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CHARACTERIZATION OF MINIMIZERS OF CONVEX

REGULARIZATION FUNCTIONALS

CHRISTIANE PÖSCHL AND OTMAR SCHERZER

Abstract. We study variational methods of bounded variation type for the
data analysis. Y. Meyer characterized minimizers of the Rudin-Osher-Fatemi
functional in dependence of the G-norm of the data. These results and the
follow up work on this topic are generalized to functionals defined on spaces of
functions with derivatives of finite bounded variation. In order to derive a char-
acterization of minimizers of convex regularization functionals we use the con-
cept of generalized directional derivatives and duality. Finally we present some
examples where the minimizers of convex regularization functionals are calcu-
lated analytically, repeating some recent results from the literature and adding
some novel results with penalization of higher order derivatives of bounded
variation.

1. Introduction

This paper is concerned with variational methods, consisting in minimization of
the functional

F(u) := S(u) + α
∣
∣Dku

∣
∣ , k = 1, 2, . . . , α > 0

for the analysis of data uδ. Here

(1)
∣
∣Dku

∣
∣ denotes the total variation of the (k − 1)-th derivative of u and

(2) S(u) is a similarity measure. Typical examples are S(u) = 1
p

∫

Ω

∣
∣u− uδ

∣
∣
p
.

Y. Meyer [Mey01] characterized minimizers of the ROF-functional (introduced in
[RudOshFat92]), where S(u) = 1

2

∫

Ω(u − uδ)2 and k = 1, in dependence of the G-

norm of uδ. This research has significant impact on the research in image analysis.
In this paper we use an alternative characterization based on Fenchel’s duality

theorem and generalized directional derivatives to generalize the results of Y. Meyer
and the follow up work [OshSch04, SchYinOsh05]. Moreover, the results can also
be applied to characterize minimizers of regularization functionals penalizing for
derivatives with finite total variation. This generalizes the ideas in [ObeOshSch05].
Non-differentiable regularization functionals for higher order derivatives have at-
tracted several research (see for instance [ChaLio95, Sch98, ChaMarMul00, SteDidNeu05,
SteDidNeu, Ste06, HinSch06]). The abstract results in this paper also allow to
characterize minimizers of metrical regularization functionals, such as L1-BV (Ω)
regularization (see for instance Chan & Esedoglu [ChaEse05], Nikolova [Nik03a,
Nik03b]) and showing a structure in regularization methods of this type.

Key words and phrases. Fenchel duality, TV, bounded Variation, bounded Hessian, G-norm.
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2 CHRISTIANE PÖSCHL AND OTMAR SCHERZER

Moreover, exploiting the Fenchel duality concept we exemplarily derive explicit
solutions for minimizers of the ROF-functional for denoising one-dimensional data
(repeating the results of Strong & Chan [StrCha96] and Y. Meyer [Mey01]), the L1-
BV (Ω) regularization (repeating the results of Chan & Esedoglu [ChaEse05]), and
also for novel metrical regularization techniques as well as regularization techniques
with higher order penalization.

In Section 2 and the Appendix A we recall some basic facts on G-norms and
bounded variation regularization. In Section 3 we recall the definition of the Fenchel
dual of a functional and quote some important theorems from convex analysis. With
this we can give a characterization of minimizers of convex regularization functionals
in 4.

Finally in Section 5 we present some analytical examples of minimizers of regu-
larization functionals.

Prerequisites for this paper: All along this paper we assume that Ω is a
bounded, open, connected domain with Lipschitz boundary (bocL) or that Ω = R

n.
~n denotes the normal vector to the boundary of Ω. We denote by |·| the Euclidean
norm. If 1 < p <∞, we denote by p∗ the number p/(p− 1) so that 1/p+ 1/p∗ = 1.
For p = 1 we set p∗ = ∞.

2. G-Norm

Y. Meyer [Mey01] characterized minimizers of the ROF-functional

F2,1(u) :=
1

2

∫

Rn

(u − uδ)2 + α |Du| (α > 0)

using the dual norm of W 1,1(Rn), which he called the G-norm. Aubert & Aujol
[AubAuj05] derived a characterization of minimizers of the ROF-functional de-
fined on Ω ⊆ R

2 being bocL. Chan & Shen [ChaShe05] used a characterization
of dual functions which applies both for bounded and unbounded domains. In
[ObeOshSch05] we derived a characterization of minimizers of ROF-like functionals
with penalization by the total variation of second order derivatives. In [OshSch04]
we characterized minimizers of regularization functionals with anisotropic total vari-
ation regularization penalization term.

