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1 Introduction

Today imaging is rapidly improving by increased specificity and sensitivity of measurement de-
vices. However, even more diagnostic information can be gained by combination of data recorded
with different imaging systems.

In particular in medicine information of different modalities is used for diagnosis. From
the various imaging technologies used in medicine we mention exemplary positron emission
tomography (PET), single photon emission computed tomography (SPECT), magnetic
resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and ultrasound.
Soft tissue can be well visualized in magnetic resonance scans, while bone structures is more
easily discernible by X-ray imaging.

Image registration is an appropriate tool to align the information gained from different
modalities. Thereby it is necessary to use similarity measures that are able to compare images
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of different modalities such that in a post processing step the data can be fused and relevant
information can be aligned.

The main challenge for computer assisted comparison of images from different modalities is
to define an appropriate distance measure between the images from different modalities.

Similarity measures of images can be categorized as follows:

1. Pixel wise comparison of intensities.

2. A morphological measure defines the distance between images by the distance between their
level sets.

3. Measures based on the images gray value distributions.

In the following we review distance measures for images according to the above catalog.
We use the notation Ω for the squared domain (0, 1)2. Images are simultaneously considered

as matrices or functions on Ω: A discrete image is an N × N -matrix U ∈ {0, . . . , 255}N×N .
Each of the entries of the matrix represents an intensity value at a pixel. Therewith is associated
a piecewise constant function

uN (x) =

N∑
i=1

N∑
j=1

U ijχΩij (x) , (1)

where

Ωij :=

(
i− 1

N
,
i

N

)
×
(
j − 1

N
,
j

N

)
for 1 ≤ i, j ≤ N ,

and χΩij is the characteristic function of Ωij . In the context of image processing U ij denotes the
pixel intensity at the pixel χΩij . A continuous image is a function u : Ω→ R .

We emphasize that the measures for comparing images, presented below, can be applied in
a straight forward way to higher dimensional domains, e.g. voxel data. However, here, for the
sake of simplicity of notation and readability we restrict attention to a two dimensional squared
domain Ω. Even more, we restrict attention to intensity data, and do not consider vector valued
data, such as color images or tensor data.

2 Distance Measures

In the following we review distance measures for comparing discrete and continuous images.
We review the standard and a morphological distance measure, both of them are deterministic.
Moreover, based on the idea to consider images as random variable, we consider in the last two
subsections two statistical approaches.
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2.1 Deterministic Pixel Measure

The most widely used distance measures for discrete and continuous images are the lp, Lp distance
measures, consequently. There, two discrete images U1 and U2 are similar, if

‖U1 − U2‖p :=
1

p

N∑
i=1

N∑
j=1

∣∣∣U ij1 − U ij2 ∣∣∣p , 1 ≤ p <∞ ,

‖U2 − U2‖∞ := sup
i,j=1,...,N

∣∣∣U ij1 − U ij2 ∣∣∣ , p =∞ ,

respectively, is small. Two continuous images u1, u2 : Ω→ R are similar if

‖u1 − u2‖p :=
1

p

∫
Ω

|u1(x)− u2(x)|p , dx 1 ≤ p <∞ ,

‖u2 − u2‖∞ := ess supx,y |u1(x)− u2(x)| , p =∞ ,

is small. Here ess sup denotes the essential supremum.

2.2 Morphological Measures

In this subsection we consider continuous images ui : Ω→ [0, 255], i = 1, 2. u1 and u2 are mor-
phologically equivalent, if there exists a one-to-one gray value transformation β : [0, 255] →
[0, 255], such that

β ◦ u1 = u2 .

Level sets of a continuous function u are defined as

Ωt(u) := {x ∈ Ω : u(x) = t} .

Ω1.2(u1)

Ω0.5(u1)

u1

Ω0.5(u2)

Ω1.2(u2)

u2 morphology of u1, u2

Figure 1: The gray values of the images are completely different, but the images u1, u2 have the
same morphology.

The level sets ΩR (u) := {Ωt(u) : t ∈ [0, 255]} form the objects of an image that remain in-
variant under gray value transforms. The normal field (Gauss map) is given by the normals
to the level lines, and can be written as

n(u) : Ω → R d

x 7→

{
0 if ∇u(x) = 0
∇u(x)
‖∇u(x)‖ else.
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Droske & Rumpf [7] consider images as similar, if intensity changes occur at the same locations.
Therefore the compare the normal fields of the images with the similarity measure

Sg(u1, u2) =

∫
Ω

g(n(u1)(x),n(u2)(x)) dx , (2)

where they choose the function g : R 2 × R 2 → R≥0 appropriately. The vectors n(u1)(x),
n(u2)(x) form an angle which is minimal if the images are morphologically equivalent. Therefore
an appropriate choice of the function g is an increasing function of the minimal angle between
v1, v2 and v1,−v2. For instance setting g to be the cross or the negative dot product, we obtain:

S×(u1, u2) =
1

2

∫
Ω

|n(u1)(x)× n(u2)(x)|2 dx

S◦(u1, u2) =
1

2

∫
Ω

(1− n(u1)(x) · n(u2)(x))
2
dx .

(The vectors n have to be embedded in R 3 in order to calculate the crossproduct).

Example 1. Consider the following scaled images ui : [0, 1]2 → [0, 1],

u1(x) = x1x2, u2(x) = 1− x1x2, u3(x) = (1− x1)x2,

with gradients

∇u1(x) =

(
x2

x1

)
∇u2(x) =

(
−x2

−x1

)
∇u3(x) =

(
−x2

1− x1

)
.

