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Abstract

We study the evolution of T-spline level sets (i.e, im-
plicitly defined T-spline curves and surfaces). The use of
T-splines leads to a sparse representation of the geometry
and allows for an adaptation to the given data, which can
be unorganized points or images. The evolution process is
governed by a combination of prescribed, data-driven nor-
mal velocities, and additional distance field constraints. By
incorporating the distance field constraints we are able to
avoid additional branches and singularities of the T-spline
level sets without having to use re-initialization steps. Ex-
perimental examples are presented to demonstrate the ef-
fectiveness of our approach.

Keywords: T-spline, level sets, unorganized points, image
segmentation

1. Introduction

Implicitly defined curves and surfaces, i.e., curves and
surfaces which are described as the zero set of a scalar field,
have found numerous applications in Shape Modeling and
Geometric Computing. They have been used for geometric
modeling [6], for object reconstruction from unorganized
points [5, 13, 22] and for improving the robustness of algo-
rithms for computing surface-surface intersections [10]. De-
pending on the area of the application, different representa-
tions of the underlying scalar fields have emerged. These in-
clude functions obtained by hierarchically combining sim-
pler ones [6], representations based on radial basis func-
tions [5], spline functions [10,13], to grid–based discretiza-
tions [22].

For various problems in image processing, many ap-
proaches are based on theevolution processesgenerating
time–dependent families of curves (and similarly for sur-
faces) by an implicit velocity field in the direction of its
normals. For instance, a family of (closed) parameterized

curvesxτ (u) may evolve according to

∂xτ (u)
∂τ

· ~nτ (u) = v(xτ (u), τ), (1.1)

where the parameterτ represents the time,v(x, τ) is some
(possibly time-dependent) speed function and~nτ the outer
unit normal of the curvexτ .

One example of an evolution of this type is used for seg-
mentation. Kass et al. [14] proposed ‘snakes’, or active con-
tours, for boundary detection. They compute the boundary
curve of a given 2D object by minimizing an energy func-
tional in a space of admissible curves. Caselles et al. [8]
proved that this problem can be transformed to the problem
of computing a geodesic curve in a Riemannian space with a
metric determined by the image data. Solving this problem
using the steepest-descent method leads to an curve evolu-
tion equation of the type (1.1).

For implicitly defined curves and surfaces, one may for-
mulateevolution processesas in Eq. (1.1) using thelevel
set approachof Osher and Sethian [16]. Assume that an
image is given by a mapI : D → R, whereD is a two–
dimensional domain. Then we can represent any curvex
in I as the zero level-set of a so–called level-set function
f : D → R. The evolution (1.1) can be reformulated as

∂f(x, y)
∂τ

= −v(x, y; τ)|∇f(x, y)| . (1.2)

As a major advantage in certain applications, where the
topology is not known a priori, the level-set representation
is parameter–free and it intrinsically adapts to topological
changes during the evolution. Consequently, one can detect
complex topological structures, such as objects consisting
of multiple components, without using prior knowledge.

The problem of geometry reconstruction from point data
clouds involves similar equations. Zhao et al. [22] present
a convection model to compute an implicit surfaceS that
minimizes a global distance function to the input data set.
Chaine et al. [2, 9] translates the convection scheme into
Computational Geometry terms.

While typical implementations of level set evolutions
rely on grid-based discretizations of the domain, this pa-
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per proposes to represent the functionf by a bivariate or
trivariateT-splinefunction (see [17]). On the one hand, due
to the use of a piecewise rational scalar field, the result-
ing zero level sets are algebraic spline curves and surfaces,
which can be pieced together with any desired level of dif-
ferentiability. On the other hand, the use of T-splines leads
to a sparse representation of the geometry, which can, how-
ever, be refined locally, adapting the numbers of degrees of
freedom to the particular data.

The remainder of the paper is organized as follows. The
next section provides some background information about
T-splines and defines implicit T-spline curves and surfaces.
Section 3 formulates the evolution process for these geom-
etry representation. In particular, it is shown how to incor-
porate a distance field constraint, which makes it possible
to avoid (possibly time–consuming) renormalization steps.
The fourth section applies evolution of T-spline curves and
surfaces to the problem of geometry reconstruction, both
from unorganized point data and images. After presenting
some experimental results in Section 5, we conclude this
paper and discuss future work.