Here we aim for a unified analysis. We rely on fundamental results in Adams
[Ada75], which characterize the duals of W k,1(Ω) for every k ≥ 1 and Ω in any
space dimension. Due to some structural properties of regularization functionals
the results in Adams [Ada75] have to be slightly adapted.

Theorem 2.1. Let ∅ 6= N be a closed subspace of the Sobolev space Wm,p(Ω),
1 ≤ p ≤ ∞, m = 1, 2, . . .. With N we associate ‖·‖N , which is equivalent to
the Wm,p(Ω)-norm on N . Moreover, let N := {γ : 0 ≤ |γ| ≤ m} be a subset of
multi-indices with |N | = N .

For 1 ≤ pγ <∞, γ ∈ N let LN :=
∏

γ∈N Lpγ (Ω) with dual L∗
N :=

∏

γ∈N Lp∗
γ (Ω).

We define P : N → LN by
P (u) = (Dγu)γ∈N

and assume that ‖P (u)‖ = ‖u‖N . That is, P is an isometric isomorphism of N
onto a subspace of LN .

Then for every L ∈ N∗, there exists ~v = (vγ)γ∈N ∈ L∗
N such that

(2.1) Lu =
∑

γ∈N
〈Dγu, vγ〉 , u ∈ N .
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Moreover,

(2.2) ‖L‖N∗ = min
{

‖~v‖L∗
N

: ~v satisfies (2.1)
}

.

Proof. N associated with ‖u‖N is a Banach space (this follows from the fact that
a closed subspace is again a Banach space), and therefore has a dual N∗. P is an
isometric isomorphism of N onto a subspace W ⊆ LN . Since N is complete, W is
a closed subspace of LN . A linear functional L∗ is defined as follows:

L∗(Pu) = L(u) , u ∈ N.

Since P is an isometric isomorphism, L∗ ∈W ∗ and

‖L∗‖W∗ = ‖L‖N∗ .

From the Hahn-Banach Theorem it follows that there exists a norm preserving
extension L̃ of L∗ on LN and therefore, from [Ada75, Lemma 3.7] it follows that

L̃(u) =
∑

γ∈N
〈uγ , vγ〉 .

Note that the dual pairing can have different meaning for different γ.
Thus for u ∈ N

L(u) = L∗(Pu) = L̃(Pu) =
∑

γ∈N
〈Dγu, vγ〉 .

Moreover,

‖L∗‖W∗ =
∥
∥
∥L̃
∥
∥
∥

(LN )∗
= ‖~v‖L∗

N

.

Since this equation holds for all functions ~v satisfying (2.1), (2.2) follows. �

From this Theorem we can derive the characterization of the duals and dual
norms of

N := W 1,1
⋄ (Ω) =

{

w ∈W 1,1(Ω) :

∫

Ω

w = 0

}

if Ω is bocL and for W 1,1(Ω) if Ω = R
n.

Definition 2.2. • Assume that Ω is bocL and G⋄ = W 1,1
⋄ (Ω)∗ where W 1,1

⋄ (Ω)
is associated with the norm

∫

Ω
|∇u|. According to Theorem 2.1 every L ∈

W 1,1
⋄ (Ω)∗ can be represented as

Lu =

∫

Ω

∇u · ~v with ~v ∈ L∞(Ω; Rn) .

We call

‖L‖G⋄
:= inf

{

‖|~v|‖L∞(Ω) : Lu =

∫

Ω

∇u · ~v
}

the G⋄-norm of L.
• Assume that Ω is bocL or Ω = R

n and G0 = W 1,1
0 (Ω)∗, where as norm on

W 1,1
0 (Ω) the total variation is used. Every L ∈ W 1,1

0 (Ω)∗ can be identified
with a distribution of order 1 in

G0 := {v : v = (∇ · ~v) : ~v ∈ L∞(Ω; Rn)} .

We call

‖v‖G0
:= inf

{

‖|~v|‖L∞(Ω) : v = (∇ · ~v)
}
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the G0-norm.

Remark 2.3. Y. Meyer considered the G-norm for generalized functions defined
on R

n (see [Mey01, p. 30]). Using that W 1,1
0 (Rn) = W 1,1(Rn), it follows from

Theorem 3.2 that for every v ∈ G0 there exists ~v ∈ L∞(Ω; Rn) such that

‖v‖G0
:= ‖|~v|‖L∞(Rn) and v = (∇ · ~v)

In [OshSch04] we generalized the definition of the G-norm on R
n by defining

‖v‖Gs
0

:= inf
{

‖|~v|s‖L∞(Rn) : v = (∇ · ~v)
}

(1 ≤ s ≤ ∞) .