With g(u, v) := 1
2 |u1v2 − u2v1|, the functional Sg defined in (2) attains the following values for

the particular images:

Sg(u1, u2) =
1

2

∫
Ω

|−x2x1 + x2x1| dx = 0

Sg(u2, u3) =
1

2

∫
Ω

|x2x1 + x2x1| dx =
1

4

Sg(u3, u1) =
1

2

∫
Ω

|−x2x1 − (1− x1)x2| dx =
1

4
.

The similarity measure indicates that u1 and u2 are morphological identical.
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The normalized gradient field is set valued in regions where the function is constant. Therefore,
the numerical evaluation of the gradient field is highly unstable. To overcome this drawback Haber
& Modersitzki [15] suggested to use regularized normal gradient fields:

nε(u) : Ω → R d

x 7→ ∇u(x)
‖∇u(x)‖ε

where, ‖v‖ε :=
√
vT v + ε2 for every v ∈ R d. The parameter ε is connected to the estimated noise

level in the image. In regions where ε is much larger than the gradient, the regularized normalized
fields nε(u) are almost zero and therefore do not have a significant effect of the measures S× or
S◦, respectively. However, in regions where ε is much smaller than the gradients, the regularized
normal fields are close to the non-regularized ones.

2.3 Statistical Distance Measures

Several distance measures for pairs of images can be motivated from statistics by considering the
images as random variables. In the following we analyze discrete images from a statistical point
of view. For this purpose we need some elementary statistical definitions. Applications of the
following measures are mentioned in Section 4.

Correlation Coefficient:

U :=
1

N2

N∑
i,j=1

U ij and Var(U) =

N∑
i,j=1

(U ij − U)2

denote the mean intensity and variance of the discrete image U .

Cov(U1, U2) =

N∑
i=1

N∑
j=1

(U ij1 − U1)(U ij2 − U2)

denotes the covariance of two images U1 and U2, and the correlation coefficient is
defined by

ρ(U1, U2) =
Cov(U1, U2)√

Var(U1)Var(U2)
.

The correlation coefficient is a measure of linear dependence of two images. The range
of the correlation coefficient is [−1, 1], and if |ρ(U1, U2)| is close to one then it indicates that
U1 and U2 are linearly dependent.

Correlation Ratio: In statistics, the correlation ratio is used to measure the relationship be-
tween the statistical dispersion within individual categories and the dispersion across the
whole population. The correlation ratio is defined by

η(U2 | U1) =
Var
(
E(U2 | U1)

)
Var(U2)

,

where E(U2 | U1) is the conditional expectation of U2 subject to U1.

To put this into the context of image comparison let

Ωt(U1) :=
{

(i, j) | U ij1 = t
}
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be the discrete level set of intensity t ∈ {0, . . . , 255}. Then the expected value of U2 on the
t-th level set of U1 is given by

E(U2 | U1 = t) :=
1

# (Ωt(U1))

∑
Ωt(U1)

U ij2 ,

where # (Ωt (U1)) denotes the number of pixels in U1 with gray-value t. Moreover, the
according conditional variance is defined by

V (U2 | U1 = t) =
1

# (Ωt (U1)))

∑
Ωt(U1)

(
U ij2 − E(U2 | U1 = t)

)2

.

The function
H(U1) : {0, . . . , 255} → N

t 7→ # (Ωt (U1))

is called the discrete histogram of U1.

The correlation ratio is non symmetric, that is η(Y | X) 6= η(X | Y ), and takes values
between [0, 1]. It is a measure of (non)-linear dependence between two images. If
U1 = U2, then the correlation ratio is maximal.

Variance of Intensity Ratio, Ratio Image Uniformity: This measure is based on the def-
inition of similarity that two images are similar, if the factor Rij(U1, U2) = U ij1 /U

ij
2 has

a small variance. The ratio image uniformity (or normalized variance of the intensity
ratio) can be calculated by

RIU(U1, U2) =
V ar(R)

R
.

It is not symmetric.

Example 2. Consider the discrete images U1, U2, U3 in Figure 2. Table 2 shows a comparison of
the different similarity measures. The variance of the intensity ratio is insignificant and therefore
cannot be used to determine similarities. The correlation ratio is maximal for the pairing U1, U2

and in fact there is a functional dependence of the intensity values of U1 and U2. However, the
dependence of the intensity values of U1 and U2 is nonlinear, hence the absolute value of the
correlation coefficient (measure of linear dependence) is close to one, but not identical to one.
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Figure 2: Images for Examples 2 and 16. Note that there is a dependence between U2 and U2:
U2 ∼ 11− (U1)3.
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U1, U2 U2, U1 U2, U3 U3, U2 U3, U1 U1, U3

Correlation Coefficient -0.98 -0.98 0.10 0.10 −0.14 −0.14
Correlation Ratio 1.00 1.00 0.28 0.32 0.29 0.64
Variance of Intensity Ratio 1.91 2.87 2.25 1.92 3.06 0.83

Table 1: Comparison of the different pixel based similarity measures. The images U1, U2 are
related in a nonlinear way, this is reflected in a correlation ratio of 1. Since this dependence is
nonlinear, the absolute value of the correlation coefficient is close to, but smaller than one. We
see that the variance of intensity ratio, is not symmetric and not significant to make a statement
on a correlation between the images.

2.4 Statistical Distance Measures (Density Based)

In general, if two images are of different modality, the lp, Lp-distances, respectively, of the
intensities are weak.

In order to use statistical measures, we consider an image as a random variable. The basic
terminology of random variables is as follows:

Definition 3. A continuous random variable is a real valued function X : ΩS → R defined
on the sample space Ωs. For a sample x, X(x) is called observation.