2. T-spline Level Sets

Sederberg et al. [17] generalized non-uniform B-spline
surfaces to so–called T-splines. After recalling the defini-
tion, we introduce implicitly defined T–spline curves and
surfaces.

2.1. T-splines

As the most characteristic feature of T-splines, the con-
trol grids permit T-junctions. See Figure 1, which shows the
pre-image of a T-mesh in(x, y) parameter space. The con-
trol grid of a T-spline is called a T-mesh. The pre-image of
each edge in a T-mesh is a line segment of constantx or y,
which is called anx–edge or ay–edge. If a T-mesh is sim-
ply a rectangular grid without T-junctions, the T-spline re-
duces to a B-spline.

In this paper we restrict our discussion to the cubic case.
If no multiple knots are present, then cubic T-splines areC2.
The equation for a cubic T-spline function is

f(x, y) =
∑n

i=1 ciBi(x, y)∑n
i=1 Bi(x, y)

, (x, y) ∈ D (2.1)

where theci are control points (in our case: coefficients)
andn is the number of control points. The basis functions
Bi(x, y) are

Bi(x, y) = N3
i0(x)N3

i0(y) (2.2)

whereN3
i0(x) andN3

i0(y) are the cubic B-splines associ-
ated with certain knot vectors

[si0, si1, si2, si3, si4] and [ti0, ti1, ti2, ti3, ti4],
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point y-knots

c1 [s1, s2, s3, s4, s5 −∆s8]
[t1 −∆t0, t1, t2, t3, t3 + ∆t9]

c2 [s3, s3 + ∆s6, s5 −∆s8, s5, s5 + ∆s5]
[t1, t2, t3, t4, t5]

c3 [s1 −∆s0, s1 −∆s0, s1, s2, s2 + ∆s7]
[t1, t5 −∆t4 + ∆t9 −∆t7, t5, t5 + ∆t5, t5 + ∆t5]

We use multiple knots at the boundaries, i.e.,∆s0 =
∆s5 = ∆t0 = ∆t5 = 0.

Figure 1. Pre-image of a T-mesh

respectively. The knot vectorssi andti of an individual con-
trol point ci associated with(si, ti) = (si2, ti2) are de-
cided by the T-mesh in the following way. Consider a ray
R(∆s) = (si2 + ∆s, ti2), ∆s > 0 in the (x, y) parame-
ter space. The knotssi3 andsi4 are thex coordinates of the
first two x–edges intersected by the ray (not including the
initial edge ofs = si2), see Figure 1. The other knots are
found in a similar manner. In order to control the bound-
ary of the domain more conveniently, one usually uses mul-
tiple knots at the boundaries.

Once these knot vectors are determined for each basis
function, the T-spline is defined by Equation (2.1). The
support of a basis function isDi = (si0, si4) × ti0, ti4).
The setD is the domain of the T-spline function,D ⊂
{D1 ∪D2 ∪ ... ∪Dn}.

2.2. Implicit T-spline Curves and Surfaces

Let f(x, y) be a bivariate T-spline function defined over
some domainD,

f(x, y) =
∑n

i=1 ciBi(x, y)∑n
i=1 Bi(x, y)

, (x, y) ∈ D ⊂ R2 (2.3)

with the real coefficients (control points)ci, i = 1, 2, ..., n,
wheren is the number of control points. The basis func-
tionsBi(x, y) are given in Equation (2.2). The zero set of
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the functionf is defined by

C(f) = { (x, y) ∈ D ⊂ R2 | f(x, y) = 0 }, (2.4)

and it is called animplicit T-spline curve.
The definition ofimplicit T-spline curvesin 2D can be

easily generalized toimplicit T-spline surfacesin 3D:

S(f) = { (x, y, z) ∈ D ⊂ R3 | f(x, y, z) = 0 }, (2.5)

wheref(x, y, z) is a trivariate T-spline function,

f(x, y, z) =
∑n

i=1 ciBi(x, y, z)∑n
i=1 Bi(x, y, z)

, (x, y, z) ∈ D ⊂ R3.