Note that in the above definition instead of the Euclidean norm, the s-norm of the
vector valued function ~v is used. This definition can be used to characterize min-
imizers of regularization functionals with anisotropic total variation regularization
penalization term. Note that for every w ∈W 1,1

0 (Rn) and all v ∈ Gs

∫

Rn

vw =

∫

Rn

(∇ · ~v)w = −
∫

Rn

~v∇w ≤ ‖|~v|s‖L∞(Rn)

∫

Rn

|∇w|s∗
,

where 1/s∗ + 1/s = 1 with 1 ≤ s∗, s ≤ ∞.
If Ω ⊆ R

2 is bocL, Aubert & Aujol [AubAuj05] gave the following definition of
the G-norm: let

GAA :=
{
v = (∇ · ~v) ∈ L2(Ω) : ~v ∈ L∞(Ω) , ~v · ~n = 0 on ∂Ω

}

and

‖v‖GAA
:= inf

{

‖|~v|‖L∞(Ω) : v = (∇ · ~v)
}

.

In the following we extend the definition of the G-norm for higher order deriva-
tives. We use

W k,1
⋄ (Ω) =

{

w ∈W k,1(Ω) :

∫

Ω

x
~lw = 0,

∣
∣
∣~l
∣
∣
∣ = 0, 1, . . . , k − 1

}

and W k,1
0 (Ω). W k,1

⋄ (Ω) is the subspace of functions in W k,1(Ω) with k orders of
vanishing moments.

Definition 2.4. Let k = 1, 2, . . ..

• Assume that Ω is bocL and Gk
⋄ = W k,1

⋄ (Ω)∗ where W k,1
⋄ (Ω) is associated

with the norm
∫

Ω

∣
∣∇ku

∣
∣.

According to Theorem 2.1 every L ∈W k,1
⋄ (Ω)∗ can be represented as

Lu =

∫

Ω

∇ku · ~v with ~v ∈ L∞(Ω; Rnk

) .

We call

‖L‖Gk
⋄

:= inf

{

‖|~v|‖L∞(Ω) : Lu =

∫

Ω

∇ku · ~v
}

the Gk
⋄-norm of L.

• Assume that Ω is bocL or Ω = R
n and G0 = W k,1

0 (Ω)∗, where as norm

on W k,1
0 (Ω) the total variation of the k-th derivative is taken. Every L ∈

W k,1
0 (Ω)∗ can be identified with a distribution of order k in

Gk
0 :=

{

v : v =
(
∇k · ~v

)
: ~v ∈ L∞(Ω; Rnk

)
}

.
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We call

‖v‖Gk
0

:= inf
{

‖|~v|‖L∞(Ω) : v =
(
∇k · ~v

)}

the Gk
0-norm.

Remark 2.5. In the definition above v =
(
∇k · ~v

)
has to be considered a distribu-

tional derivative, that is v is a linear operator on C∞
0 (Ω; Rnk

) satisfying

v[~φ] = (−1)k

∫

Ω

v∇k~φ for all ~φ ∈ C∞
0 (Ω; Rnk

) .

Theorem 2.1 gives a characterization of dualnorms. We used this characterization
to define G-norms on bounded and unbounded domains. If we only write ‖·‖Gk we
mean ‖·‖Gk

⋄
for Ω ⊂ R

n bocL and ‖·‖Gk
0

for Ω = R
n.

3. Fenchel Duality

In this Section we use Fenchel’s duality theorem to characterize minimizers of
convex regularization functionals. Below we review basic concepts from functional
analysis (see for instance Ekeland & Temam [EkeTem76] and Aubin [Aub79]).

Definition 3.1. Assume that X is a locally convex space (for instance a Banach
space). The Fenchel transform of a functional

S : X → R ∪ {+∞} , u 7→ S(u)

is defined by

S∗ : X∗ → R ∪ {+∞} , u∗ 7→ S∗(u∗) := sup
u∈X

(〈u∗, u〉 − S(u))

where 〈·, ·〉 denotes the bilinear pairing with respect to X∗ and X.

For a definition of the Fenchel transform in a finite dimensional space setting
we refer to Rockafellar [Roc70] and for the infinite dimensional setting we refer to
Ekeland & Temam [EkeTem76] and Aubin [Aub79].

Theorem 3.2. Let S,R be convex and lower semi continuous functionals from a
locally convex space X into R ∪ {+∞}.