Remark 4 (Images as Random Variables). When we consider an image u : Ω→ R a continuous
random variable, the sample space is Ω. For a sample x ∈ Ω the observation u(x) is the intensity
of u at x.

By regarding the intensity values of an image as an observation of a random processes allows
us to compare images via their intrinsic probability densities. Since the density cannot be
calculated directly, it has to be estimated. This is outlined in Subsection 2.4.1, below. There
exists a variety of distance measures for probability densities (see for instance [30]). In particular,
we review f -divergences in Subsection 2.4.2 and explain how to use the f -information as a image
similarity measure in Subsection 2.4.3.

2.4.1 Density Estimation

This section reviews the problem of density estimation, which is the construction of an estimate
of the density function from the observed data.

Definition 5. Let X : ΩS → R be a random variable, i.e. a function mapping the (measurable)
sample space ΩS of a random process to the real numbers.

The cumulated probability density function of X is defined by

P (t) :=
1

meas(ΩS)
meas {x : X(x) ≤ t} t ∈ R .

The probability density function p is the derivative of P .
The joint cumulated probability density function of two random variables X1, X2 is

defined by

P̂ (t1, t2) :=
1

meas(ΩS)2
meas {(x1, x2) : X1(x1) ≤ t1, X2(x2) ≤ t2} t1, t2 ∈ R .

The joint probability density function p̂ satisfies

P̂ (t1, t2) =

∫ t1

0

∫ t2

0

p̂(s1, s2)ds1 ds2 .
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Remark 6. When we consider an image u : Ω→ R a random variable with sample space Ω, we
write p(u)(t) for the probability density function of the image u. For the joint probability of two
images u1 and u2 we write p̂(u1, u2)(t1, t2), to emphasize, as above, that the images are considered
as random variables.

The terminology of Definition 5 is clarified by the following one dimensional example:

Example 7. Let
u : Ω := [0, 1]→ [0, 255] .

x→ 255x2

The cumulated probability density function P : [0, 255]→ [0, 1] is obtained by integration:

P (t) := meas
{
x : 255 x2 ≤ t

}
=

√
t

255
.

The probability density function of u is given by the derivative of P , which is

p(u)(t) =
1

2
√

255

1√
t
.

In image processing it is common to view the discrete image U (or uN as in (1)) as an approx-
imation of an image u. We aim for the probability density function of u, which is approximated
via kernel density estimation using the available information of u, which is U . A kernel histogram
is the normalized probability density function according to the discretized image U , where for
each pixel a kernel function (see (3) below) is superimposed. Kernel functions depend on a
parameter, which can be used to control the smoothness of the kernel histogram.

We first give a general definition of kernel density estimation:

Definition 8 (Kernel Density Estimation). Let t1, t2, . . . , tM be a sample of M independent
observations from a measurable real random variable X with probability density function p. The
kernel density approximation at t is given by

pσ(t) =
1

M

M∑
i=1

kσ (t− ti) , t ∈ [0, 255]

where kσ is the kernel function with bandwidth σ. pσ is called kernel density approximation
with parameter σ.

Let t1, t2, . . . , tM and s1, s2, . . . , sM be samples of M independent observations from measur-
able real random variables X1, X2 with with joint probability density function p̂, then the joint
kernel density approximation of p̂ is given by

p̂σ(s, t) =
1

M

M∑
i=1

Kσ(s− si, t− ti) ,

where Kσ(s, t) = kσ(s)kσ(t) is the two-dimensional kernel function.

Remark 9 (Kernel Density Estimation of an Image). Let u be a continuous image, which is
identified with a random variable. Moreover, let U be N × N samples of u. In analogy to
Definition 8 we denote the kernel density estimation based on the discrete image U , by

pσ(t) =
1

N2

N∑
i,j=1

kσ
(
t− U ij

)
.
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ti

pσ(u)(t)

kσ(t− ti)

ti

pσ̃(u)(t)

kσ̃(t− ti)

Figure 3: Density estimate for different parameters σ.

and remark that for uN as in (1)

pσ(uN )(t) :=

∫
Ω

kσ (t− uN (x)) dx =
1

N2

N∑
i,j=1

kσ
(
t− U ij

)
. (3)

The joint kernel density of two images u1, u2 with observations U1 and U2 is given by

p̂σ(s, t) =
1

N2

N∑
i,j=1

Kσ(s− U ij1 , t− U
ij
2 ) ,

where Kσ(s, t) = kσ(s)kσ(t) is the two-dimensional kernel function. Moreover, we remark that
for u1,N , u2,N

p̂σ(u1,N , u2,N )(s, t) :=

∫
Ω

Kσ (s− u1,N (x), t− u2,N (x)) dx =
1

N2

N∑
i,j=1

Kσ(s− U ij1 , t− U
ij
2 ) .

In the following we review particular kernel functions and show that Parzen windowing and
standard histograms are kernel density estimations.

Example 10. Assume that ui : Ω → [0, 255] , i = 1, 2 are continuous images, with discrete
approximations ui,N as in (1).

• Parzen windowing density estimation uses the joint density kernel Kσ(s, t) := kσ(s)kσ(t),
where kσ is the normalized Gaussian kernel of variance σ. Then for i = 1, 2, the
estimates for the marginal densities are given by

pσ(ui,N )(t) :=

∫
Ω

kσ(ui,N (x)− t) dx =
1√
2πσ

∫
Ω

exp

(
− (ui,N (x)− t)2

2σ2

)
dx ,
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and the joint density approximation reads as follows

p̂σ(s, t) : =

∫
Ω

Kσ((u1(x), u2(x))− (s, t)) dx

=
1

2πσ2

∫
Ω

exp

(
− (u1,N (x)− s)2

2σ2

)
exp

(
− (u2,N (x)− t)2

2σ2

)
dx .

