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Abstract

One purpose of telemedicine is the transfer of medical data via networks for
diagnostic purposes. The large size of 3D medical image data makes it almost
impossible to submit it uncompressed via relatively slow networks, like e.g. the
Internet. In this paper we describe some wavelet based algorithms for the com-
pression of medical 3D ultrasound data. Using compression algorithms based
on orthogonal or biorthogonal wavelets as well as the standardized compres-
sion algorithm MPEG II results in artifacts of the compressed image especially
near the boundary. To prevent such distortions wavelet bases on intervals are
used in this paper. We apply compression algorithms with standard wavelet
bases and wavelets on the interval as well as MPEG II compression to clinical
3D ultrasound data and evaluate the compressed data from a medical point of
view.

Keywords: wavelets on intervals, data compression, 3D ultrasound, medical
diagnostics, telemedicine

1 Introduction

Medical 3D ultrasound data sets are 3-dimensional tensors of 8 bit grayscale
values with typical sizes between 1283 and 2563 voxels. Such large amounts of
data (approximately 2− 16 Megabytes) can hardly be transferred in reasonable
times for telediagnostic purposes via slow networks.

Lossy compression algorithms aim to reduce the amount of data and simulta-
neously preserve the essential information in the data set. There are a number
of standardized compression algorithms, like JPEG (see e.g. Pennebaker and
Mitchell (1993)), which is based on discrete cosine transform, for 2D images
and MPEG (see e.g. Le Gall (1991)) for image sequences. In the recent years
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Figure 1: Schematic representation of the wavelet compression algorithm

wavelet based compression algorithms have gained increasing importance since
they can be adopted flexible to the data to be compressed (see e.g. Antonini
et al. (1992); DeVore et al. (1992); Maass et al. (1997)). Wavelet compression
has proved to be an efficient method for the compression of higher dimensional
medical image data, like e.g. 3D X–ray data Benoit-Cattin et al. (1997), or CT
and MR data Wang and Huang (1996).

To our knowledge wavelet based compression algorithms for 3D data sets in
clinical applications have just been implemented using 3-dimensional products of
orthonormal and biorthonormal compactly supported wavelet bases on the real
line. Formally this approach requires to extend the data set onto R3. Usually
symmetric or periodic extension along the axes is used. All artificial extensions
produce more or less significant artifacts near the boundary. By using tensor
products of orthonormal wavelet bases on intervals such artifacts can be avoided.

The outline of this paper is as follows: In Section 2 we outline compression
algorithms using tensor products of orthonormal bases of compactly supported
wavelets Daubechies (1988, 1993) and wavelets on the interval Cohen et al.
(1993); Chyzak et al. (1999). In Section 3 we compare numerical results obtained
with wavelets on the interval and wavelets on the real line as well as MPEG II
compressed data and present a subjective evaluation from a medical point of
view.

2 Wavelet–Based Lossy Data Compression

A lossy data compression algorithm consists of three successive steps (cf. Figure
1): transformation to represent the data in a compact form, quantization to
eliminate “non essential” information and finally entropy coding for efficient
storage of the quantized data.

For the reconstruction from the compressed representation it is necessary
to reverse these three steps. Transformation and entropy coding are invertible
while quantization eliminates information and is therefore not invertible.

In the following we outline the three steps of a wavelet compression algorithm
with particular emphasize on application to 3D ultrasound data.

2.1 Wavelet Transform

Wavelets are a family of one-dimensional basis functions ψm,k. Each function
ψm,k is obtained from a single mother wavelet ψ by translation and dilation, i.e.

ψm,k(x) := 2−m/2ψ(2−mx− k) .
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The mother wavelet ψ is related via the so called refinement equation to the
scaling function φ in the following way

ψ(x) :=
√

2
∑
k∈Z

(−1)kh1−kφ(2x− k) ,

where the function φ is itself the solution of the dilation equation

φ(x) =
√

2
∑
k∈Z

hkφ(2x− k) .