If ũ is a solution of

(3.1) inf
u∈X

{S(u) + R(u)} ,

ũ∗ is a solution of

(3.2) sup
u∗∈X∗

{−S∗(u∗) −R∗(−u∗)}

and

(3.3) inf
u∈X

{S(u) + R(u)} = sup
u∗∈X∗

{−S∗(u∗) −R∗(−u∗)} < +∞

then ũ ∈ X and ũ∗ ∈ X∗ satisfy the extremality relation

(3.4) S(ũ) + R(ũ) + S∗(ũ∗) + R∗(−ũ∗) = 0

which is equivalent to

(3.5) ũ∗ ∈ ∂S(ũ) and − ũ∗ ∈ ∂R(ũ)

or
ũ ∈ ∂S∗(ũ∗) and − ũ ∈ ∂R∗(ũ∗).



6 CHRISTIANE PÖSCHL AND OTMAR SCHERZER

Conversely, if u ∈ X and u∗ ∈ X∗ satisfy (3.4), then u, u∗ satisfy (3.1) and (3.2),
respectively.

Proof. Follows from [EkeTem76, Proposition 2.4, Proposition 4.1, Remark 4.2 in
Chapter 3] �

Below we use the following basic results for convex analysis:

Theorem 3.3. (see for instance [Aub91]).

(1) Let S(u) := T (u − u0) + 〈u∗0, u〉 + a, then

S∗(u∗) := T ∗(u∗ − u∗0) + 〈u∗, u0〉 − (a+ 〈u∗0, u0〉)

(2) Let S(u) := T (λu), then S∗(u∗) := T ∗
(

u∗

λ

)

.

Example 3.4. Let 1 ≤ p <∞ and denote by p∗ the dual of p; that is the p∗ satisfies
1/p∗ + 1/p = 1 (for p = 1, p∗ = ∞). We assume that Ω is bocL or Ω = R

n.
We use Theorem 3.3 to calculate the Fenchel transform of

S : Lp(Ω) → R ∪ {+∞} , u→ 1

p

∫

Ω

∣
∣u− uδ

∣
∣
p

=: T (u− uδ) , p ≥ 1 .

For p > 1 and u∗ ∈ Lp∗(Ω)

T ∗(u∗) := sup

{∫

Ω

uu∗ − 1

p

∫

Ω

|u|p : u ∈ Lp(Ω)

}

The supremum is attained for uα ∈ Lp(Ω) satisfying

u∗α = |uα|p−1
sgn(uα) ∈ Lp∗(Ω) .

Therefore, the Fenchel transform of T is given by

T ∗(u∗) =
1

p∗

∫

Ω

|u∗|p∗

and consequently

S∗(u∗) = T ∗(u∗) +
〈
u∗, uδ

〉

Lp∗ ,Lp =
1

p∗

∫

Ω

|u∗|p∗ +

∫

Ω

u∗uδ .

For p = 1,
S : L1(Ω) → R , u→

∣
∣u− uδ

∣
∣
L1(Ω)

we have

S∗(u∗) =

{

+∞ if meas {x ∈ Ω : u∗ /∈ [−1, 1]} > 0,
∫

Ω u
δu∗ else .

Theorem 3.5. Let X be a non trivial Banach space and

X̃ = M ⊕M⊥ ⊆ X

be the direct sum (for a definition of the direct sum see for instance Zeidler [Zei93,
p 766]) of a normed space M 6= ∅ with norm ‖·‖M and its complement.

The extension of ‖·‖M on X̃ is defined by

(3.6) ‖u+ v‖M = ‖u‖M , u ∈M , v ∈M⊥ .

Moreover,

R : X → R ∪ {+∞} , x→
{

‖u‖M for u ∈ X̃
+∞ else
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with
D := {u ∈ X : R(u) 6= +∞} 6= ∅ .

For u∗ ∈ X∗ we define

‖u∗‖M∗ = sup
{v∈M :‖v‖M=1}

〈u∗, v〉 ,

where 〈·, ·〉 denotes the dual pairing with respect to X∗, X. Note that the dual
pairing is well-defined since by definition every v ∈M satisfies v ∈ X.

Then the Fenchel transform of R is given by

(3.7) R∗ : X∗ → R ∪ {+∞} , u∗ →
{

0 if ‖u∗‖M∗ ≤ 1 and M⊥ ⊆ N (u∗) ,

+∞ else.

where N denotes the nullspace of the operator v → 〈u∗, v〉.
Proof. Let u∗ ∈ X∗, then from the definitions of R and X̃ it follows that

R∗(u∗) = sup
ũ∈X̃

{〈u∗, ũ〉 − ‖ũ‖M}

= sup
{u∈M,v∈M⊥}

{〈u∗, u〉 − ‖u‖M + 〈u∗, v〉} .