• Histograms: Assume that U only takes values in {0, 1, . . . , 255}. When we choose the
characteristic function function χ[−σ,σ), with σ = 1

2 as kernel function, we obtain the density
estimate

pχ,σ(t) =

∫
Ω

χ[−σ,σ[(u(x)− t) dx

= meas {x : t− σ ≤ u(x) < t+ σ}
= size of pixel × number of pixels with value bt+ σc .

Hence pχ,σ corresponds with the histogram of the discrete image.

Example 11. We return to Example 7. The domain Ω = [0, 1] is partitioned into N equidistant
pieces. Let

uN :=

N∑
i=1

(∫ i
N

i−1
N

u(x)dx

)
χ[ i−1

N , iN [ .

Moreover, we consider the piecewise function uTN represented in Figure 4. The density according

x

u
N

(x
)

x

u
T N

(x
)

x

u
(x

)

Figure 4: Original u, and discretized versions uN and uTN .

to u, denoted by p(u) and the kernel density estimates of uN and uTN are represented in Figure
5. The resemble the actual density very well.

2.4.2 Csiszár-Divergences (f-Divergences)

The concept of f -divergences has been introduced by Csiszár in [5] as a generalization of Kull-
back’s I-divergence and Rényi’s I-divergence, and at the same time by Ali & Silvey [1]. In
probability calculus f -divergences are used to measure the distances between probability densi-
ties.

Definition 12. Set

F0 := {f : [0,∞)→ R ∪ {∞} : f is convex in [0,∞), continuous at 0, and satisfies f(1) = 0}

and

Vpdf :=

{
p ∈ L1(R ) : p ≥ 0,

∫
R
p(t) dt = 1

}
.
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(a) (b) (c) (d)

Figure 5: (a) Density from the original image u, (b): Parzen window estimation based on uN
(N = 10), with σ = 0.07, (c,d): normalized histogram, based on uTN , with σ = 0.05, 0.1.

Let g1, g2 ∈ Vpdf be probability densities functions. The f -divergence between g1, g2 is given by

Df : Vpdf × Vpdf → [0,∞)

(g1, g2) →
∫
R g2(t) f

(
g1(t)
g2(t)

)
dt .

(4)

Remark 13. • In (4) the integrand at positions t where g2(t) = 0 is understood in the
following sense:

0f

(
g1(t)

0

)
:= lim

t̄↘0

(
t̄f

(
g1(t)

t̄

))
, t ∈ R .

• In general f -divergences are not symmetric, unless there exists some number c such that
the generating f satisfies f(x) = xf

(
1
x

)
+ c(x− 1).

Examples for f-Divergences We list several f -divergences that have been used in literature
(see [12],[6] and references therein).

Kullback-Leibler Divergenceis the f -divergence with f(x) = x log(x)

Df (g1, g2) =

∫
R
g1(t) log

(
g1(t)

g2(t)

)
dt .

Jensen-Shannon Divergence is the symmetric Kullback-Leibler divergence:

Df (g1, g2)

=

∫
R

(
g1(t) log

(
g1(t)

g2(t)

)
+ g2(t) log

(
g2(t)

g1(t)

))
dt .
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χs-Divergences: These divergences are generated by

fs(x) = |x− 1|s , s ∈ [1,∞)

and have the form

Df (g1, g2)

=

∫
R
g2(t)

∣∣∣∣g1(t)

g2(t)
− 1

∣∣∣∣s =

∫
g1−s

2 (t) |g1(t)− g2(t)|s dt .

The χ1-divergence is a metric. The most widely used out of this family of χs

divergences is the χ2-divergence (Pearson).

Dichotomy Class Divergences: The generating function of this class is
given by

f(x) =


x− 1− ln(x) for s = 0,

1
s(1−s) (sx+ 1− s− xs) for s ∈ R \ {0, 1} ,
1− x+ x ln(x) for s = 1 .

The parameter s = 1
2 provides a distance namely the Hellinger metric

Df (g1, g2) = 2

∫
R

(√
g1(t)−

√
g2(t)

)2

dt .

Matsushita’s Divergences: The elements of this class, which is generated
by the function

f(x) = |1− xs|
1
s , 0 < s ≤ 1 ,

are prototypes of metric divergences. The distance is given by

d(g1, g2) = (Df (g1, g2))
s

where

Df (g1, g2) =

∫
R
g1(t)

∣∣∣∣1− (g2(t)

g1(t)

)s∣∣∣∣
1
s

dt .

Puri-Vincze Divergences: This class is generated by the functions

f(x) =
|1− x|s

2 (x+ 1)s−1
, s ∈ [1,∞) .

For s = 2 we obtain the triangular divergence

Df (g1, g2) =

∫
R

(g2(t)− g1(t))2

g2(t) + g1(t)
dt .
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Divergences of Arimoto Type: Generated by the functions

f(x) =


s
s−1

(
(1 + xs)

1
s − 2

1
s−1(1 + x)

)
for s ∈ (0,∞)\ {1}

(1 + x) ln(2) + x ln(x)− (1 + x) ln(1 + x) for s = 1
1
2 |1− x| for s =∞ .

For s = ∞ the divergence is proportional to the χ1 divergence. For s ∈
(0,∞)\ {1} we obtain

Df (g1, g2) =

∫
R

s

s− 1

(
s

√
gs1(t) + gs2(t)− 2

1−s
s (g1(t) + g2(t))

)
dt

Moreover, this class provides the distances

d(g1, g2) = (Df (g1, g2))
min{s, 1s} for s ∈ (0,∞) .

