
Otmar Scherzer

COMAT 4

Lecture Notes

Summer 2014

Computational Science Center
University of Vienna

A-1090 Vienna, Austria





Chapter 1

Examples of ODEs and
PDEs

1.1 Simple Examples of Ordinary Differential Equa-
tions in Applications

1.1.1 Movement of a Falling Body

We describe the movement of a vertically falling body. Then its position at time
t is determined by its height h(t).

Newton’s second law of motion implies that the acceleration of the body,
that is, the change of its speed, is proportional to the forces acting on the body.
In addition, the proportionality constant equals the mass of the body. That is,
the equation

F = m · a
holds, where F denotes the forces, m the mass of the body, and a its acceleration.

Now, the acceleration is the change of the speed, which is itself the change
of the position of the body. Therefore

F = m · ḧ(t) .

We still have to model the acting forces.
The main force is gravity, which, for small heights h, equals approximately

m ·g, where g ≈ 9.81m/s2 is the gravitational acceleration at the earth’s surface
and m is again the mass of the body. The gravitation acting downwards, this
implies the simple equation

m · ḧ(t) = −m · g .

If either the body is very light or it is falling fast, it is necessary to take
into account air friction as well, which will slow down the fall of the body. One
possibility is to model air friction as a force proportional to the square of the
body’s velocity. Because friction always works against the current movement,
the sign of the corresponding force will be opposite to the sign of ḣ. Thus we
obtain the refined model

m · ḧ(t) = −c sgn(()ḣ(t)) ḣ(t)2 −m · g ,
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where c is some material constant describing the drag of the body.
In order to obtain a complete description of the movement of the body, we

will need in addition a description of the state of the body at some initial time
t0, where we begin our considerations. More precisely, we will need its initial
position h0 and its initial velocity v0. Then, assuming this model is correct, the
movement of the body is completely described by the differential equation

m · ḧ(t) = −c sgn(()ḣ(t)) ḣ(t)2 −m · g ,
h(t0) = h0 ,

ḣ(t0) = v0 .

1.1.2 Population Dynamics

Now consider a simple model that describes the evolution of a population over
some time period. That is, we know the population p0 at some given time t0,
and we want to obtain an estimate p(t) of the population at some future time
t > t0.

As a basic model, we assume that the rate of change of the population is
given by some function N(t, p) that depends only on the time and the size of the
population. The time dependence can be used to model external influences on
the population, for instance environmental changes, while size of the population
influences the number of births and deaths, but can also be used to model
overpopulation. Then the function p that describes the population solves the
differential equation

ṗ(t) = N
(
t, p(t)

)
, p(t0) = p0 .

One very simple model assumes that the number of births within a certain
amount of time is proportional to the size of the population that is, the birth
rate is constant. Then we obtain the equation

ṗ(t) = Rp(t)

with R > 0 denoting the birth rate. Assuming, in addition, a constant death
rate S > 0, the equation becomes

ṗ(t) = (R− S) p(t) .

Using the initial state p(t0) = p0, we obtain with this model the population
dynamics

p(t) = p0e
(R−S)(t−t0) .

That is, depending on the sign of R − S, either the population increases or
decreases exponentially.

Now we try to introduce the effects of overpopulation into the model by
assuming that the death rate depends on the size of the population. That is,
instead of assuming a constant death rate S > 0, we assume that S is a function
of p. The simplest model is to assume the death rate being proportional to p,
setting

S(p) = σ p
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for some constant σ > 0. Then we obtain the equation (the logistic differential
equation)

ṗ(t) =
(
R− σp(t)

)
p(t) . (1.1)

In the following, we will compute the analytic solution of this equation.
Before that, we study some qualitative properties of the solution. To that end
note first that the derivative of p is positive if R > σp (and the population p is
positive, which we tacitly assume), while it is negative if R < σp. In other words,
the population increases as long as p < R/σ, while it decreases for p > R/σ.
In particular, this implies that the long term behavior of the population will
be approximately stagnation at the value p = R/σ. Moreover, this behavior is
independent of the initial value p0, as long as it is strictly larger than zero.

In order to solve the logistic differential equation, we define

ρ := R/σ ,

and rewrite the equation as

1

(ρ− p(t)) p(t)
dp(t)

dt
= σ .

Integrating (with an indefinite integral) both sides of this equation with respect
to t, we obtain ∫

1

(ρ− p(t)) p(t)
dp(t)

dt
dt =

∫
σ dt+ C

for some constant C ∈ R. Now replace the integration variable on the left hand
side of this equation by p. Because

dp

dt
dt = dp ,

we obtain the equation ∫
1

(ρ− p)p
dp = σt+ C ;

Note, that now the integration is with respect to the variable p.
Now note that∫

1

(ρ− p)p
dp =

1

ρ

∫
1

ρ− p
+

1

p
dp =

1

ρ

(
− ln |ρ− p|+ ln |p|

)
=

1

ρ
ln |[|B]

p

ρ− p
.

Thus the function p satisfies the equation

1

ρ
ln |[|B]

p

ρ− p
= σt+ C .