Taking into account that M,M⊥ ⊆ X , it follows that

R∗(u∗) = sup
u∈M∩X

{〈u∗, u〉 − ‖u‖M} + sup
v∈M⊥

〈u∗, v〉 .

For all u ∈M we have

〈u∗, u〉 − ‖u‖M ≤ ‖u∗‖M∗ ‖u‖M − ‖u‖M ≤ ‖u‖M (‖u∗‖M∗ − 1) ,

which shows that R∗(u∗) = 0 if ‖u∗‖M∗ < 1 and +∞ else.
Moreover,

sup
v∈M⊥

〈u∗, v〉 =

{

0 if M⊥ ⊆ N (u∗)

+∞ else

Thus in total R∗(u∗) = 0 if and only if ‖u∗‖M∗ ≤ 1 and M⊥ ⊆ N (u∗) and
R∗(u∗) = +∞ else. �

Example 3.6. Let 1 ≤ p < ∞, Ω ⊂ R
n is bocL and X = Lp(Ω). Take X̃ =

X ∩ TV k (see Definition A.4) for some k = 1, 2, . . . and

αR : X → R ∪ {+∞} , u 7→
{

α
∣
∣Dku

∣
∣ if u ∈ X̃ ,

+∞ else .

In the sequel, for the sake of simplicity of notation we set |Du| = +∞ if u ∈ X but
not in TV (Ω).

We take M⊥
k := Pk, the set of polynomials of order less than k and the mapping

ΠPk
from X̃ to Pk which maps u ∈ X̃ onto the unique polynomial p satisfying

〈

x
~l, p
〉

=
〈

x
~l, u
〉

,
∣
∣
∣~l
∣
∣
∣ = 0, 1, . . . , k − 1.

We define Mk as the range of the operator I − ΠPk
. Then,

Mk ⊕M⊥
k = X̃ .

With the linear space Mk we associate the norm ‖·‖Mk
:=
∣
∣Dk·

∣
∣, which is extended

by zero on M⊥
k .
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Let u∗ ∈ X∗, then the condition M⊥
k ⊆ N (u∗) in (3.7) is equivalent to

(3.8)

∫

Ω

u∗p = 0 , p ∈ Pk .

Moreover, ‖v∗‖M∗
k
≤ α is equivalent to

sup
{u∈Mk⊆Lp(Ω):|Dku|≤1}

∫

Ω

v∗u = sup
{u∈X̃:|Dku|≤1}

∫

Ω

v∗u ≤ α .

For n ≤ k and k < n , 1 ≤ p ≤ n
n−k it follows from the Sobolev embedding theorem

[Ada75] that X∗ = (Lp(Ω))
∗ ⊂

(

W k,1
⋄ Ω

)∗
. Therefore, with every v∗ ∈ Lp∗(Ω) there

can be associated a linear bounded functional

Lv∗ : W k,1
⋄ (Ω) → R

u 7→ 〈v∗, u〉Lp∗ ,Lp .

Now, we show that under either one of the assumptions

• n ≤ k,
• k < n , 1 ≤ p∗ ≤ n

n−k ,

respectively, we have
‖Lv∗‖Gk

⋄
= ‖v∗‖M∗

k
.

The set

Sk
⋄ (Ω) :=

{

φ ∈ Ck(Ω) :

∫

Ω

x
~lφ = 0,

∣
∣
∣~l
∣
∣
∣ = 0 . . . k − 1,

∥
∥∇kφ

∥
∥

L1(Ω)
<∞

}

is contained in W k,1
⋄ (Ω) and Mk. Moreover, it is dense in both spaces with respect

to the topologies
∥
∥∇k·

∥
∥

L1(Ω)
,
∣
∣Dk·

∣
∣ respectively. Therefore,

‖Lv∗‖Gk
⋄

= sup

{∫

v∗u : u ∈W k,1
⋄ (Ω),

∥
∥∇ku

∥
∥

L1(Ω)
≤ 1

}

= sup

{∫

v∗u : u ∈ Sk
⋄ (Ω),

∥
∥∇ku

∥
∥

L1(Ω)
≤ 1

}

= sup

{∫

v∗u : u ∈Mk,
∣
∣Dku

∣
∣ ≤ 1

}

= ‖v∗‖M∗
k
.

Thus (αR)∗(v∗) = 0 if ‖Lv∗‖Gk ≤ α and the first k − 1 moments of v∗ vanish.
Otherwise (αR)∗ = +∞. Thus (αR)∗ is again a Barrier functional. The proof of
this result follows immediately from Theorem 3.5.

Example 3.7. We consider αR as in Example 3.6 with Ω = (−1, 1) ⊂ R and
derive a characterization of ‖v∗‖M∗

k
= ‖Lv∗‖Gk

⋄
.