(2.6)
The definition of the basis functions in the 3D case natu-
rally generalizes the definition in the plane,

Bi(x, y, z) = N3
i0(x)N3

i0(y)N3
i0(z), (2.7)

whereN3
i0(x), N3

i0(y) andN3
i0(z) are the cubic B-spline ba-

sis functions associated with the knot vectors

ξi = [ξi0, ξi1, ξi2, ξi3, ξi4]

for ξ = x, y, z, respectively. The influence domain of an in-
dividual real coefficientci is Di = (xi0, xi4)× (yi0, yi4)×
(zi0, zi4). The knot vectors ofci are decided by the 3D T-
mesh (or T-lattice) in a similar way as that described for 2D
parameter space in Section 2.1.

Both implicit T-spline curves and surfaces are calledT-
spline level setsin our paper. In order to simplify the nota-
tion, we usex to uniformly represent the point

x = (x, y) resp. x = (x, y, z), (2.8)

and gather the control coefficients (in a suitable ordering)
in a column vectorc. The T-spline basis functions form an-
other column vectorb,

b = [b1, b2, ..., bn]>,

and

bi =
Bi(x)∑n
i=1 Bi(x)

, i = 1, 2, ..., n.

TheT-spline level setΓ(f) is defined as the zero set of the
function

f(x) = b(x)>c (2.9)

For a fixed set of basis functionsb, the T-spline level set is
determined by the control coefficientsc.

Since a T-spline function is piecewise rational, the T-
spline level sets are piecewise algebraic curves and surfaces.
Moreover, if no singular points are present, they inherit the
order of differentiability of the basis functions, i.e., they are
C2 in the cubic case.

3. T-spline Level Set Evolution

We describe the evolution process of the T-spline level
set, which is driven by normal velocities, combined with an
additional signed distance field constraint

3.1. Evolution with Normal Velocity

Consider a T-spline level setΓ(f) defined as the zero set
of a time-dependent functionf(x, τ), where

f(x, τ) = b(x)>c(τ), (3.1)

with some time parameterτ . It will be subject to the evolu-
tion process

∂x
∂τ

= v(x, τ)~n, x ∈ Γ(f), (3.2)

wherev is a scalar-valuedvelocity function(or speed func-
tion) along the normal direction~n of Γ,

~n =
∇f

|∇f | . (3.3)

During the evolution, the definition of the level sets,

f(x, τ) ≡ 0, x ∈ Γ(f), (3.4)

implies
∂f

∂τ
+∇f · ∂x

∂τ
= 0, x ∈ Γ(f). (3.5)

Combining (3.2), (3.3) and (3.5), we get the evolution equa-
tion of T-spline level sets under the normal velocityv,

∂f

∂τ
= −v(x, τ)|∇f |, x ∈ Γ(f). (3.6)

In our case, however,f is a linear combination of the time-
dependent coefficientsc, see (3.1). In order to translate (3.6)
into an evolution equation for the coefficients, we use a
least–squares approach. More precisely, we choose the time
derivative of the T-splinef by solving

E0 =
∫

x∈Γ(f)

(
∂f(x, τ)

∂τ
+ v(x, τ) |∇f(x, τ)| )2ds → Min,

wheres represents the arc length or surface area of the T-
spline level set. For the actual computation, a discretized
version is more appropriate, i.e., we replaceE0 with

E =
N0∑

j=1

(
∂f(xj , τ)

∂τ
+ v(xj , τ) |∇f(xj , τ)| )2, (3.7)

wherexj , j = 1, . . . , N0 (N0 >> n) is a sequence of sam-
pling points, which are uniformly distributed along the T-
spline level set. Finally, the substitution (cf. Eq. (3.1))

∂f(x, τ)
∂τ

= b(x)>ċ(τ), (3.8)
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where the doṫc indicates differentiation with respect toτ ,
leads to theevolution termE of the T-spline level set,

E =
N0∑

j=1

(b(x)>ċ(τ) + v(xj , τ) |∇f(xj , τ)| )2. (3.9)

The evolution termE is a non–negative definite quadratic
function of the derivativeṡc,

E = ċ>QE(c) ċ + lE(c)> ċ + kE(c). (3.10)

The coefficients of this function, which are collected in the
symmetric non–negative definite matrixQE , the vectorlE
and the scalarkE , depend on the coefficientsc and can be
found from (3.9). It should be noted that the matrixQE(c) is
likely to be singular. In particular, this is the case if the sup-
port of at least one T-spline basis function and the T-spline
level set are disjoint.