Multiplying the equation with ρ and taking the exponential, it follows that

|[|B]
p

ρ− p
= eρσt+ρC = eρσt eρC ,

which is equivalent to

|[|B]
ρ− p
p

= e−ρσt e−ρC ,
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Now we define a new constant

D := ±e−ρC .

Then this last equation reads as

ρ

p
− 1 = De−ρσt ,

which in turn implies that

p =
ρ

1 +De−ρσt
.

This is the general form of a solution of the differential equation (1.1). The
specific solution satisfying p(t0) = t0 can be obtain by choosing the constant D
in a suitable manner.

1.2 Solution of ODEs

1.2.1 ODEs with Separable Variables

Definition 1.1. An ODE that can be brought into the form

f(y)ẏ = g(t) , (1.2)

where the function f : R→ R only depends on y and not on t, and the function
g : R≥0 → R only depends on t and not on y, is called ordinary differential
equation (of first order) with separable variables. �

Now assume that we are given an ODE that we can bring in the form (1.2).
Since

ẏ =
dy

dt
,

we can formally multiply with dt and obtain the formal equation

f(y) dy = g(t) dt .

Now we can apply indefinite integrals to both sides and obtain the equation∫
f(y) dy =

∫
g(t) dt+ C ,

where C ∈ R is some constant that appears due to the indefinite integration.
Note, that the first integration is with respect to y and the right hand side
reveals an integration with respect to t.

If it is possible to compute the integrals of f and g analytically, we obtain
an equation the solution necessarily has to satisfy. If, in addition, it is possible
to solve this equation for y, we indeed obtain an analytic (general) solution of
the differential equation.

Example 1.2. Consider the ODE

(T 2 − t2) ẏ + ty = 0 ,
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where T > 0 is some given constant. This equation has separable variables, but
in the form above they are not yet separated. In order to bring the equation in
the form (1.2), we rewrite the equation as

ẏ

y
= − t

T 2 − t2
,

which is possible for y 6= 0 and t 6= ±T . We rewrite this formally as

dy

y
= − t

T 2 − t2
dt .

Now, integration of both sides of the equation leads to

ln |y| = 1

2
ln
∣∣T 2 − t2

∣∣+ C .

Taking the exponential of the equation, we obtain

|y| = eC
√
|T 2 − t2| .

Replacing the constant eC > 0 by the constant D ∈ R also encoding the sign of
y, we get

y(t) = D
√
|T 2 − t2| . (1.3)

The constant D ∈ R still has to be determined using the initial condition
y(t0) = y0. Inserting this condition into the general solution, we see that

y0 = y(t0) = D
√
|T 2 − t20| ,

and therefore
D =

y0√
|T 2 − t20|

. (1.4)

Note that we have assumed during the computation of the solution of the
ODE that y0 6= 0 and t 6= ±T . It can be easily seen, however, that the derivation
above also covers the situation where y0 = 0 and t0 6= ±T . There, the constant
function y = 0 is the unique solution of the ODE, at least until the time reaches
one of the values ±T .

The case t0 = ±T , however, is different. Then, if y0 = 0, for every constant
D ∈ R the function (1.3) satisfies the ODE and therefore is a solution. If,
however, y0 6= 0, then the ODE has no solution at all—then the ODE and the
initial conditions are inconsistent.

Finally, note that all the solutions are valid only locally; that is, there exists
at least a time interval [t0, t0 + ε) for some ε > 0 on which the solution exists
and can be written as (1.3) with D given by (1.4). For general ODEs, this is
all that can be said about the solution. In this special case, one can specify the
length of the interval on which the solution looks like (1.3): If t0 > T , then the
formula (1.3) is valid on [t0,+∞). If, however, −T < t0 < T , then the solution
is

y(t) =

{
D1

√
|T 2 − t2| if t ∈ [t0, T ] ,

D2

√
|T 2 − t2| if t ∈ [T,+∞) ,

with

{
D1 = y0/

√
T 2 − t20 ,

D2 ∈ R arbitrary.
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In particular, the solution is only unique up to time T . Similarly, if t0 < −T ,
then

y(t) =


D1

√
|T 2 − t2| if t ∈ [t0,−T ] ,

D2

√
|T 2 − t2| if t ∈ [−T, T ] ,

D3

√
|T 2 − t2| if t ∈ [T,+∞) ,

with


D1 = y0/

√
T 2 − t20 ,

D2 ∈ R arbitrary,

D3 ∈ R arbitrary.

�

1.2.2 Homogeneous ODEs

Definition 1.3. An ODE of the form

ẏ = f
(y
t

)
, (1.5)

with f : R→ R, is called of homogeneous type. �

If we are given an ODE of homogeneous type, we can solve it by starting
with the substitution

z(t) =
y(t)

t
.

For the right hand side of (1.5) we are left with the term f(z). For the left hand
side of (1.5) we use the product rule and obtain

ẏ =
dy

dt
=
d(tz)

dt
= z + t

dz

dt
= z + tż .