From Theorem 2.1 it follows that for every Lv∗ there exists ρ∗ ∈ L∞(Ω) such
that

Lv∗u =

∫

Ω

v∗u =

∫

Ω

ρ∗u(k) ,

Here we denote by u(k) the k-th derivative of a function u defined on a one-
dimensional domain Ω.
ρ∗, is the k-th primitive of v∗ times (−1)k, that is

ρ∗(x) = (−1)k

∫ x

−1

· · ·
∫ t3

−1

(∫ t2

−1

v∗(t1)dt1

)

dt2 · · · dtk for x ∈ (−1, 1).
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Since we only consider v∗ that fulfill (3.8), by partial integration we can show that
ρ∗(l)(±1) = 0 for l = 0, . . . , k − 1.

Moreover, from Theorem 2.1 it follows that

‖Lv∗‖Gk
⋄

= inf

{

‖|ρ̃∗|‖L∞(Ω) : Lv∗u =

∫

Ω

u(k)ρ̃∗
}

= ‖ρ∗‖L∞(Ω) .

Therefore, the condition ‖v∗‖M∗
k
≤ α is equivalent to

∣
∣
∣
∣

∫ x

−1

· · ·
∫ t3

−1

(∫ t2

−1

v∗(t1)dt1

)

dt2 · · · dtk
∣
∣
∣
∣
≤ α for all x ∈ (−1, 1).

Moreover we have ‖v∗‖M∗
k

= ‖(ρ∗)′‖M∗
1
.

Example 3.8. We consider αR as in Example 3.6 with p = 2, k = 1, Ω ⊂ R
2

bocL and X = L2(Ω). From Theorem 2.1 it follows that there exists ~v ∈ L∞(Ω)
such that

Lv∗u =

∫

Ω

v∗u =

∫

Ω

~v · ∇u

From integration by parts we see that ∇ · ~v = −v∗ and ~v · ~n = 0 on ∂Ω. Moreover

‖Lv∗‖G⋄
= inf

{

‖|~v|‖L∞(Ω) : Lv∗u =

∫

Ω

∇u · ~v
}

= inf
{

‖~v‖L∞(Ω) : v∗ = (∇ · ~v) ∈ L2(Ω), ~v ∈ L∞(Ω) , ~v · ~n = 0 on ∂Ω
}

= ‖v∗‖GAA
.

Example 3.9. For Ω = R
n the dual of

αR : Lp(Rn) → R ∪ {+∞} , u 7→ α
∣
∣Dku

∣
∣

is given by

(αR)∗ : Lp∗(Rn) → R ∪ {+∞} , u∗ 7→
{

0 if ‖u∗‖Gk
0
≤ α

+∞ else

4. Characterization of Minimizers with Convex Regularization

Functionals

In the following we characterize properties of minimizers of the family of func-
tionals

F(u) := S(u) + αR(u) α > 0.

For this purpose we use special differentiabilty concepts:

Definition 4.1. Let F : D ⊆ X → Y be an operator between Banach spaces X and
Y . The one-sided directional derivative of F at u in the direction h is defined by

F ′(u;h) := lim
t→0+

F (u+ th) − F (u)

t
.

F is said to admit a Gâteaux derivative F ′ at u provided that F ′(u;h) exists and
can be written as a linear operator

F ′(u)h = F ′(u, h) .

In the sequel we make the following assumptions:
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Assumption 4.2. Let ∅ 6= U be a subspace of a real Banach space X.
Assume that R : X → R ∪ {+∞} and S satisfy:

(1) R and S are convex on X and uniformly bounded from below.
(2) For u, h ∈ X, R and S attain directional derivatives at u in direction h:

R′(u;h) and S′(u;h).
(3) If u ∈ X\U , then either S(u) = +∞ or R(u) = +∞ .
(4) There exists a point u0 ∈ U such that R(u0) < +∞ and S(u0) < +∞.

Theorem 4.3. Let R and S satisfy Assumption 4.2. Moreover, we assume that F
attains a minimizer uα.

Then u = uα minimizes F if and only if u ∈ U satisfies

(4.1) −S′(u;h) ≤ αR′(u;h) h ∈ X .

Proof. If u ∈ X\U by assumption either R(u) = +∞ or S(u) = +∞, showing that
a minimizer must be an element of U .