3.2. Reinitialization

For most existing level set evolutions, the initial func-
tion f is chosen as an approximation to thesigned distance
function of its zero level set. However, during the evolu-
tion, f will drift away from this signed distance property.
Although the definition off off its zero level set can be ar-
bitrary in the continuous formulation, flat and/or steep re-
gions that develop in the level set function can dramatically
decrease the accuracy of the computed solution [1].

This motivates the use oflevel set reinitializationwhich
restores thesigned distanceproperty. It can be done either
by applying a Fast Marching technique [18] or by consider-
ing the steady state solution to the PDE

∂f

∂τ
+ sign(f0)(|∇f | − 1) = 0, (3.11)

wheref0 is the current level set function to be reinitial-
ized [19].

However, the re-initialization procedure is usually rela-
tively expensive (especially in the 3D case) and has to be
applied frequently. Moreover, in some cases – when a large
time step is used – the level set function may greatly devi-
ate from a signed distance function after only one or several
iteration steps, which will cause difficulties.

In our case, where the level set is a (piecewise) algebraic
curve or surface, there is an additional difficulty. It is well
known that the implicit form of a rational parametric curve
(or surface) segment may have singularities, even in cases
where the parametric representation is regular. For instance,
the cubic B́ezier curve in Fig. 2 is regular, while its implicit
form has a double point in the region of interest. Conse-
quently, if the target shape is such a (regular) cubic curve,
its level set representation will have singularities, unless the

original evolution equation – which pulls the level set to-
wards the target shape – is modified. Such a modification is
described below.

Figure 2. Planar cubic with double point.

3.3. Distance Field Constraint

We will avoid the use of re-initialization by introduc-
ing an additionaldistance field constraint. Recently, simi-
lar techniques have been proposed in the literature [15,20].

Since an ideal signed distance functionφ satisfies
|∇φ| = 1 everywhere in the domain, we propose the fol-
lowing constraint term

S0 =
∫

D

(
∂|∇f(x, τ)|

∂τ
+ |∇f(x, τ)| − 1 )2dx → Min

as a penalty function which penalizes the deviation off
from a signed distance function. If – for some value of the
time parameterτ – the gradient length at some point is less
(resp. greater) than 1, then the time derivative of this length
will be forced to be positive (resp. negative), in order to re-
store the unit gradient property.

Once again, the actual computation is based on a dis-
cretized version. We uniformly sampleN1 pointsyj , j =
1, . . . , N1 (N1 >> n) in the domain of level set function
and use them to derive a discretized version ofS0,

S =
A(D)

N

N∑

j=1

(
∂|∇f(yj , τ)|

∂τ
+|∇f(yj , τ)|−1)2, (3.12)

whereA(D) is the area/volume of the domainD.
As an obvious generalization, one may modifyS0 by

including an additional positive weight function under the
integral. In (3.12), this can be taken into account by sam-
pling the pointsyj according to the density specified by the
weight function.

In our case, the level set functionf has the form (3.1),
hence the time derivative of the gradient length

∂|∇f(yj , τ)|
∂τ

=
2∇f(yj , τ)
|∇f(yj , τ)| (∇b(yj)

>ċ(τ)) (3.13)
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depends linearly oṅc(τ).
By combining (3.12) and (3.13), we may represent the

signed distance field constraint term as a non–negative def-
inite quadratic function of the derivativesċ,

S = ċ>QS(c) ċ + lS(c)> ċ + kS(c). (3.14)

The coefficients of this function, which are collected in the
symmetric non–negative definite matrixQS , the vectorlS
and the scalarkS , depend on the coefficientsc and can be
found from (3.12) and (3.13). According to our numerical
experiments, the matrixQS(c) is generally positive definite,
i.e., non–singular, except for very rare special cases (such as
a T-splinef which represents the signed distance function
with respect to a straight line).

3.4. Solving the Evolution Equation

For each evolution step of T-spline level sets, the time
derivativesċ(τ) are computed by minimizing the weighted
linear combination

F (ċ) = E(ċ) + ω1 S(ċ) → min, (3.15)

see (3.9) and (3.12), with a certain positive weightω1. This
leads to a quadratic objective function of the unknown time
derivativeṡc = (ċi)i=1,2,...,n. The solutioṅc(τ) is found by
solving a sparse linear system of equations,

∂

∂ċi
F (ċ) = 0, i = 1, . . . , n. (3.16)

Very efficient algorithms for solving systems of this type ex-
ist [4].