2.4.3 f-Information

In the following we review the f -information for measuring the distance between probability
densities. The most important f -information measure is the mutual information.

The notion of information gain induced by simultaneously observing two probability mea-
sures compared to their separate observations is tightly related to divergences. It results from
quantifying the information content of the joint measure in comparison with the product measure.

This motivation leads to the following definition.

Definition 14 (f -information for images). For f ∈ F0 (see Definition 12) we define the f-
information of u1, u2 ∈ L∞(Ω) by

If (u1, u2) := Df (p(u1) p(u2), p(u1, u2)) ,

where the p(ui) is the probability density of ui, as introduced in the Section 2.4.1.
Additionally we define the f-entropy of an image u1 by

Hf (u1) := If (u1, u1) .

In analogy to independent probability densities we call two images u1, u2 independent if
there is no information gain, that is

p(u1, u2) = p(u1)p(u2) .

Remark 15. The f -information has the following properties

• Symmetry: If (u1, u2) = If (u2, u1).

• Bounds: 0 ≤ If (u1, u2) ≤ min {Hf (u1), Hf (u2)}.

• If (u1, u2) = 0 if and only if u1, u2 are mutually independent.

The definition of f -information does not make assumptions on the relationship between the
image intensities (see [37] for discussion). It does neither assume a linear, nor a functional
correlation but only a predictable relationship. For more information on f -information see [35].

Example 16. The most famous examples of f -informations are the following
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Mutual/Shannon Information: For f(x) = x lnx we obtain

If (u1, u2) =

∫
R

∫
R
p(u1, u2)(t1, t2) ln

(
p(u1, u2)(t1, t2)

p(u1)(t1)p(u2)(t2)

)
dt1 dt2 ,

with Shannon entropy

Hf (u) =

∫
R
p(u)(t) ln

(
1

p(u)(t)

)
dt

joint entropy

Hf (u1, u2) = −
∫
R

∫
R
p(u1, u2)(t1, t2) ln (p(u1, u2)(t1, t2)) dt1 dt2 ,

conditional entropy

Hf (u2 | u1) =

∫
R
p(u1)(t)Hf (u2 | u1 = t) dt

and relative entropy (Kullback Leibler divergence)

Hf (u1 | u2) =

∫
R
p(u1)(t) ln

(
p(u1)

p(u2)

)
.

The relative entropy is not symmetric. Maes et al. [25] and Studholme et al [34] both sug-
gested the use of joint entropy for multi modal image registration. Maes et al. demonstrate
the robustness of registration, using mutual information with respect to partial overlap and
image degradation, such as noise and intensity inhomogeneities.

Hellinger Information: For f(x) = 2x− 2− 4
√
x (see also Dichotomy Class in Section 2.4.2)

we obtain

If (u1, u2) =

∫
R

∫
R

(√
p(u1, u2)(t1, t2)−

√
p(u1)(t1)p(u2)(t2)

)2

dt1 dt2 ,

with Hellinger entropy

Hf (u) = 2

(
1−

∫
R

(p(u)(t))
3
2 dt

)
.

Both are bounded from above by 2.

For measuring the distance between discrete images U1 and U2 it is common to map the images
via kernel estimation to continuous estimates of their intensity value densities pσ(ui,N ), where
pσ(ui,N ) is as defined in (3). The difference between images is then measured via the distance
between the associated estimated probability densities.

Example 17. For Ui, i = 1, . . . , 3 as in Figure 2, let ui,N be the corresponding piecewise constant
functions. Note that U1 and U2 are somehow related. In other words, they highly dependent on
each other, so we can expect a low information value. Comparing the images point wise with least
squares, shows a higher similarity value for U2 and U3 than for U1 and U2.

For the ease of presentation we work with histograms, instead of Parzen windowing or any
other kernel density estimation. Recall that the estimated probability function pσ(ui,N ) is equal
to the normalized histogram of Ui. The histograms (connected to the marginal density densities)
are given by

1 2 3 4 5 6 7 8 9 10
H(U1) 6 7 6 9 3 4 1 0 0 0
H(U2) 1 0 4 0 3 0 9 6 7 6
H(U3) 3 2 5 3 2 4 0 5 6 6
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JH(U1, U2)

1

2

3

4

5

6

7

8

9

10
H(U1)

1

6

6

2

7

7

3

6

6

4

9

9

5

3

3

6

4

4

7

1

1

8

0

9

0

10

0

H
(U

2
)

1

0

4

0

3

0

9

6

7

6

Table 2: Joint histogram of U1 and U2. Note that the entries are put in an order, due to the
dependence between U1 and U2. This will be reflected in a low f -information value.

JH(U2, U3)
1
2
3
4
5
6
7
8
9
10

H(U2)

1

1

1

2

0

3

2
1

1
4

4

0

5

1
1

1

3

6

0

7
1

2

1

1
2
2
9

8
1
2

1

1
1
6

9
1

2

1
1

2

7

10

2
2
2
6

H
(U

3
)

3
2
5
3
2
4
0
5
6
6

JH(U3, U1)
1
2
3
4
5
6
7
8
9
10

H(U3)

1

1
1
1

3

2

2

2

3

2

2
1

5

4

1
2

3

5

1

1

2

6

1
1
1
1

4

7

0

8
2
2

1

5

9
2

1
2

1

6

10
2

1
2

1

6

H
(U

1
)

6
7
6
9
3
4
1
0
0
0

Table 3: Joint histograms of U2, U3 and U3, U1. The entries are disperse, this will be reflected in
a lower f -information as in the case for U1, U2.

