗) = 0 .















































(5.10)

Because λ∗j ≥ 0 and cj(x
∗) ≤ 0 for every j ∈ I, the terms λ∗jcj(x

∗) are all
non-positive. Thus the sum can only be equal to zero, if every one of them is.
In particular this implies that λ∗j = 0 whenever cj(x

∗) < 0, which is precisely
the last condition in (5.9).

In order to formulate a Newton like method for solving (5.10), we rewrite
the equality and inequality conditions for x∗ in such a way that they appear
as mere equalities. To that end, we define for each vector v ∈ R

E∪I the vector
v# ∈ R

E∪I whose components are

(v#)j :=

{

vj if j ∈ E ,
max{vj , 0} if j ∈ I .

With this definition, one can write (5.10) as

∇xL(x
∗, λ∗) = 0 ,

c(x∗)# = 0 ,

λ∗j ≥ 0 for j ∈ I ,
∑

j∈I

λ∗jcj(x
∗) = 0 .































(5.11)

5.2. EQUALITY AND INEQUALITY CONSTRAINTS 49

Because we have an inequality constraint and the mapping c# is not differ-
entiable, Newton’s method should not work for the system (5.11). We apply
it nevertheless. That is, we consider the iteration x(k+1) = x(k) + d(k) and
λ(k+1) = λ(k) + µ(k), where the steps d(k) ∈ R

n and µ(k) ∈ R
E∪I are ob-

tained by linearising (5.11) whenever possible. Carrying out this linearisation
(whenever possible), we obtain the system

∇xxL(x
(k), λ(k))d(k) +∇c(x(k))µ(k) = −∇xL(x

(k), λ(k)) ,
(

c(x(k)) +∇c(x(k))d(k)
)#

= 0 ,

λ
(k)
j + µ

(k)
j ≥ 0 for j ∈ I ,

∑

j∈I

(λ
(k)
j + µ

(k)
j)cj(x

(k)) +
∑

j∈I

λ
(k)
j ∇cj(x(k))d

(k)
j = 0 .

While this system is quite difficult to solve, it is possible to approximate it by
a system with better properties. To that end, we add to the left hand side of

the last equation the term
∑

j∈I µ
(k)
j ∇cj(x(k))d

(k)
j . This is reasonable if we are

already close to the solution, because then the steps µ(k) and d(k) will be small,
and this new term is the only one that is quadratic in the update, all other
terms being at most linear. Then we can replace the terms λ(k)+µ(k) by λ(k+1)

and obtain, similar as in the case with only equality constraints, the system

∇xxL(x
(k), λ(k))d(k) +∇c(x(k))λ(k+1) = −∇f(x(k)) ,

(

c(x(k)) +∇c(x(k))d(k)
)#

= 0 ,

λ
(k+1)
j ≥ 0 for j ∈ I ,

∑

j∈I

λ
(k+1)
j cj(x

(k)) +
∑

j∈I

λ
(k+1)
j ∇cj(x(k))d(k)j = 0 .

The solutions of this system is at the same time the primal–dual solutions of
the quadratic programme

∇f(x(k))T d+ 1

2
dT∇xxL(x

(k), λ(k))d→ min

subject to
cj(x

(k)) +∇cj(x(k))T d = 0 for j ∈ E ,
cj(x

(k)) +∇cj(x(k))T d ≤ 0 for j ∈ I .
For problems of this kind, several solution algorithms exist.

Chapter 6

Interior Point Methods

The idea of interior point methods is to solve a constrained minimisation prob-
lem f(x)→ min subject to x ∈ C by approaching the true minimiser, which will
usually lie on the boundary of C, from the interior. To that end, one introduces
a barrier function g : Rn → R ∪ {+∞} such that g is finite precisely in the in-
terior of C and g(x) tends to infinity as x approaches the boundary of C. Then,
for any given parameter η > 0, one can minimise the function ηf + g over R

n

and obtains some point x∗η ∈ C. As η increases, these points should form a con-
tinuous curve, which, because more and more emphasis is put on the function
f , should hopefully converge to the minimiser x∗ of the constrained minimisa-
tion problem. In this chapter, we will shortly discuss one family of problems,
where such an approach provably works and also can be quite efficient: linear
programs.

6.1 Barrier Functions

Definition 6.1.1. Let g : Rn → R ∪ {+∞} be a convex function such that the
domain Dg of g, that is, the set of points x ∈ R

n with g(x) <∞, is non-empty
and open, and assume that g is three times differentiable on Dg. Define for every
x, d ∈ R

n the restricted function gx,d : R → R ∪ {+∞} by gx,d(t) := g(x+ td).
The function g is called self-concordant, if

|g′′′x,d(t)| ≤ 2(g′′x,d(t))
3/2

whenever x+td ∈ Dg, and limk→∞ g(xk) = +∞ whenever a sequence {xk}k∈N ⊂
Dg converges to a point in the boundary of Dg.