Moreover, from the definition of uα and the convexity of R and S it follows that

0 ≤ lim
ε→0+

(S(uα + εh) − S(uα)

ε
+ α

R(uα + εh) −R(uα)

ε

)

≤ lim
ε→0+

(S(uα + εh) − S(uα)

ε

)

+ α lim
ε→0+

(R(uα + εh) −R(uα)

ε

)

= S′(uα;h) + αR′(uα;h) , h ∈ X ,

showing (4.1).
To prove the converse direction we note that from the convexity of S and R and

(4.1) it follows that

(S(u + h) − S(u)) + α (R(u + h) −R(u)) ≥ S ′(u;h) + αR′(u;h) ≥ 0 u, h ∈ X .

Thus u is a global minimizer. �

Corollary 4.4. Let Assumption 4.2 hold. Assume that F attains a minimizer uα.
Then

−S′(0;h) ≤ αR′(0;h) , h ∈ X

if and only if

uα ≡ 0 .

Corollary 4.4 follows immediately from Theorem 4.3.

Remark 4.5. The definition of uα shows that if R is a seminorm, then

S(uα) + αR(uα) ≤ S(uα + ε(±uα)) + α(1 ± ε)R(uα) , 0 < ε < 1 ,

and therefore

∓αR(uα) ≤ lim
ε→0+

1

ε
(S(uα + ε(±uα)) − S(uα)) .

Taking ε→ 0 gives

(4.2) −S′(uα;uα) ≤ αR(uα) ≤ S′(uα;−uα) .

In particular if S is Gâteaux-differentiable then

−S′(uα)uα = αR(uα) .
für p nit 1 verallge-
meinern
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Example 4.6. We consider regularization functionals of the form

R : L2(Ω) → R ∪ {+∞}, u→ α |Du|p .
The definition of uα shows that

S(uα) + α |Duα|p ≤ S(uα + ε(±uα)) + α(1 ± ε)p |Duα|p , 0 < ε < 1 ,

and therefore

S(uα) − S(uα + ε(±uα)) ≤ (±pǫ+

p
∑

k=2

(
p

k

)

(±ǫ)p−k)α |Duα|p .

Dividing by ǫ and taking ǫ→ 0+ gives

(4.3) −S′(uα;uα) ≤ αpR(uα) ≤ S′(uα;−uα) .

In particular if S is Gâteaux-differentiable then

−S′(uα)uα = αpR(uα) .

Example 4.7. For the ROF-functional we have

S : L2(Ω) → R ∪ {+∞}, u→ 1

2

∫

Ω

(u− uδ)2 ,

and

R : L2(Ω) → R ∪ {+∞}, u→ α |Du| .
Let U = L2(Ω) ∩ TV (Ω), then

S′(0;h) = −
∫

Ω

uδh and R′(0;h) = α |Dh| , h ∈ X .

Thus Corollary 4.4 implies that uα ≡ 0 if and only if
∣
∣
∣
∣

∫

Ω

uδh

∣
∣
∣
∣
≤ α |Dh| , h ∈ X ,

or in other words if
∥
∥uδ
∥
∥

G
≤ α. This result has been stated for the first time in

[Mey01]. From (4.3) it follows that

(4.4) α |Duα| = −
∫

Ω

(uα − uδ)uα .

Moreover, it follows from (4.1), the convexity of R and the triangle inequality that

(4.5) −
∫

Ω

(uα − uδ)h ≤ α(|D(uα + h)| − |D(uα)|) ≤ α |Dh| .

(4.5) implies that
∥
∥uα − uδ

∥
∥

G
≤ α, which together with (4.4) shows that

∥
∥uα − uδ

∥
∥

G
=

α for uα 6= 0 or α ≤
∥
∥uδ
∥
∥

G
. It has been shown for the first time in [Mey01] that

∥
∥uα − uδ

∥
∥

G
= α and (4.5) characterize the minimizer of the ROF-functional.

Example 4.8. In [OshSch04] the result of Y. Meyer has been generalized to ar-
bitrary Gâteaux-differentiable functionals S(u) =

∫

Ω
f(x, u(x))dx in which case we

can write

S′(u;h) = S′(u)h =

∫

Ω

∂f

∂u
(x, u(x))h(x) dx .
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Example 4.9. Let S(u) =
∫

Ω

∣
∣u− uδ

∣
∣ and R(u) = |Du|, then

S′(u;h) =

∫

{u6=uδ}
sgn(u− uδ)h+

∫

{u=uδ}
|h| .

Thus u ∈ X = BV (Ω) minimizes F if and only if

(4.6) −
∫

{u6=uδ}
sgn(u− uδ)h−

∫

{u=uδ}
|h| ≤ αR′(u;h) .