In order to calculate the information measures, we calculate the joint histograms of U1, U2, U3,
that is JH(U1, U2) : (s, t)→ number of pixels such that U ij1 = s and U ij2 = t (see Tables 2, 3).

The entries in the joint histogram of U1, U2 are located along a diagonal, whereas the entries
of the other two joint histograms are spread all over. Hence we can observe the dependence of
pσ(u1,N ), pσ(u2,N ) already by looking at the joint histogram. Next we calculate the Hellinger and
the Mutual information.

For the f -entropies we obtain

U1 U2 U3

Mutual entropy 1.91 1.91 2.13
Hellinger entropy 1.17 1.17 1.30

and for the f -information measures:

(U1, U2) (U2, U3) (U3, U1)
Mutual information 1.91 0.74 0.74
Hellinger information 1.17 0.57 0.57
Sum of least squares 31.44 14.56 21.56
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Indeed, in both cases (Hellinger and Mutual information), U1, U2 (high f -information value)
can be considered as more similar than U1 and U3. Whereas the least squares value between U1, U2

is the highest, meaning that they differ at most.

We can observe in Example 17 that the values of f -information differ a lot by different choices
of the function f . Moreover, it’s not easy to interpret the values, hence one is interested in
calculating normalized values.

Normalized Mutual Information Studholme [34] proposed a normalized measure of mutual
information. Normalized f -information is defined by

NIf (u1, u2) :=
Hf (u1) +Hf (u2)

If (u1, u2)
.

If u1 = u2, then the normalized f -information is minimal with value 2.

Entropy Correlation Coefficient Collignon and Maes [25] suggested the use of the entropy
correlation coefficient, another form of normalized f -information:

HfCC(u1, u2) =
2 If (u1, u2)

Hf (u1) +Hf (u2)
= 2− 2

NIf (u1, u2)
.

The entropy correlation coefficient is one if u1 = u2 and zero if u1 and u2 are completely
independent.

Exclusive f-Information is defined by

EIf (u1, u2) := Hf (u1) +Hf (u2)− 2If (u1, u2)

Note that the exclusive f -information is minimal for u1 = u2.

Mutual Information (u1, u2) (u2, u3) (u3, u1)
Normalized* 2.00 5.32 5.32
Entropy Correlation Coefficient 1.00 0.38 0.38
Exclusive* 0.00 2.46 2.46
Hellinger Information (u1, u2) (u2, u3) (u3, u1)
Normalized* 2.00 4.36 4.36
Entropy Correlation Coefficient 1.00 0.46 0.46
Exclusive * 0.00 1.34 1.34

Table 4: Comparison of measures composed by f -information and f -entropies. * Normalized
and exclusive informations are minimal, if the images are equal, whereas the entropy correlation
coefficient is maximal.

2.5 Distance Measures Including Statistical Prior Information

Most multi modal measures used in literature do not consider the underlying image context or
other statistical prior information on the image modalities. Recently several groups developed
similarity measures that incooperate such information:

• Leventon & Grimson [23] proposed to learn prior information from training data (reg-
istered multi modal images) by estimating the joint intensity distributions of the training
images. Based on this paper Chung et al. [4] proposed a to use the Kullback-Leiber distance
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to compare the learned joint intensity distribution, with the joint intensity distribution of
the images, in order to compare multimodal images. This idea was extended by Guet-
ter et al. [14], who combines mutual information with the incorporation of learned prior
knowledge with a Kullback-Leibler term.

As a follow up of their ideas we suggest the following type of generalized similarity measures:
Let plσ be the learned joint intensity density (learned from the training data set) and α ∈
[0, 1]. For f ∈ F0 define

Sα(u1, u2) := αDf (plσ, pσ(u1, u2)) + (1− α)Df (pσ(u1, u2), pσ(u1)pσ(u2))︸ ︷︷ ︸
If (u1,u2)

.

• Instead of using a universal, but a-priori fixed similarity measure one can learn a similarity
measure in a discriminative manner. The methodology proposed by Lee et al. [22] uses
a learning algorithm, that constructs a similarity measure based on a set of pre-registered
images.

3 Mathematical Models for Variational Imaging

In the following we proceed with an abstract setting. We are given a physical model F , which in
mathematical terms is an operator between spaces U and V . For given data v ∈ V we aim for
solving the operator equation

F (Φ) = v .

In general the solution is not unique and we aim for finding the solution with minimal energy,
that is we aim for a minimizer of the constraint optimization problem

R(Φ)→ min subject to F (Φ) = v .

In practice a complication of this problem is that only approximate (noisy) data vδ ∈ V of v
is available. To take into account uncertainty of the data it is then intuitive to consider the
following constrained optimization problem instead

R(Φ)→ min subject to
∥∥F (Φ)− vδ

∥∥2 ≤ δ , (5)

where δ is an upper bound for the approximation error
∥∥v − vδ∥∥. It is known that solving (5) is

equivalent to minimizing the Tikhonov functional,

Φ→ 1

2

∥∥F (Φ)− vδ
∥∥2

+ αR(Φ), (6)

where α > 0 is chosen according to Morozov’s discrepancy principle [19].
For the formulation of the constrained optimization problem, Tikhonov method, respectively,

it is essential that F (Φ) and v, vδ, respectively, represent data of the same modality. If F (Φ)
and the data, which we denote now by w, are of different kind, then it is intuitive to use a multi
modal similarity measure Sr, instead of the least squares distance, which allows for comparison
of F (Φ) and w. Consequently, we consider the multi modal variational method, which consists
in minimization of

Φ→ Tα,wδ(Φ) := Sr(F (Φ), wδ) + αR(Φ), α > 0 .