We then generate the updated control coefficients

c(τ + ∆τ) = c(τ) + ċ∆τ. (3.17)

simply by using an explicit Euler step∆τ . The step size
is chosen asmin(1, {C/v(xj , τ)}j=1,...,N0), whereC is a
user-defined value. The traveling distance (approximately
∆τ · v(xj , τ)) of each pointxj on the T-spline level set is
constrained to be (approximately) less than the constantC.

The combination of evolution termE and the signed dis-
tance field constraint termS helps to maintain the signed
distance property of the level set function during its evo-
lution, without any additional re-initialization steps. Fig-
ure 3 illustrates the effects which can be achieved by us-
ing various weight values ofω1. A large value of the weight
(top, let) leads to a T-spline function which is almost the
signed distance function of a circle (i.e., its graph is a circu-
lar cone). On the other hand, a very small value produces a
T-spline level set with additional branches (bottom, right).
In between these two extreme situations, a proper choice of
the weight gives the desired result (bottom, left).

(a)ω1 = 100 (b) ω1 = 10

(c) ω1 = 0.1 (d) ω1 = 0.01

Figure 3. Influence of the weights ω1. The fig-
ures show the graphs of the T-spline func-
tion (green), the T-spline level set (red) and
the target shape (blue).

4. Geometry Reconstruction through Evolu-
tion of T-spline Level Sets

In this section, we give an unified algorithm for solv-
ing two problems through evolution of T-spline level sets.
For Problem 1, image segmentation, we assume thatimage
data(i.e., a scalar field of, e.g., grey values) is given. On the
other hand,Problem 2is shape reconstruction fromunorga-
nized point data.

The reconstructed geometry (2D curves or 3D surfaces)
may have complex topology, which is unknown a priori.
The algorithm takes as input an image data or a set of un-
organized points (possibly with noise), and produces a T-
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spline level set approximating the given image contour or
unorganized points with an appropriate number of control
coefficients (control points).

4.1. Outline of the Algorithm

The algorithm can be divided into three stages: initial-
ization, evolution, and refinement. Figure 4 shows the flow
chart of the presented algorithm.

Pre-filter the given  image data or

Pre-compute the UDF of PC data

Final refinement

Stopping criterion
satisfied?

start

done

yes

no

Solve the evolution equation

Update the T-spline level set

Generate T-Mesh or T-Lattice

Initialize the T-spline level set

Compute the speed function

1

2

3

Figure 4. Algorithm for geometry reconstruc-
tion using T-spline level sets.

In the initialization stage, the given image data (Problem
1) is pre-filtered or theunsigned distance fieldof the given
unorganized points (Problem 2) is pre-computed, e.g., by
using the fast marching method [18]. In the 2D case, we use
graphics hardware acceleration [12].

The T-mesh (or T-lattice) is generated according to the
given data (image or points), see below. The T-spline level
set is then initialized to be a circle-shaped curve, or a
sphere-shaped surface, containing all data points, or the in-
teresting parts of the image.

During the evolution stage, the T-spline level set is
evolved towards the desired result step by step, guided
by an intelligent data-driven speed function, until some
stopping criteria is satisfied. Finally, for the last refine-
ment stage, the result of T-spline level set is further
improved by solving a non-linear least squares prob-
lem.

4.2. T-mesh / T-lattice Generation

In the case of given 2D (3D) point cloud data (Prob-
lem 2), the T-mesh (T-lattice) can be automatically gener-
ated through binary-tree (octree) subdivision (cf. Fig. 5), as
follows.

1. Set the initial T-mesh (T-lattice) to be an axis-aligned
bounding box containing all the data points.

2. For each cell containing more thann0 data points (n0

is a user-specified constant value), subdivide it by ap-
plying the binary-tree (octree) subdivision.

3. Repeat step (2) until a user-specified threshold (e.g., a
maximum level of subdivision) is reached.

Figure 5. T-mesh generated by binary-tree
subdivision.

For the given 2D (3D) image data (Problem 1), the T-
mesh (T-lattice) can be generated in a similar way. The only
difference is in step (2): instead of checking the number of
data points inside the cellDi, we check the function value

h(Di) =
∫

Di

|∇I|dD (4.1)

for the given image intensity fieldI. If h(Di) ≥ h̃ for some
user-specified constant̃h, then subdivideDi into smaller
cells. Figure 5 gives an example for T-mesh generation.

