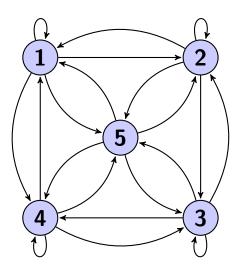
Exercise Sheet 5

1. Consider the following random walk with states $S = \{1, 2, 3, 4, 5\}$. Assume that at each state the transition probabilities to other adjacent states are all equal and the probability to stay at the same state in the next transition is zero.



- (a) Construct the transition probability matrix P.
- (b) Show that the Markov chain of the random walk is irreducible and all the states are recurrent.
- (c) Find the steady-state probability distribution.
- 2. Consider the transition probability matrix

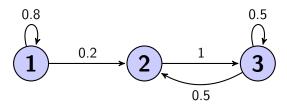
$$P = \begin{pmatrix} 0 & 1 \\ 2/3 & 1/3 \end{pmatrix}.$$

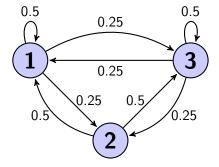
The stationary distribution π is given by

$$\lim_{n \to \infty} P^n X^{(0)} = \pi,$$

for any initial distribution $X^{(0)}$. Compute π using the eigen-decomposition of P.

3. Consider the following two random walks. Construct the transition probability matrices and find the steady-state probability distributions.





- 4. Consider a game with five levels, where the 5^{th} level is the highest. A player starts at the lowest $(1^{st}$ level) and every time he flips a coin. If it turns up head, the player moves up one level. If tails, he moves down to the 1^{st} level. When the player reaches the highest level, if it turns up heads he stays there and if tails he moves to the lowest level.
 - (a) Find the transition probability matrix.
 - (b) What is the probability that the player will be in the 3^{rd} level after his second flipping if he started at the 2^{nd} level?

- (c) What is the probability that the player will be in the 2^{nd} level after his third flipping for any starting level?
- (d) Find the steady-state distribution of the Markov chain (by hand).
- 5. Consider a Markov chain with transition probability matrix

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Given an initial distribution $\pi(0) = (0, 1, 0, 0)$.

- (a) Compute the probability that the state 4 is eventually reached.
- (b) Compute the expected time until a recurrent state is entered.