Both the scaling function and the wavelet are completely determined by the
sequence of filter coefficients {hk}. The construction of filter sequences such
that the resulting wavelets have compact support and form an orthonormal
Riesz basis has been introduced by Daubechies Daubechies (1992, 1988, 1993).

Orthonormal compactly supported wavelets are bases for functions on the
real line R. Thus they are not particluarily suited for the expansion of functions
which are defined on compact intervals D ⊂ R. Recently the construction of
orthogonal wavelet bases on compact intervals has been established Cohen et al.
(1993); Chyzak et al. (1999).

The main difference to wavelets on R is that no longer the wavelets ψm,k
can be obtained by translating and dilating a single mother wavelet ψ. But
still it is possible to gain refinement equations, which are most essential for
the implementation of an efficient transform algorithm. It can be shown that
for orthonormal wavelets Cohen et al. (1993); Chyzak et al. (1999) there exist
refinement matrices H and G such that the scaling functions φm,k and wavelets
ψm,k satisfy

φm+1,k =
√

2
∑
l∈Zm

Hk,lφm,l,

ψm+1,k =
√

2
∑
l∈Zm

Gk,lφm,l,

where Zm is a finite set of integers depending on the interval and the scale m.
Let

Vm := span {φm,k, k ∈ Zm},

and
Wm := span {ψm,k, k ∈ Zm}.

Then the sequence of scaling spaces Vm forms a multiresolution analysis on
L2(D). The wavelet space Wm is defined as the orthogonal complement of Vm
in Vm−1. Consequently the space of square integrable functions on D can be
represented as the orthogonal direct sum

L2(D) =
⊕
m∈Z

Wm.

As a consequence each function f ∈ L2(D) can be decomposed into its wavelet
expansion

f =
∑
m,k

dm,kψm,k,

3



where the wavelet coefficients dm,k are given by

dm,k = 〈f, ψm,k〉 :=

∫
D

f(x)ψm,k(x) dx.

A difficulty associated with the numerical calculation of dm,k is due to the fact
that there is no analytical representation of the wavelets and scaling functions.
However, if the projection Pmf of f onto the space Vm is known, i.e.

Pmf =
∑
k∈Zm

fm,kφm,k ,

then the coefficients fm+1,k and dm+1,k of the projections

Pm+1f =
∑

k∈Zm+1

fm+1,kφm+1,k ,

Qm+1f =
∑

k∈Zm+1

dm+1,kψm+1,k ,

onto the coarser spaces Vm+1 and Wm+1, respectively, can be computed using
the Mallat transform

fm+1,k =
∑
l∈Zm

Hk,lfm,l,

dm+1,k =
∑
l∈Zm

Gk,lfm,l,

for all k ∈ Zm+1. Its inversion is given by

fm,k =
∑

l∈Zm+1

Hl,kfm+1,l +
∑

l∈Zm+1

Gl,kdm+1,l,

for all k ∈ Zm. Note that this formulation of the Mallat transform also holds
for wavelets on the real line Mallat (1989) by setting Hk,l := hl−2k, Gk,l :=
(−1)kh1−k and Zm := Z.

2.1.1 n-dimensional Product Wavelets

A generalization of wavelets to higher dimensions is implemented by a tensor
product ansatz. We define the n-dimensional product wavelet Ψι

m,k by

Ψι
m,k(x) := ψι1m,k1(x1) · · ·ψιnm,kn(xn) ,

where x = (x1, . . . , xn), k = (k1, . . . , kn) ∈ Zm, m ∈ Z, and ι = (ι1, . . . ιn) ∈
I := {0, 1}n. The functions ψ0

m,ki
:= φm,ki and ψ1

m,ki
:= ψm,ki denote the

1-dimensional scaling function and wavelet, respectively. In this setting Ψ0
m,k

denote the n-dimensional scaling functions.
Similar to the 1-dimensional setting every on a n-dimensional parallelepiped

D ⊂ Rn square integrable function f ∈ L2(D) can be represented by its wavelet
series expansion

f =
∑
m∈Z

∑
k∈Zm

∑
ι∈I∗

dιm,kΨι
m,k,
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Figure 2: Successive decomposition of the 3D data set into subbands by the 3D
Mallat transform algorithm.

where I∗ := I \ {0} and

dιm,k := 〈f,Ψι
m,k〉 =

∫
D

f(x)Ψι
m,k(x) dx.