The function g is a barrier function, if it is self-concordant, locally elliptic,
and

θg := sup
x∈Dg

〈

∇g(x), Hg(x)
−1∇g(x)

〉

<∞ .
�

The most important barrier function is the logarithmic barrier function
g : Rn → R ∪ {+∞},

g(x) := −
n
∑

j=1

ln(xj) ,

51

52 CHAPTER 6. INTERIOR POINT METHODS

with domain Dg =
{

x ∈ R
n : x > 0

}

. Its gradient at x ∈ Dg is the vector with
entries −1/xj and its Hessian the diagonal matrix with diagonal entries 1/x2j .
Therefore we have

〈

∇g(x), Hg(x)
−1∇g(x)

〉

= n

for every x ∈ Dg, and hence

θg = n .

Definition 6.1.2. Assume that g is a barrier function andDg is bounded. Then
the (necessarily unique) minimiser of g is called the analytic centre for g. �

6.2 Barrier Methods

In the following, we consider the solution of linear programs of the form

〈c, x〉 → min subject to Ax ≤ b , (6.1)

where c ∈ R
n is some cost vector, A ∈ R

m×n and b ∈ R
m with m > n describe

the linear constraints, and the inequality Ax ≤ b is understood componentwise.
In addition, we assume that the set P(A, b) :=

{

x ∈ R
n : Ax ≤ b

}

is non-empty
and bounded, implying that (6.1) attains a solution for every c ∈ R

n.

Now let g : Rn → R ∪ {+∞} be any barrier function with

Dg =
{

x ∈ R
n : Ax < b

}

.

A typical choice for such a barrier function would be

g(x) = −
m
∑

j=1

ln
(

(b−Ax)j
)

, (6.2)

in which case the inequality

θg ≤ m

holds.

The algorithms presented in the following try to follow the central path,
which is the path in R

n consisting of the minimisers x∗η of the functionals

gη(x) := η〈c, x〉+ g(x) .

It starts for η = 0 at the analytic centre of g and converges for η → ∞ to the
solution of the linear programme (6.1). Moreover, one can show that

〈c, x∗η〉 ≤
θg
η

+ inf
{

〈c, x〉 : Ax ≤ b
}

.

Thus all the elements of the central path solve the linear programme (6.1)
approximately up to a value of θg/η.

6.2. BARRIER METHODS 53

6.2.1 Short-step Method

The short-step method follows the central path by alternately performing a
Newton step for the functional gη and increasing the parameter η by a small
amount. That is, one starts with some parameter η > 0 and an element x that
is sufficiently close to x∗η. Then one multiplies η with some β > 1 obtaining a
new parameter η̃ = βη, defines the next iterate x̃ by performing a Newton step
for the function gη̃, and repeats the procedure.

This approach will work if, first, one can make precise what “sufficiently close
to x∗η” means, and, second, one can find some condition on β that will guarantee
that x̃ again is sufficiently close to x∗η̃. The point of barrier functions (or, more
general, self-concordant functions) is that this is indeed possible. Moreover, the
condition one obtains depends only on the value θg.

In order to simplify the notation, we define for x ∈ Dg the norm

‖z‖x :=
√

〈

z,Hg(x) z
〉

. (6.3)

Moreover, note that the gradient of gη at x ∈ Dg equals ηc + ∇g(x) and the
Hessian is simply the Hessian Hg(x) of g.

Proposition 6.2.1. Let x ∈ Dg and η > 0. Assume that

1− 1

8
√

θg
≤ β ≤ 1 +

1

8
√

θg
,

and denote by x̃ is the result of a Newton step for gβη starting at x. That is,
x̃ = x+ d, where d solves the system

Hg(x) d = −βηc−∇g(x) .

If

‖x− x∗η‖x ≤
1

6
then also

‖x̃− x∗βη‖x ≤
1

6
.

Moreover,

〈c, x〉 ≤ 6

5

θg
η

+ inf
{

〈c, x〉 : Ax ≤ b
}

.

While this result gives us a good criterion for how to increase η, the closeness
condition ‖x−x∗η‖x ≤ 1/6 is not that useful, as it depends on the unknown point
x∗η. The following result, however, provides a criterion only depending on x.

Lemma 6.2.2. Let x ∈ Dg satisfy

∥

∥Hg(x)
−1∇g(x)

∥

∥

x
=

〈

∇g(x), Hg(x)
−1∇g(x)

〉

≤ 1

36

and let

η =
1

12‖Hg(x)−1c‖x
=

1

12
√

〈

c,Hg(x)−1c
〉

.

Then

‖x− x∗η‖x ≤
1

6
.