The theoretic motivation for this is the following. The in-
tegral (4.1) corresponds to the total length of all edges in the
intersection ofI andDi. The above condition means that
the total length of the edges within each tile of the subdivi-
sion is bounded bỹh. Thus, we use a finer T-mesh in areas
of high boundary variation. This makes sense as we are in-
terested in the reconstruction of the boundary.
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4.3. Speed Function

The speed functionv (Ref. Equation (3.6)) plays a key
role in the algorithm, since it decides the evolution process
as well as the final result of T-spline level set. Caselles et
al. [8] propose a geodesic active contour model based on
the following evolution equation

∂f

∂τ
= g(I)(γ + κ)|∇f |+∇f · ∇g(I), (4.2)

which means that the level sets move according to

∂xτ

∂τ
· ~nτ = g(I)(γ + κ)− (∇g(I) · ~n), (4.3)

whereγ is a constant velocity (which is also known as abal-
loon force), κ is the curvature on the level sets off ,

κ = div(
∇f

|∇f | ), (4.4)

andg(I) is someedge detectorfunction. In [7], Caselles et
al. propose to use

g(I) =
1

1 + |∇I|p (p = 1 or 2). (4.5)

The original motivation for the use of the equations (4.2)
and (4.3), respectively, stems from “Snakes” or active con-
tour models as proposed by Kass et al. [14]. Caselles et
al. [8] showed that this approach is connected to comput-
ing geodesics or minimal distance curves in a Riemannian
space, where the metric in this space is determined by the
edge detector function of the image data. This model is
calledGeodesic Active Contours. They propose to solve the
resulting minimization problem using the steepest-descent
method and derive the curve evolution (4.3) withγ = 0.
This evolution process deforms an initial curvex0 towards
the object boundary. The final boundary is given by the
steady state solution of (4.3). As mentioned before, the bal-
loon forceγ does not naturally appear when deriving (4.3)
from the Snake model. In [8] the authors propose setting
γ > 0 in order to increase the speed of the evolution.

For the evolution of our T-spline level sets for image seg-
mentation (Problem 1), we use a similar speed function as
that in (4.3) with a slight modification,

v = g(I)(γ + κ)− (1− g(I))(∇g(I) · ~n) (4.6)

Generalizing (4.5), Caselles et al. [8] mention that any
strictly decreasing functiong : [0,∞] → R such that
g(r) → 0 asr → ∞ qualifies as an edge detector. In or-
der to get satisfactory results for more complex topologies,
we choose

g(I) = e−η|∇I|2 , (4.7)

whereη > 0 is a constant parameter. The edge detector is
more sensitive to high gradients in the image, if we choose
η to be large.

One can see that the speed (4.6) function is a linear
combination of two parts: the first part makes the level set
smooth by curvature flow, while the second part attracts the
level set to the detected edges (even if some noise or small
gaps may exist). The new term of(1−g(I)) is to weaken the
influence of the second part when the level set is far from the
edges (0 ¿ g(I) < 1), which is a natural choice in prac-
tical applications. When the level set is close to the edges
(g(I) ' 0), the second part again plays the leading role in
the evolution.

There are two important reasons for us to choose the
speed function in (4.6). Firstly, the smoothness of the mov-
ing level set is provided by using the curvature flow, instead
of using a tension term (e.g., thin plate regularization term),
where the latter would easily flatten the implicit field and
cause a trivial result. Secondly, the convergence result is in-
sensitive to the choice of balloon forceγ. Actually, it is pos-
sible to chooseγ = 0, and the model still converges (in a
slower motion) [8].

Furthermore, this speed function can be easily extended,
in order to deal with recovering shape from unorganized
points (Problem 2):

v = e(d)(γ + κ)− (1− e(d))(∇d · ~n) (4.8)

whered is the unsigned distancefunction of the unorga-
nized points,e(d) is another edge detector function

e(d) = 1− e−ηd2
. (4.9)

Again, η is a pre-defined, and its value is affected by
the size of the data range. In our experimental setting, since
all data points are contained in the same bounding box
(−1 ≤ x, y, z ≤ 1), then we can usually setη = 1. Note
that a discretized version of theunsigned distancefunction
d is already pre-computed in the initialization stage, thus
d(x) (and∇d(x)) can be efficiently acquired by bi-linear
or tri-linear interpolation from the neighboring grid points
of x.