Thus we have for the variable z the differential equation

z + tż = f(z) .

Now it is easy to see that this ODE is of separable type: We can bring it in the
form

ż

f(z)− z
=

1

t
.

This ODE can now be solved by integration as in Section 1.2.1, and we obtain
a solution z(t). At the end, we obtain the solution y by y(t) = tz(t).

Example 1.4. Consider the ODE

ẏ =
(y
t

)2
.

It is easy to see that this ODE is homogeneous with f(y/t) = (y/t)2. Using the
substitution y = tz we obtain

z + tż = z2

and therefore
ż

z2 − z
=

1

t
.

Now, we follow Subsection 1.2.1 and reformulate this equation to

1

z2 − z
dz =

1

t
dt .
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Integrating this equation, we obtain the indefinite integral equation∫
1

z2 − z
dz =

∫
1

t
dt+ C

or by calculating the integrals

ln |[|B]
z − 1

z
= ln |t|+ C .

Now, assuming that t > 0 and z ≥ 1, which depends on the initial condition,
we get

z − 1

z
= Dt

for some constant D = exp(C) ∈ R+ depending on the initial value. Solving for
z we obtain

z(t) =
1

1−Dt
(note that z is greater than 1) and, after substitution of y = tz

y(t) =
t

1−Dt
.

�

1.3 Linear ODEs

Definition 1.5. An ODE that can be written as

ẏ + f(t)y = g(t)

for some functions f : R→ R and g : R→ R is called linear ODE of first order.�

Here, first order means that the highest derivative of the unknown function
y that appears in the equation is the first one. Linear means that all the
expressions are linear in the unknown y and its derivatives.

As in the case of linear algebraic equations, the linearity of an equation has
some implications on the structure of its solutions. To that end we consider the
homogeneous equation1

ẏ + f(t)y = 0 .

If we are given two solutions y1 and y2 of this equation (with possibly different
initial conditions), then

ẏ1 + f(t)y1 = 0 ,

ẏ2 + f(t)y2 = 0 .

Consequently also

d

dt
(y1 + y2) + f(t)(y1 + y2) = ẏ1 + f(t)y1 + ẏ2 + f(t)y2 = 0 ,

which shows that also y1 + y2 is a solution of the ODE. More general, if y1 and
y2 solve the ODE and c1, c2 ∈ R, then the linear combination c1y1 + c2y2 is also
a solution.

1Homogeneous means that the right hand side of the equation is zero, that is, g = 0
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In order to solve the (inhomogeneous) equation

ẏ + f(t)y = g(t) (1.6)

we first observe that (1.6) is equivalent to

h(t)ẏ + h(t)f(t)y = h(t)g(t) , (1.7)

at least, if h : R→ R is a function that is different from zero.

Now the idea is to choose the function h in such a way that the left hand
side of (1.7) is itself a derivative. More precisely, we try to find h : R→ R such
that

h(t)ẏ + h(t)f(t)y =
d

dt
(hy) = ḣy + hẏ . (1.8)

If (1.8) holds, then the equation (1.7) reads as follows,

d

dt
(hy) = h(t)g(t) ,

which after integration becomes:

h(t)y(t) =

∫ t

g(s)h(s) ds+ C . (1.9)

For this reason, a function h satisfying (1.8) is called an integrating factor for
the ODE (1.6).

Thus, (1.8) is satisfied, if h satisfies

h(t)f(t)y = ḣ(t)y .

Dividing this equation by y, we see that h has to satisfy the ODE

ḣ = f(t)h .

This ODE can be solved by separation of the variables, and we obtain the
integrating factor

h(t) = D exp
(∫ t

f(s) ds
)
.

Inserting this integrating factor in (1.9), we obtain

y(t) =

∫ t[
g(s)D exp

(∫ s
f(r) dr

)]
ds+ C

D exp
(∫ t

f(s) ds
) ,

or, setting C̃ := C/D,

y(t) =

∫ t[
g(s) exp

(∫ s
f(r) dr

)]
ds+ C̃

exp
(∫ t

f(s) ds
) .
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1.4 Simple Examples of Partial Differential Equa-
tions

Definition 1.6. A partial differential equation (PDE) is an equation for more
than two different derivatives of a function u(x1, x2, . . . , xn) on a domain Ω ⊆
Rn. �

Example 1.7. For instance

y
∂2u

∂x2
+
∂u

∂y
= x2yu or yuxx + uy = x2yu , (1.10)

which actually means

y
∂2u

∂x2
(x, y) +

∂u

∂y
(x, y) = x2yu(x, y) for (x, y) ∈ Ω . (1.11)

This is a PDE for a function u(x, y) in two variables. �

We use the notation that

ux =
∂u

∂x
, uy =

∂u

∂y
,

and

uxx =
∂2u

∂x2
=
∂ ∂u∂x
∂x

, uxy =
∂2u

∂x∂y
=
∂ ∂u∂x
∂y

=
∂ ∂u∂y
∂x

= uyx .

• The variables x, y are called independent variables.

• u is called dependent variable.