54 CHAPTER 6. INTERIOR POINT METHODS

It remains to find some x ∈ Dg that satisfies the condition of the previous
lemma. Then this point can be used for starting the sequence of Newton steps
and updates of the parameter η. Note that the condition is in particular satisfied
at the analytic centre of g, where the gradient of g vanishes. Thus we only have
to find any point sufficiently close to the analytic centre.

To that end, assume that x̃ is any point in Dg. Then x̃ minimises the
functional

x 7→ −
〈

∇g(x̃), x
〉

+ g(x) .

Put differently, the point x̃ lies on the central path for the barrier function g
and the cost function x 7→ −

〈

∇g(x̃), x
〉

. Denote therefore, for ν ≥ 0, by x̃∗ν the
minimiser of the functional

g̃ν(x) := −ν
〈

∇g(x̃), x
〉

+ g(x) .

Then x̃∗1 = x̃. Moreover, the path leads for ν → 0 to the analytic centre of
g. In order to trace back the path to its starting point, we can use use the
same idea as for finding the minimiser of the linear programme, but instead of
increasing the parameter ν before each Newton step, we decrease it by a small
amount. Again, Proposition 6.2.1 shows that decreasing by a factor of at most
1− 1/(8

√

θg) will be possible.

Data: c ∈ R
n, a barrier function g, a point xinit ∈ Dg, a stopping

parameter ηmax;
Result: x∗ ∈ R

n;

Initialisation: set x := xinit;

define ν := 1;
define ξ := ∇g(x);
repeat

replace ν ← ν − ν/(8
√

θg);
define d by solving the equation

Hg(x) d = νξ −∇g(x) ;

replace x← x+ d;
until 〈νξ −∇g(x), d〉 > 1/36 ;
define

η =
(

12
√

〈

c,H−1
g (x)c

〉

)−1

;

repeat

replace η ← η + η/(8
√

θg);
define d by solving the equation

Hg(x) d = −ηc−∇g(x)

replace x← x+ d;
until η > ηmax ;
define x∗ := x;

Algorithm 15: Short-step barrier method.

6.2. BARRIER METHODS 55

Combining the results stated above, we arrive at Algorithm 15, the short-
step barrier method. One can show that it needs O

(√

θg ln(θg/ε)
)

steps in order
to obtain a result whose value is at most by ε larger than the optimal value of
the linear programme. Note that the precise value of θg need not be known
for the application of the method. Instead, it is sufficient to have knowledge of
an upper bound τ for θg and then increase and decrease the values of η and ν
by factors of 1 + 1/(8

√
τ) and 1 − 1/(8

√
τ), respectively. For instance, in the

case of the linear constraints Ax ≤ b with b ∈ R
m and the logarithmic barrier

function (6.2), one can use the estimate θg ≤ m.

6.2.2 Long-step Method

The main problem of the short-step method is the very small increase of the
parameter η. For linear constraints Ax ≤ b with b ∈ R

m and the logarithmic bar-
rier function (6.2), one will typically increase η only by the factor 1+1/(8

√
m),

which leads to a huge number of iterations if the number of constraints is large.
One is therefore tempted to try to increase η by a much larger amount β ≫ 1

in each iteration. Then, however, one cannot expect to obtain an iterate that
is again close to the central path. Because the element x∗βη on the central path
minimises the functional gβη, it is possible to use the Newton method in order
to return sufficiently close to the central path. Again one can use the norm ‖·‖x
defined in (6.3) for determining when to stop the inner Newton iteration. For
instance, the criterion ‖d‖x ≤ 1/4, where d denotes the Newton direction, yields
a convergent method.

There is, however, an additional complication. If one starts the Newton
iteration far from the central path, then one cannot expect it to converge. In
fact, one cannot even guarantee that the Newton iterates stay within the domain
of g. Thus it is necessary to combine the Newton iteration with a line search,
in order to obtain a convergent method. Theoretically, the resulting method
is worse than the short-step method by a factor of

√

θg; in practise, one can
expect that it converges considerably faster.

	Basic Ideas and Concepts
	General Situation
	Optimality Conditions
	Convergence
	Steepest Descent

	Line Search
	General Scheme
	Choice of the Step Size
	Armijo
	Goldstein and Price
	Wolfe
	Choice of the Constants and Comments

	Interpolation and Extrapolation

	Higher Order Methods
	Newton's Method
	Drawbacks of Newton's Method

	Quasi-Newton Methods
	One-dimensional Motivation
	Higher-dimensional Generalisation

	Levenberg–Marquardt Method
	Trust Region

	Conjugate Gradient Methods
	Linear Conjugate Gradients
	Non-linear Conjugate Gradients

	Constrained Optimisation
	Equality Constraints
	Line Search

	Equality and Inequality Constraints

	Interior Point Methods
	Barrier Functions
	Barrier Methods
	Short-step Method
	Long-step Method