4.4. Final Refinement

The T-spline level set continues evolving until a max-
imum number of iteration steps is reached or some user-
specified stopping criterion is satisfied, e.g., the maximum
distance between the zero level set and the given data points
is smaller than a certain threshold value.

In the case of given unorganized data points (Problem 2),
we now choose the pointsxj in (3.7) to be the closest points
of the given data on the T-spline level set. In addition, we
derive the velocities (4.8) no longer from the (approxima-
tion to the) unsigned distance field. Instead, we derive them
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from the distance to the closest points. Consequently, we re-
place the evolution termE with

Ẽ =
M∑

k=1

(
∂f(xk, τ)

∂τ
+ ṽk|∇f(xk, τ)|)2 → min, (4.10)

where

ṽk = (xk − pk) · ~nk. (4.11)

Again, this term is combined with the signed distance field
constraintS.

The updated T-spline level set can be obtained in the
same way as that for the evolution process (Ref Section 3.4).
Then the closest pointsxk are recomputed, and the Equa-
tion (4.10) is reconfigured for the next iteration. The above
procedure is repeated until the approximation error (max-
imum distance between the T-spline level set and the data
pointspk) cannot be reduced further.

For the given image data (Problem 1), the evolution re-
sult also can be further improved in a similar way. One may
first detect a set of sharp edge points within a narrow band
region of the T-spline level set, using some edge detector
function as shown in (4.5). Those detected edge points then
serve as the target data points to be approximated by the T-
spline level set, in order to guide the final refinement of the
segmentation result.

Remark 1 This technique is closely related to the method
of minimization of the normal distance [3], which has re-
cently been called tangent distance minimization (TDM)
[21], for parametric curves and surfaces. Indeed, the evolu-
tion defined by (4.10) with step-size∆τ = 1 can be shown
to be equivalent to these earlier methods. As a major differ-
ence, our method is using implicitly defined T-spline level
sets and is able to deal with complex topological changes in
a natural way.

5. Experimental results

In this section, we present some examples to demonstrate
the effectiveness of our method. All the experiments are run
on a PC with AMD Opteron(tm) 2.20GHz CPU and 3.25G
RAM. All the given image or data points are contained in a
square or cubic domain (−1 ≤ x, y, z ≤ 1).

Example 1: 2D geometry reconstruction.In the first exam-
ple (see Figure 6), the data set consists of 940 points in the
plane, and the approximating T-spline level set (a curve) is
described by 272 coefficients. We start with a level set that
represents a circumscribed circle and apply the evolution.
The level set splits into three components which approxi-
mate the given data. The entire computation took about 8
seconds.

Example 2: 2D image segmentation.The second example
(Figure 7) demonstrates the use of a T-spline level set for
image segmentation. Again, we start with a circumscribed
level set and apply the evolution which is driven by the ve-
locities derived from the data. The level set splits into two
components which identify the two objects in the figure,
along with the shadows. The entire computation took about
10 seconds.

Example 3: 3D geometry reconstruction.The third exam-
ple in this section (Figure 8) deals with the reconstruction
of 3D objects from unorganized point data. In this simple
case, the data are taken from four ellipsoids. Similar to the
2D case, we start with a circumscribed sphere and apply the
evolution. The T-spline level set correctly identifies the four
components.

6. Discussion

We have shown how to formulate evolution processes
for T-spline level sets that can be used to address prob-
lems of shape reconstruction from image data (Problem
1) and from unorganized point clouds (Problem 2). These
processes are based on a least–squares approximation of the
velocity fields, which are derived from the given data. In this
section we discuss the potential benefits of using T–spline
level sets.

1. All models for geometry reconstruction and image seg-
mentation have to ensure that the resulting curve sat-
isfies some regularity conditions. Without any regular-
ization, the solution would be very sensitive to noisy
image data and essentially become ill-posed. E.g., in
the snake model, Kass et al. [14] minimize the first
and second derivative of the curve to ensure regularity.
Caselles et al. [7], [8] additionally pre-filter the image
data before starting their evolution. The same holds for
Frick and Scherzer [11].