The order of the differential equation is the order of the highest derivative
of the dependent variables in the differential equation. The PDE (1.11) is a
differential of second order. The differential equation

xuxuxxy + u4x = 0

is of third order.
Most PDEs with relevance in practice are of first or second order.

Example 1.8. 1. The electrostatic potential u(x, y, z) which is determined
by a charge density ρ(x, y, z) satisfies the Poisson equation

∆u = uxx + uyy + uzz = 4πρ .

∆ denotes the Laplace operator (in space dimension three).

2. The wave equation is the PDE

1

c2
utt = ∆u .

In air, u(x, y, z, t) denotes the density of air at a location (x, y, z) at time
t. c denotes the sound speed.
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3. Heat or diffusion equation:

ut = α∆u ,

with some α > 0.

4. The velocity ~v(~x, t) = (v1, v2, v3)(~x, t) and the pressure p(~x, t) of an in-
compressible fluid as a function of space ~x = (x, y, z) and time t satisfies
the Navier-Stokes-equations

~vt + (~v · ∇)~v = ν∆~v +∇p ,∇ · ~v = 0 ,

for some constant ν. In the above equation

∇ · ~v := (v1)x + (v2)y + (v3)z

denotes the divergence.

(~v · ∇)~v =

 v1(v1)x + v2(v1)y + v3(v1)z
v1(v2)x + v2(v2)y + v3(v2)z
v1(v3)x + v2(v3)y + v3(v3)z

 .

This is a system of four equations in four unknowns. �

Definition 1.9. A PDE is called linear if u and its derivative only appear
linearly. More precisely a linear PDE has the form

Lu = b ,

where L is a differential operator and b is a given function. �

Example 1.10. Equation (1.10) is linear with

L = y
∂2

∂x2
+

∂

∂y
− x2y , b = 0 .

The Poisson equation is linear with L = ∆ and b = 4πρ. The wave equation
and the heat equation are linear, respectively. The Navier-Stokes equation is
nonlinear. Another, frequently used nonlinear PDE is the Burger’s equation

ux + uuy = 0 .

1.4.1 Conservation Principles

Differential equations are frequently derived from conservation of physical quant-
ities like mass, energy, temperature and so on. To illustrate this we consider
the temperature distribution in a homogeneous, non insulating slab of length L.
We denote now by u(x, t) the temperature in a point x ∈ [0, L] at time t ≥ 0.

We are modeling the following principles:

1. Conservation of energy: The timely variation of thermal energy in every
interval [a, b] ⊆ [0, L] is equal to the heat flux across a and b.
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2. The energy density (energy per length’s unit) is ρcu. Thereby ρ denotes
the density, c is the specific heat. Both ρ and c are assumed to be constant
here.

3. Fourier’s law: The heat flux is proportional to the gradient of the tem-
perature (heat is fluctuating from warm to cold), and the proportionality
constant k > 0 is called heat conductivity. That is, we have

d

dt

∫ b

a

ρcu(x, t) dx = −k∂u
∂x

(a, t) + k
∂u

∂x
(b, t) . (1.12)

The left hand side is the variation of the total energy in the slab. The
right hand side is the energy, which migrates in and out of the slab per
time unit. Equation (1.12) should hold for all intervals [a, b]. Thus by the
fundamental theorem of integration we get from (1.12)∫ b

a

(
ρc
∂u

∂t
(x, t) dx− k∂

2u

∂x2
(x, t)

)
dx = 0 .

Because this holds for arbitrary intervals [a, a+ ε] we see that

0 =
1

ε

∫ a+ε

a

(
ρc
∂u

∂t
(x, t) dx− k∂

2u

∂x2
(x, t)

)
dx

∼
(
ρc
∂u

∂t
(a, t)− k∂

2u

∂x2
(a, t)

)
This should hold for all a, which gives that

0 =
∂u

∂t
(a, t)− k

ρc︸︷︷︸
:=α

∂2u

∂x2
(a, t) .

This is the heat equation in R× R+
0 .

In Rn the derivation from Fourier’s law is similar and results in

0 =
∂u

∂t
(a, t)− k

ρc︸︷︷︸
:=α

∆u(a, t) ,

for all a ∈ R3. Here

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

denotes the Laplace operator.





Chapter 2

Numerical Solution of
Partial Differential
Equations as Systems of
ODEs

We explain at an example how we can reformulate a partial differential equation
as a system of ordinary differential equations. In this way we can apply all
numerical methods for solving ordinary equations to solve this partial differential
equatios, such as Euler methods, Runge-Kutta methods, Adams-Bashforth, to
name but a few.

Example 2.1. Let u(x, t), −1 ≤ x ≤ 1, be the temperature distribution at
time t in a slab of length l = 2. Assuming constant conductivity σ = 1, u
satisfies the heat conduction equation:

ut = σuxx = uxx , −1 < x < 1 , 0 < t < T . (2.1)

This is now a partial differential equation because it depends on derivatives of
two variables x, t. By discretization of the x variable we can transform the
partial differential equation in a system of ordinary differential equations.