In the limiting case, i.e., for δ → 0, one aims for recovering an RSr-minimizing solution Φ† if

R(Φ†) = min {R(Φ) : Φ ∈ A} where A = {Φ : Φ = argmin {Sr (F (·), w)}} .
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To take into account priors in Tikhonov regularization the standard way is again by a least
squares approach. In this case, for regularization the least squares functional

Φ→ R1(Φ) =
1

2
‖Φ− Φ0‖2

is added to 1
2

∥∥F (Φ)− vδ
∥∥2

(see e.g. [8]). In analogy, we consider the regularization functional
(6) and incorporate priors by adding generalization of the functional R1(Φ). Taking into account
prior information Ψ0, that might come, for instance, from another modality, this leads to the
following class of generalized Tikhonov functionals

T w
δ,Ψ0

α,β (Φ) := Sr(F (Φ), wδ) + αR(Φ) + βSp(Φ,Ψ0) .

Here Sp is an appropriate multi modal similarity measure. In the limiting case, i.e., for δ → 0,
one aims for recovering an γ −RSrSp-minimizing solution Φ† if

R(Φ†) + γSp(Φ†,Ψ0) = min
{
R(Φ) + γSp(Φ†,Ψ0) : Φ ∈ A

}
where

A = {Φ : Φ = argmin {Sr (F (·), w)}} .

The γ-parameter balances between the amount of prior information and regularization and satis-
fies γ = limα,β→0

β
α . For theoretical results on existence of minimizing elements of the functionals

and convergence we refer to [11, 29].

4 Registration

In this section we review variational methods for image registration. This problem consists in
determining a spatial transformation (vector field) Φ that aligns pixels of two images uR and uT
in an optimal way. We use the terminology reference image for uR and template image for
uT , which both are assumed to be compactly supported functions in Ω. That is, we consider the
problem of determining the optimal transformation, which minimizes the functional

u→ S(uT ◦ (id+ Φ), uR) . (7)

To establish the context to the inverse problems setting we use the setting F (Φ) = uT (id + Φ)

(x, y)

(x, y) + Φ(x, y)

(x, y)

Figure 6: left: images uR, uT , right: deformation field Φ.

and wδ = uR. In general the problem of minimizing (7) is ill-posed. Tikhonov type variational
regularization for registration then consists in minimization of the functional

Φ→ Sr (uT ◦ (id+ Φ), uR) + αR(Φ) . (8)
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(we do not consider constained registration here but concentrate on Tikhonov regularization)
Image registration (also of voxel (3D) data) is widely used in medical imaging, for instance

for monitoring and evaluating tumor growth, disease development, and therapy evaluation.
Variational methods for registration differ by the choice of the regularization functional R and

the similarity measure Sr. There exists a variety of similarity measures that are used in practice.
For some surveys we refer to [31, 17, 27].

The regularization functional R typically involves differential operators. In particular, for
nonrigid registration energy functionals from elasticity theory and fluid dynamics are used for
regularization.

The optimality condition for a minimizer of (8) reads as follows:

αDΦ (R(Φ),Ψ) +DΦ (Sr (uT ◦ (id+ Φ), uR) ,Ψ) = 0 for all Ψ ∈ U , (9)

where DΦ(T ,Ψ) denotes the directional derivative of a functional T in direction Ψ. The left hand
side of the equation is the steepest descent functional of the energy functional (8). In the following
we highlight some steepest descent functionals according to variational registration methods.

Example 18 (Elastic Registration). Set α = 1, Sr(v1, v2) = 1
2 ‖v1 − v2‖2L2 . We consider an

elastic regularization functional of the form

R(Φ) =

∫
Ω

2∑
i=1

2∑
j=1

(
λ

2

∂

∂xi
Φi

∂

∂xj
Φj +

µ

4

(
∂

∂xj
Φi +

∂

∂xi
Φj
)2
)
,

where λ, µ ≥ 0 are Lamé parameters and Φ = (Φ1,Φ2). λ is adjusted to control the rate of growth
or shrinkage of local regions within the deforming template and µ is adjusted to control shearing
between adjacent regions of the template [3]. In this case the optimality condition for minimizing
αR(Φ) + Sr(uT ◦ (id+ Φ)), given by (9), is satisfied if Φ solves the following PDE

µ∆Φ(x) + (µ+ λ)∇ (∇ · Φ(x)) = − 1

α
(uT (x+ Φ(x))− uR(x))∇uT (x+ Φ(x))︸ ︷︷ ︸

∂
∂ΦSr

.

Here ∆Φ = (∆Φ1,∆Φ2) and DΦ (Sr (uT ◦ (id+ Φ), uR) ,Ψ) =
∫

Ω
∂
∂ΦS

r · Ψ. This partial dif-
ferential equation is known as linear elastic equation and is derived assuming small angles of
rotation and small linear deformations. When large displacements are inherent it is not applica-
ble [2, 13, 24, 18, 28, 39].