T-spline functions are piecewise rational, and the T-
spline level sets are algebraic spline curves and sur-
faces. This naturally implies certain regularity proper-
ties of the functionf and, as a consequence, of its zero
level set. Thus we are able to get satisfying reconstruc-
tion results – even for noisy data – without any pre-
processing.

2. Frequently, the the evolution equation (1.2) is numer-
ically solved on a per-pixel bases, i.e. the number of
degrees of freedom equals the number of pixels in the
picture. The T-spline representation of the level set
function is sparse and drastically reduces the number
of degrees of freedom. In addition, for both geome-
try reconstruction and segmentation, we are able to
generate the T-mesh according to the distribution of
the edges or points respectively. This means that – in
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(a) (b) (c)

Figure 6. Geometry reconstruction from 2D unorganized points using a a T-spline level set. The fig-
ure shows the initial level set with the generated T-mesh (a), an intermediate level set during the evo-
lution (b), and the final result after refinement (c).

(a) (b) (c)

Figure 7. Image segmentation using a T-spline level set. The figure shows the initial level set (a), an
intermediate level set during the evolution (b), and the final result after refinement (c).

the ideal case – the number of degrees of freedom in-
creases only linearly with the length of the curve which
is to be reconstructed.

As a straightforward modification of our algorithm,
one might adapt the structure of the T-mesh / T-lattice
to the data during the evolution, in order to introduce
additional degrees of freedom, where needed.

3. Note that the first two properties complement one an-
other. If the T-mesh is refined (thus the number of de-
grees of freedom increased), the regularization prop-
erty of the T-splines decreases. i.e. in the ideal case the
loss of accuracy by using a coarser than pixel-sized
grid is actually required to regularize the evolution

problem. That means that by using the correctly re-
fined T-mesh, we hope to reconstruct exactly as much
level of detail as the noise level of the data allows for.

4. Frequent re-initialization steps are often needed for ex-
isting level set methods, since otherwise numerical in-
stabilities and additional branches may happen during
the level set evolution. Instead of using these poten-
tially time-consuming re-initialization steps, we pro-
pose the use of an additionaldistance field constraint,
which is combined into the evolution equation to in-
trinsically maintain the distance field property of the
level set function. Our experimental results show that
the distance field constraintcan greatly increase the
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(a) (b) (c)

Figure 8. Geometry reconstruction from 3D unorganized points using a T-spline level set. The figure
shows the initial level set (a), an intermediate level set during the evolution (b), and the final result
after refinement (c).

stability of the evolution process, and thus improve the
computed solution.

7. Future work

Frick and Scherzer [11] implicitly computed the curve
evolution proposed by Caselles et al. [7, 8] by solving a
variational problem in every time step. This involves heavy
computational effort. It is possible to do the same implicit
computation with T-spline functions. In this case the advan-
tage of less degrees of freedom would have even more im-
pact on computation times. This may be a subject of further
investigation.

Since implicitly defined curves and surfaces cannot be
used directly in many applications such as Computer Aided
Design, we plan tocouple the evolution ofT-spline level
setswith parametric curves and surfaces. More precisely,
the evolving T-spline level set will guide the evolution of
the parametric representation. This is expected to lead to ap-
proximation algorithms for self–adapting parametric repre-
sentations, which may automatically determine the correct
topology.

A first example is shown in Figure 9. In this example, we
generate a T-spline level set (a curve) which approximates
360 data points. Again we start with a circumscribed circle
and apply the distance-driven evolution process.

While evolving the level set, we simultaneously evolve
a closed parametric B-spline curve, which is made to fol-
low the implicitly defined T-spline curve. The control poly-
gon of the curve is shown; the curve itself cannot be distin-
guished from the zero contour of the T-spline function.

The parametric curve is synchronized with the T-spline
level set, and its topology is adapted whenever the topology

of the T-spline level set changes. As the result, we obtain
both an implicit and a parametric representation of the same
object.

We plan to extend this to the 3D case. On the one hand,
this will facilitate the computation of the evolving T-spline
level set, since the generation of sample points (for the nu-
merical integration of the normal velocity contribution to
the objective function) becomes simpler. On the other hand,
the T-spline level set has some difficulties to capture fine
details of an object. The parametric representation will be
used to capture these details in the final refinement stage.
The implicit representation serves to guide the parametric
representation to develop the correct topology.
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