Let v : [−1, 1] → R be an arbitrary function satisfying v(−1) = v(1) = 0,
then we get by integration by parts∫ 1

−1
ut(t, x)v(x) dx =

∫ 1

−1
uxx(t, x)v(x) dx = −

∫ 1

−1
ux(t, x)vx(x) dx . (2.2)

Assume that the temperatures u(−1, t) := u0(t) and u(1, t) := u1(t) are meas-
ured, then, for every t > 0, u(t, x) can be approximated by a linear spline in
space over the grid ∆ = {−1 = x0 < x1 < ... < xn = 1}, that is

u(t, x) =

n∑
i=0

yi(t)Λi(x) , (2.3)

where Λi is a linear hat function with peak at xi. Taking into account the
boundary conditions we see that y0 = u0(t) and yn = u1(t). All other functions
yi are unknown.

13



14 CHAPTER 2. PDES AS ODES

Inserting (2.3) in (2.2) we get a system of differential equations for y1, ..., yn−1:

n∑
i=0

y′i(t)

∫ 1

−1
Λi(x)v(x) dx = −

n∑
i=0

yi(t)

∫ 1

−1
Λ′i(x)vx(x) dx ,

where we choose v(x) ∈ {Λj(x) : j = 1, ..., n − 1} - this means that v is a hat
function, which satisfies homogenous boundary conditions.

Denote by

G := [〈Λi,Λj〉]1≤i,j≤n−1 =
h

6



4 1 0 · · · · · · 0

1 4 1 0
. . . 0

0
. . .

. . .
. . .

. . .
. . .

...
. . .

. . . 1 4 1
... . . 0 1 4


and

A := [〈Λix,Λjx〉]1≤i,j≤n−1 = h



2 −1 0 · · · · · · 0

−1 2 −1 0
. . . 0

0
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

...
. . .

. . . −1 2 −1
...

. . .
. . . 0 −1 2


we get a compact description of the system

Gy′(t) +Ay(t) = b(t) , (2.4)

where b is an appropriate vector, which depends on u0 and u1.
To completely specify the system (2.4) we need initial values for

y1, ..., yn−1, which are typically determined from interpolation of the initial tem-
perature u(0, x). �



Chapter 3

Classification of Linear
Partial Differential
Equations

For the sake of simplicity of presentation we restrict attention to linear partial
differential equations of second order in two variables. Such an equation for a
function u = u(x, y) reads as follows:

Auxx + 2Bxy + Cuyy +Dux + Euy + Fu+G = 0 . (3.1)

Here A = A(x, y), . . . , G = G(x, y) are again functions.

Definition 3.1. A PDE (3.1) is called

• elliptic if AC −B2 > 0 ,

• parabolic if AC −B2 = 0 , and

• hyperbolic if AC −B2 < 0 . �

Example 3.2.

The wave equation
1

c2
uxx − uyy = 0

(note we changed the notation from t to y) is of the from (3.1) with

A = c−2, B = 0, C = −1 .

Because
AC −B2 = −c−2 < 0 ,

the equation is hyperbolic.

The Laplace equation
uxx + uyy = 0

is of the from (3.1) with
A = 1, B = 0, C = 1 .

15
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Because
AC −B2 = 1 ≥ 0 ,

the equation is elliptic.

For the heat equation
ux − uyy = 0

(note we changed the notation from t to x and x to y) is of the from (3.1) with

A = 0, B = 0, C = −1 .

Because
AC −B2 = 0 ,

the equation is parabolic. �

Remark 3.3. 1. For the classification on the main symbol

Auxx + 2Buxy + Cuyy

is relevant. These are the terms of the differential equation of highest
order (in our case this is 2).

2. AC −B2 is the determinant of the symmetric matrix

M =

(
A B
B C

)
.

Denoting by m11 = A, m12 = m21 = B, m22 = C and x1 = x, x2 = y the
main symbol reads as follows

2∑
i,j=1

mij
∂2u

∂xi∂xj
.

3. If the coefficients A,B,C are not constant, but functions which depend on
x and y in a non-trivial manner, then the type of the partial differential
equation can be different at various points (x, y).

For instance the differential equation

xuxx + uyy = 0

is elliptic for x > 0, parabolic for x = 0, and hyperbolic for x < 0.

4. The terminology elliptic, parabolic and hyperbolic is motivated from conic
sections. A curve (X,Y (X)), which satisfies the equation

AX2 +2BXY +CY 2 +DX+EY +F = 0 (with constant coefficients)

is either an ellipsis, parabola, or an hyperbola, depending on the sign of
AC −B2.

A different terminology is used in linear algebra, where quadratic forms
are investigated:

Q(X,Y ) = AX2 + 2BXY + CY 2 .

We assume that one of the coefficients A,B,C is not identical 0.
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• Q is called positive (negative) definite, if Q(X,Y ) > 0 (Q(X,Y ) < 0)
for all (X,Y ) 6= (0, 0).