The n-dimensional Mallat transform allows to calculate the wavelet coeffi-
cients dιm+1,k, representing the function f at scale m + 1, from the coefficients

d0m,k representing f at scale m (Pmf =
∑
d0m,kΨ0

m,k):

dιm+1,k =
∑
l∈Zm

Hιn
kn,ln

· · ·Hι1
k1,l1

d0m,l , (1)

where H0
k,l := Hk,l and H1

k,l := Gk,l. The inverse n-dimensional Mallat trans-
form is given by

d0m,k =
∑
ι∈I

∑
l∈Zm+1

Hιn
ln,kn

· · ·Hι1
l1,k1

dιm+1,l . (2)

2.1.2 Application to Compression of 3D Ultrasound Data

We represent the 3D ultrasound data set f by

f :=
∑
k∈Z0

d00,kΨ0
0,k ,

where d00,k is the gray value of the data set at position k ∈ Z0 ⊂ Z3. Application

of the Mallat transform decomposes the coefficients d0m,k into eight subbands

Sιm+1 := {dιm+1,k, k ∈ Zm+1}, ι ∈ {0, 1}3 with |Sιm| = 8|Sιm+1|. Successive
application of the Mallat transform (1) yields that for M ∈ N (cf. Figure 2)

f =
∑
k∈ZM

d0M,kΨ0
M,k +

M∑
m=1

∑
ι∈I∗

∑
k∈Zm

dιm,kΨι
m,k . (3)

The inverse Mallat transform (2) allows to reconstruct the data d00,k from

the coefficients d0M,k and dιm,k, ι ∈ I∗, m = 1, . . . ,M . Any wavelet based
compression algorithm utilizes the representation (3) and further processes the
coefficients d0M,k and dιm,k.
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2.2 Equidistant Scalar Quantization

The 3D Mallat transform produces non-integer wavelet coefficients dιm,k, even

if the provided input data d00,k consists of integer gray values. To store the real
wavelet coefficients efficiently they are clustered by identifying the values in a
cluster by an integer value.

For clustering we use equidistant scalar quantization, where each coefficient
dιm,k is scaled and rounded to the nearest integer value, i.e.

dιm,k 7→ %
(
dιm,k

/
qιm) ,

where % denotes the rounding operator. An increasing quantization parameter
increases the loss of information and a higher compression rate can be achieved.
Thus the quantization parameters qιm provide a compromise between quality of
the reconstruction and compression rate.

Determination of the quantization parameters qιm to achieve a given com-
pression rate leads to the constrained minimization problem of bit allocation
(see e.g. Bradley et al. (1993); Strang and Nguyen (1996)).

2.3 Entropy Coding

The quantized data can be stored efficiently using entropy coding. We use
baseline coding, a combination of runlength coding and Huffman coding as it
is also used in JPEG. For a detailed description of these algorithms we refer to
Pennebaker and Mitchell (1993) or Strang and Nguyen (1996).

3 Numerical Results

In this section we discuss the medical diagnostics of 3D ultrasound data sets
which are reconstructed from compressed data. We consider the following algo-
rithms:

WBI: Wavelet compression using 3D tensor products of Daubechies 4 wavelets
on the interval Cohen et al. (1993).

WBR: Wavelet compression using 3D tensor products of Daubechies 4 wavelets
on R Daubechies (1993). For the wavelet expansion of the data in terms of
wavelets one needs samples of the 3D ultrasound data on the whole set Z3.
Therefore the finite data set is extended periodically over its boundaries.