Example 19 (Elastic Registration with f -Information:). Assume that kσ ∈ C1(R , R ) is some
kernel density function. Moreover, let Kσ(s, t) = kσ(s)kσ(t). We pose the similarity measure as
the f -information between the template and the reference image:

Sr (uT ◦ (id+ Φ), uR) = Hf (uR)− If (uT ◦ (id+ Φ), uR) ,

and set α and R as in the previous example. In order to write the derivative of If in a compact

way, we use the abbreviations Φ̃ := id + Φ. The derivative of pσ(uT ◦ Φ̃) with respect to Φ̃, in
direction Ψ is given by

DΦ̃

(
pσ(uT ◦ Φ̃),Ψ

)
(t) =

∫
Ω

k′σ

(
t− uT (Φ̃(x))

)
∇uT (Φ̃(x)) ·Ψ(x) dx

and

DΦ̃

(
p̂σ(uT ◦ Φ̃, uR),Ψ

)
(s, t) =

∫
Ω

k′σ

(
s− uT (Φ̃(x))

)
kσ(t− uR(x))(∇uT (Φ̃(x)) ·Ψ(x)) dx .
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We use the following abbreviations:

g1(s, t) :=
pσ(uT ◦ Φ̃)(s)pσ(uR)(t)

pσ(uT ◦ Φ̃, uR)(s, t)
, g2(s, t) :=

pσ(uR)(t)(
p̂σ(uT ◦ Φ̃, uR)(s, t)

)2 ,

and

g3(s, t) :=DΦ̃(pσ(uT ◦ Φ̃),Ψ)(s)p̂σ(uT ◦ Φ̃, uR)(s, t)+

pσ(uT ◦ Φ̃)(s)DΦ̃

(
p̂σ(uT ◦ Φ̃, uR),Ψ

)
(s, t) .

With this we can calculate the derivative of the f -information to be

DΦ̃

(
If (uT ◦ Φ̃, uR),Ψ

)
=

∫
R

∫
R
DΦ̃

(
pσ(uT ◦ Φ̃),Ψ

)
(s)pσ(uR)(t)f (g1(s, t))

+ pσ(uT ◦ Φ̃)(s)pσ(uR)(t)f ′ (g1(s, t)) g2(s, t)g3(s, t) dt ds .

For mutual information this simplifies to

DΦ̃

(
MI(uT ◦ Φ̃, uR),Ψ

)
=

∫
R

∫
R

(
DΦ̃

(
p̂σ(uT ◦ Φ̃, uR),Ψ

)
(s, t) ln

(
1

g1(s, t)

)

+
DΦ̃

(
p̂σ(uT ◦ Φ̃, uR),Ψ

)
(s, t)

pσ(uT ◦ Φ̃)(s)pσ(uR)(t)

 ds dt .

A detailed exposition on elastic registration with mutual information can be found in [9, 16, 11].

In this section we have presented a general framework on multi modal image registration.
Below we give a short overview on relevant literature on this topic.

Kim and Fessler [21] describe an intensity-based image registration technique that uses a ro-
bust correlation coefficient as a similarity measure for images. It is less sensitive to outliers, that
are present in one image, but not in the other. Kaneko [20] proposed the selective correlation
coefficient, as an extension of the correlation coefficient. Van Elsen et al. investigated similarity
measures for MR and CT images. She proposed to calculate the correlation coefficient of geo-
metrical features [36]. Alternatively to the correlation coefficient, one could calculate Spearman’s
rank correlation coefficient (also known as Spearman’s ρ), which is a non parametric measure of
correlation [10], but not very popular in multi modal imaging. Roche et al. [33, 32] tested the
correlation ratio to align MR, CT and PET images. Woods et al [41] developed an algorithm
based on this measure for automated aligning and re-slicing PET images. Independently, several
groups realized that the problem of registering two different images modalities, can be cast in
an information theoretic framework. Collignon et al. [25] and Studholme et al. [34] both sug-
gested using the joint entropy of the combined images as a registration potential. For MR-CT
registrations, the learned similarity measure by Lee et al. outperforms all standard measures.
Experimental results for learning similarity measures for multi modal images can be found in [22].

5 Recommended Reading

For recent results on divergences and information measures, we refer to Computational Infor-
mation Geometry. Website: http://blog.informationgeometry.org/.

Comparison and evaluation of different similarity measures for CT,MR,PET brain images can
be found in [40].

It’s worth to mention two databases:
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• The Retrospective Image Registration Evaluation Project is designed to compare
different multi modal registration techniques. It involves the use of a database of image
volumes, commonly known as the ”Vanderbilt Database”, on which the registrations are to
be performed. Moreover it provides a training data set for multi modal image registration.
Link: http://www.insight-journal.org/RIRE/index.php

• Validation of Medical Image Registration. This is a data base with references (inter-
national publications) on medical image registration including a validation study of different
similarity measures. Link: http://idm.univ-rennes1.fr/VMIP/model/index.html

A number of image registration software tools have been developed in the last decade. The
following support multi modal image comparison:

ITK is an open-source, cross-platform system that provides developers with an extensive suite
of software tools for image analysis. It supports the following similarity measures: mean
squares metric, normalized cross correlation metric, mean reciprocal square differences, mu-
tual information (different implementations [38, 26]), Kullback-Leibler distance, normalized
mutual information, correlation coefficient, kappa statistics (for binary images), gradient
difference metric. Website: http://www.itk.org/.

FLIRT stands for fast and flexible image registration toolbox, and has been developed by the
SAFIR-research group in Lübeck. It includes sum of squared differences, mutual informa-
tion, and normalized gradient fields. Website: http://www.math.uni-luebeck.de/safir/
software.shtml.

AIR stands for automated image registration. It supports standard deviation of ratio images,
least squares and least squares with global intensity rescaling. Website: http://bishopw.
loni.ucla.edu/AIR5/.

RView This software integrates a number of 3D/4D data display and fusion routines together
with 3D rigid volume registration using normalized Mutual information. It also contains
many interactive volume segmentation and painting functions for structural data analysis.
Website: http://www.colin-studholme.net/software/software.html.
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