• Q is called positive (negative) semi-definite, ifQ(X,Y ) ≥ 0 (Q(X,Y ) ≤
0) for all (X,Y ) 6= (0, 0).

• If Q is not semi definite, then it is called indefinite.

It is a theorem of Linear Algebra that

• Q is positive or negative definite if and only if AC −B2 > 0;

• It is indefinite iff AC −B2 < 0;

• It is semi-definite iff AC −B2 = 0.

By a change of coordinates every quadratic form can be transformed into

• X2 + Y 2 if AC −B2 > 0,

• X2 − Y 2 if AC −B2 < 0,

• X2 if AC −B2 = 0.

For instance,
Q(X,Y ) = X2 + 4XY + Y 2

= (X + 2Y )2 − 4Y 2 + Y 2

= (X + 2Y )2 − 3Y 2

= (X ′)2 − (Y ′)2 ,

�

where
X ′ = X + 2Y and Y ′ =

√
3Y .

Remark 3.4. An important property of the classification, Definition 3.1, is
that it is invariant under coordinate transformations: A coordinate transform-
ation does not change the type of the differential equation.

We consider the change of coordinates:

L1(x, y) = ax+ by ,

L2(x, y) = cx+ dy .

This shows that

∂(u ◦ L)

∂x
(x, y) = a∂1u(L(x, y)) + c∂2u(L(x, y)) ,

∂(u ◦ L)

∂y
(x, y) = b∂1u(L(x, y)) + d∂2u(L(x, y)) .

The notation is ugly, however, it should make aware that on the right hand side
we differentiate with respect to the first component and not x variable.

Thus

∂2(u ◦ L)

∂2x
(x, y) = a2∂21u(L(x, y)) + 2ac∂212u(L(x, y)) + c2∂22u(L(x, y)) ,

∂2(u ◦ L)

∂x∂y
(x, y) = ab∂21u(L(x, y)) + (ad+ bc)∂212u(L(x, y)) + cd∂22u(L(x, y)) ,

∂2(u ◦ L)

∂2y
(x, y) = b2∂21u(L(x, y)) + 2bd∂212u(L(x, y)) + d2∂22u(L(x, y)) .
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This can be written now into compact matrix form:(
∂2(u◦L)
∂2x (x, y) ∂2(u◦L)

∂x∂y (x, y)
∂2(u◦L)
∂x∂y (x, y) ∂2(u◦L)

∂2y (x, y)

)
︸ ︷︷ ︸

=:C

=A

(
∂21u(L(x, y)) ∂212u(L(x, y))
∂212u(L(x, y)) ∂22u(L(x, y))

)
︸ ︷︷ ︸

=:U ′′

AT

with

A =

(
a c
b d

)
.

Thus we have
(det(A))2 det(U ′′) = det(C) ,

and thus the determinants of C and A have equal signs. This shows that the
type does not change by linear transformations. �

3.1 Characteristics

The following considerations make evident the role of the different types of
differential equations.

Exemplary, first, we consider an ordinary differential equation:

u′′(x) = F (x, u(x), u′(x)) .

Suppose that u(x0) and u′(x0) are known in a point x0, then (compare the Euler
method)

u(x0 + ∆x) ≈ u(x0) + u′(x0)∆x ,

u′(x0 + ∆x) ≈ u′(x0) + u′′(x0)∆x

= u′(x0) + F (x0, u(x0), u′(x0))∆x .

The equations get exact for ∆x → 0. That is, the solution of the differential
equation can be determined approximately from the values at x0. In the follow-
ing we apply this idea to partial differential equations: We use the linearization:

u(x0 + ∆x, y0 + ∆y) ≈ u(x0, y0) + ux(x0, y0)∆x+ uy(x0, y0)∆y .

But we need also approximations for higher order derivatives which can be
derived by approximation of ux:

ux(x0 + ∆x, y0 + ∆y) ≈ ux(x0, y0) + uxx(x0, y0)∆x+ uxy(x0, y0)∆y ,

uy(x0 + ∆x, y0 + ∆y) ≈ uy(x0, y0) + uyx(x0, y0)∆x+ uyy(x0, y0)∆y .

This means that if you know the function value u at (x0, y0) and derivatives of
up to second order at (x0, y0), then one knows also u and it’s first derivatives
in a neighborhood, that is at (x0 + ∆x, y0 + ∆y).

This idea is generalized now to the PDE (3.1)

Auxx + 2Buxy + Cuyy = −Dux − Euy − Fu−G ,



3.1. CHARACTERISTICS 19

We now assume that we know ux, uy and u on a curve (not just on (x0, y0)).
Then we also know the tangential derivatives in tangential direction ~v on the
curve:

D~vux = lim
t→0

ux(x0 + t~v)− ux(x0)

t
and D~vuy = lim

t→0

uy(x0 + t~v)− uy(x0)

t
.

The tangential derivative can be expressed as

D~vux = ∇ux · ~v and D~vuy = ∇uy · ~v .

And therefore
v1uxx+v2uxy = D~vux ,

v1uxy+ v2uyy = D~vuy .