MPEG: Compression with the video encoding standard MPEG II. Here the
data set is split into a series of transversal slices which are encoded as a
movie sequence by the MPEG encoder.

The medical 3D ultrasound data sets considered in these examples were
acquired with a Kretztechnik Voluson 530D diagnostic ultrasound system. The
numerical experiments were performed on a Digital Alpha workstation with a
433 MHz 21164 CPU under Digital Unix. With this equipment the wavelet
compression of a 3D ultrasound data set of approximately 107 voxels requires
approximately 3.1 CPU seconds.
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Figure 3: Transversal (left) and sagittal slice (right) of a 3D ultrasound data
set of the upper abdomen

3.1 Upper abdomen

In a first example we consider a 3D ultrasound data set which shows a part of
the upper abdomen. Figure 3 displays a transversal and a saggital slice of this
data set. The images show the Aorta near the branching of the Coeliac Trunc,
part of the liver with vessel structures and the Arteria Haepatica, and, on the
backside, the spine and part of a kidney with a Hydro Nephrosis.

The corresponding slices of the reconstruction from 40 : 1 compressed data
are shown in Figure 4. A comparison with the slices in Figure 3 reveals that
essential diagnostic information, such as small vessel structures and vascular
walls, are preserved qualitatively correct in the WBI and WBR compressed
data sets (top and middle). These data sets show a subjective similar quality
although the peak-signal-to-noise-ratio (PSNR) of the WBI compressed data is
33.28 dB and therefore 1 dB higher than the PSNR of the WBR compressed
data (32.28 dB). The blurring of the tissue introduced by the compression is
perceptible but does not affect the clinical diagnosis. The transversal slice of the
MPEG compressed data shows typical 8×8 blocking artifacts resulting from the
block-based discrete cosine transform used in MPEG. These blocking artifacts
are also perceptible in the sagittal slices as horizontal edges. The vertical edges
in the sagittal slices result from the per-slice encoding of the MPEG encoder.
Due to these artifacts essential diagnostic content, especially fine structures as
vascular walls, is lost in a 40 : 1 MPEG compressed data set. This fact is also
reflected by a significant lower PSNR of 30.39 dB.

Figure 5 shows zooms of three successive transversal slices of the original
data (middle) as well as slices of the reconstructions from the WBI (left) and
MPEG compressed (right) data sets. It is clearly perceptible that the quality
of the MPEG compressed data varies much from slice to slice which is due to
the coding mechanism for time frames used in MPEG.

3.2 Human fetus

In a second example we consider the 3D ultrasound data set of the head of
a 30 week old human fetus shown in Figure 6. A plot of the PSNR of the
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Figure 4: Transversal (left) and sagittal slice of a 3D ultrasound data set of the
upper abdomen: reconstructions from a 40 : 1 compression using WBI (top),
WBR (middle) and MPEG (bottom)
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Figure 5: Zooms of three consecutive transversal slices out of the wavelet com-
pressed (left), original (middle) and the MPEG (right) compressed data set.
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Figure 6: Rendered visualization of a 3D ultrasound data set of a 30 week old
human fetus

reconstruction over the compression rate (Figure 7) shows that WBI performs
significantly better than WBR, especially at higher compression rates.

At a compression rate of 44 : 1 the PSNR of the WBI compressed data is
31.99 dB and approximately 0.9 dB higher than the PSNR of the WBR com-
pressed data (31.07 dB). However if one considers the PSNR of the transversal
2D slices (Figure 8) then it is visible that WBI compression performs signifi-
cantly better than WBR compression near the boundaries of the data set (Slices
No. 0− 5 and 123− 128). This performance loss of WBR is an effect of discon-
tinuities that are introduced by periodic extension of the data set. These jumps
cannot be recovered without major artifacts. This effect is also clearly visible
in 2D slices of the 3D data set (Figure 9).
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