In summary, we know that for a given curve with tangential direction ~v and
given ux, uy and u on a piece of the curve the second order derivatives from the
system

v1uxx+v2uxy = D~vux ,

v1uxy+ v2uyy = D~vuy ,

Auxx+2Buxy+ Cuyy = −Dux − Euy − Fu−G .

(3.2)

This linear system has a unique solution if

det

 A 2B C
v1 v2 0
0 v1 v2

 = Av22 − 2Bv1v2 + Cv21 =: Q(v2,−v1) (3.3)

does not vanish. This means that we can solve the PDE (locally around a point
on curve) exactly.

Now, we reformulate the function Q:

Q(v2,−v1) = Av22 − 2Bv1v2 + Cv21

= A

(
v22 − 2

B

A
v1v2 +

C

A
v21

)

= A

(v2 −
B

A
v1︸ ︷︷ ︸

=:ṽ2

)2 +

(
B2

A2
+
C

A

)
v21

 .

Depending on the sign of AC −B2 we have different scenarios:

Elliptic case: In this case AC > B2, which in particular implies that A 6= 0.
Then Q(v2,−v1) implies that ṽ2 = v1 = 0, and consequently v1 = v2 = 0.

Hyperbolic case: In the case AC < B2, we can have the case A = 0 in which
every ~v is a solution of Q(v2,−v1) = 0. If A 6= 0, then ~v is a solution of
Q(v2,−v1) = 0 if

ṽ2 =

(
B2

A2
+
C

A

)
v1 ,

which is solveable for a one-dimensional subspace. Thus it has non-trivial
solutions, and thus the system (3.2) has nontrivial solutions too. That
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means that the solution of the PDE is not uniquely determined by the
values u, ux, uy on the curve with tangent vector ~v. Curves with such a
property are called characteristics.

Because ~n = (v2,−v1) is the normal vector to the tangent we get the follow-
ing definition of characteristics:

Definition 3.5. Let AC − B2 < 0. A curve in the xy-plane is called charac-
teristics of the hyperbolic PDE (3.1) if the normal vector ~n = (n1, n2) satisfies
in every point the equation

An21 + 2Bn1n2 + Cn22 = 0 .

Example 3.6. The characteristics of the equation

uxx − uyy = 0 , (A = 0, C = 1, B = 0)

are the curves, where the normal vector satisfies

n21 − n22 = 0 .

That is n1 = ±n2. That are the lines x± y = const.
If we identify y with time t, this is the standard wave equation. The char-

acteristics x± t = const are the lines, where the waves propagate:
If we consider waves, which move to the right, then this waves are given by

u(x, t) = F (x− t) .

Note, that on the characteristics the value is constant. The ones which move to
the left are

u(x, t) = G(x+ t) .

An in general the waves are of the form

u(x, t) = F (x− t) +G(x+ t) .

This example makes clear the roles of characteristics. For an initial value prob-
lem with an initial values on a characteristics the equation is not unique solvable.



Chapter 4

Boundary Value Problems

For motivating purposes we study first boundary value problems for ordinary
differential equations at hand of a simple test example:

L[u] = −u′′ + bu′ + cu = f in (0, 1) ,

u(0) = u(1) = 0 .
(4.1)

it can be shown that this differential equation has a unique solution provided
that

c(x) ≥ 0 , ∀x ∈ (0, 1) .

This will always be assumed in the following.
Here, for the numerical solution, we consider finite difference methods (FDM).

Later, alternatively we will investigate later finite element methods (FEM).
For the simplicity of presentation we consider an äquidistant grid

∆h = {xi = ih : i = 1, . . . , n− 1, h = 1/n} ⊆ (0, 1) . (4.2)

We denote by
~u = (u(x1), . . . , u(xn))t ∈ Rn−1 (4.3)

the vector of the exact solution u of (4.1) on the grid ∆h (4.2). In addition, we
assume boundary conditions

0 = u(x0) = u(xn) = 0 .

For the numerical solution we look for an approximating vector

~uh = (u1, . . . , un)t ∈ Rn−1 . (4.4)

For this purpose we discretize L from (4.1) by approximating the derivatives
of u at the positions x = xi via difference quotients. Thereby we have several
alternatives:

• One-sided forward-difference operator:

D+
h [u](x) =

u(x+ h)− u(x)

h
∼ u′(x) .

21
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• One-sided backward-difference operator:

D−h [u](x) =
u(x)− u(x− h)

h
∼ u′(x) .

• Central difference quotient:

Dh[u](x) =
u(x+ h)− u(x− h)

2h
∼ u′(x) . (4.5)

Moreover, the second derivative can be approximated by a central difference
quotient

D2
h[u](x) =

u(x+ h)− 2u(x) + u(x− h)

h2
∼ u′′(x) . (4.6)

Example 4.1. We study a simple situation of (4.1) with b, c ≡ 0, that is −u′′ =
f . We approximate u′′ by D2

h[u] at the nodal points ∆h. Taking into account
the Dirichlet boundary conditions u(x0) = u(xn) = 0 we get the discretized
equation:

f(x1)
f(x2)

...
f(xn−1)


︸ ︷︷ ︸

=:~f

= −


u′′(x1)
u′′(x2)

...
u′′(xn−1)

 ∼ h−2


2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2


︸ ︷︷ ︸

=:Lh


u(x1)
u(x2)

...
u(xn−1)


︸ ︷︷ ︸

~u

.

Because ~u should be approximated by ~uh, we will use the following linear equa-
tion to determine ~uh:

Lh~uh = ~f . (4.7)

The Eigenvalues of Lh are 4h−2 sin2(khπ/2)4, k = 1, . . . , n − 1. The function

sinc(x) := sin(x)
x is monotonically decreasing in [0, π/2] such that

sinc(x) ≥ sinc
(π

2

)
=

2

π
, ∀x ∈ [0, π/2] ,

which implies that:

‖L−1h ‖2 =
1

λmin(Lh)
= max

1≤k≤n−1

h2

4 sin2(khπ/2)
≤ 1

4
.

Consequently,

‖~u− ~uh‖2 = ‖L−1h (Lh~u− ~f)‖2
≤ ‖L−1h ‖2‖Lh~u− ~f‖2

≤ 1

4
‖Lh~u− ~f‖2 .

(4.8)

If ‖Lh~u − ~f‖2 converges to 0 for h → 0, then Lh is called consistent. If there
exists an estimate of the form (4.8), then consistency implies stability. �

In the following we determine error estimates for difference quotients:
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Lemma 4.2. Let u ∈ C2[0, 1] and x ∈ [h, 1−h]. Then, for one-sided difference
quotients we have the estimate∣∣D±h [u](x)− u′(x)

∣∣ ≤ 1

2
‖u′′‖∞h .

For a central difference quotient and u ∈ C3[0, 1] we even have:

|Dh[u](x)− u′(x)| ≤ 1

6
‖u′′′‖∞h2 .

For D2
h we have: Let u ∈ C4[0, 1] and x ∈ [h, 1− h], then:∣∣D2

h[u](x)− u′′(x)
∣∣ ≤ 1

12
‖u′′′′‖∞h2 . (4.9)

Proof. We prove exemplary the assertion for the central difference quotient. Let
u ∈ C3[0, 1], then it follows from Taylor expansion around x ∈ (0, 1):

u(x+ h) = u(x) + hu′(x) +
1

2
h2u′′(x) +

1

6
h3u′′′(ζ+) ,

u(x− h) = u(x)− hu′(x) +
1

2
h2u′′(x)− 1

6
h3u′′′(ζ−) ,

for some ζ± satisfying x− h < ζ− < x < ζ+ < x+ h. Therefore

u(x+ h)− u(x− h) = 2hu′(x) +
1

6
h3(u′′′(ζ+) + u′′′(ζ−)) ,

and thus∣∣∣∣u(x+ h)− u(x− h)

2h
− u′(x)

∣∣∣∣ ≤ 1

6
h2 sup {|u′′′(ζ)| : ζ ∈ [0, 1]} ,

which gives the assertion. �

Example 4.3. Applied to Example 4.1 we find that, provided the solution of
the differential equation is 4× continuously differentiable, that

‖ Lh︸︷︷︸
=D2

h

~u− ~f‖∞ ≤
1

12
‖u′′′′‖∞h2 =

1

12
‖f ′′‖∞h2 .

In the following we discretize the operator L defined in (4.1). We use the
discretization D2

h[u] for approximating u′′. Moreover, the first derivative is
approximated by either one of the difference quotients D+

h [u], D−h [u], Dh[u].
Using different difference quotients gives different diagonal matrices:

Lh = h−2


d1 s1 0

r2 d2
. . .

. . .
. . . sn−2

0 rn−1 dn−1

 ∈ R(n−1)×(n−1) , (4.10)

where for

• D+
h :

di = 2− hb(xi) + h2c(xi) ,

ri = −1 ,

si = −1 + hb(xi) ,

(4.11)
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• D−h :

di = 2 + hb(xi) + h2c(xi) ,

ri = −1− hb(xi) ,
si = −1 ,

(4.12)

• Dh:
di = 2 + h2c(xi) ,

ri = −1− hb(xi)/2 ,
si = −1 + hb(xi)/2 .

(4.13)

The approximate solution is determined as the solution of the linear system
(4.7). �

Definition 4.4. A difference method has order of consistence q if

‖Lh~u− ~f‖∞ = max |(Lh~u)i − fi| ≤ Chq .

Note, that in this definition ~u is the vector of the solution of the infinite dimen-
sional problem at the nodal points. �

Theorem 4.5. Let the solution of the boundary value problem (4.1) be 4× con-
tinuously differentiable (which is for instance the case if b, c, f are 2× continu-
ously differentiable). Then the difference method (4.7) has the order of consist-
ency q:

• q = 2, if the central difference quotient Dh is used for approximating u′;

• q = 1, if forward or backward difference quotients D±h are used for approx-
imating u′.
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