Since R is convex, R′(u;h) ≤ R(u+ h) −R(u) and thus from (4.6) it follows that

(4.7) −
∫

{u6=uδ}
sgn(u − uδ)h−

∫

{u=uδ}
|h| ≤ α (|D(u+ h)| − |Du|) .

Replacing h by εh, with ε > 0, it follows from (4.7) that

−
∫

{u6=uδ}
sgn(u− uδ)h−

∫

{u=uδ}
|h| ≤ lim sup

ε→0+
α
|D(u + εh)| − |Du|

ε

≤ αR′(u;h) .

Thus (4.6) and (4.7) are equivalent.
In particular, uα ≡ 0 if and only if

∫

{06=uδ}
sgn(uδ)h−

∫

{0=uδ}
|h| ≤ α |Dh| .

By using this estimate both with h and −h it follows that
(∣
∣
∣
∣
∣

∫

{06=uδ}
sgn(uδ)h

∣
∣
∣
∣
∣
−
∫

{0=uδ}
|h|
)+

≤ α |Dh| .

These results have been derived in [SchYinOsh05] using a different mathematical
methodology.

In [ChaEse05] minimizers of the functional

F1,1(u) =

∫

Rn

∣
∣u− uδ

∣
∣+ α |Du| =: S(u) + αR(u)

with uδ = χΩ have been calculated analytically for special parameters α > 0. Some
of the results follow from the general considerations above. From Corollary 4.4 it
follows that uα = 0 if and only if

(4.8)

(∣
∣
∣
∣

∫

Ω

h

∣
∣
∣
∣
−
∫

Rn\Ω
|h|
)+

≤ α |Dh| .

Taking h = χΩ it follows from (4.8) that

meas(Ω)

Per(Ω)
≤ α .

If uα = uδ, then S′(uα;h) = −‖h‖L1(Ω) and therefore uα = uδ if and only if

−‖h‖L1(Ω) ≤ αR′(uδ;h), which is equivalent to

−‖h‖L1(Ω) ≤ α
(∣
∣D(uδ + h)

∣
∣−
∣
∣Duδ

∣
∣
)
.

Taking h = −χΩ shows that

α ≤ meas(Ω)

Per(Ω)
.
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Example 4.10. Assume that Ω is bocL. Theorem 4.3 also applies to regularization
methods

F(u) :=
1

2

∥
∥Au− uδ

∥
∥

2

L2(Ω)
+ α |Du| ,

where A : L2
⋄(Ω) ∩ TV (Ω) → L2(Ω) is a linear, compact operator.

Note, that if A is linear, then the functional
∥
∥Au− uδ

∥
∥

2

L2(Ω)
is convex.

Therefore, from Theorem 4.3 it follows that uα = 0 if and only if
∥
∥A∗uδ

∥
∥

G⋄
≤ α.

For quadratic Tikhonov regularization

F(u) :=
∥
∥Au − uδ

∥
∥

2

L2(Ω)
+ α

∫

Ω

|∇u|2

it follows from Theorem 4.3 that uα = 0 if and only if
∫

Ω

A∗uδh ≤ α

∫

Ω

∇0∇h = 0 , h ∈ W 1,2
0 (Ω)

which shows that A∗uδ = 0. If we had that uδ = Au† then this means that u† is an
element of the nullspace of A.

Therefore, aside from trivial situtations, it is not possible to remove data errors
completely as for total variation regularization.

We consider minimization of

F(u) :=
1

2

∥
∥Au − uδ

∥
∥

2

L2(Ω)
+ α

√
∫

Ω

|∇u|2

over X = W 1,2
0 (Ω), which is associated with the H1-semi norm

√
∫

Ω
|∇u|2.

The directional derivative of R is given by

R′(0;h) =

√
∫

Ω

|∇h|2,

R′(u;h) =
1

√
∫

Ω
|∇u|2

∫

Ω

∇u∇h if 0 6= u .

Thus from (4.1) it follows that uα = 0 if and only if

∫

Ω

A∗uδh ≤ α

√
∫

Ω

|∇h|2.

Or in other words uα = 0 if
∥
∥A∗uδ

∥
∥

W−1,2(Ω)
≤ α. Here W−1,2(Ω) is the dual of

W 1,2
0 (Ω).

Example 4.11. Assume that Ω is bocL or Ω = R
n. Let 1 < p < ∞, uα ∈ Lp(Ω)

and u∗α ∈ Lp∗(Ω). We consider the functional

F(u) =
1

p

∫
∣
∣u− uδ

∣
∣
p

+ α
∣
∣Dku

∣
∣ .

From Example 3.4 and Example 3.6 it follows that

F∗(u∗) =

{
1
p∗

∫

Ω
|u∗|p∗ +

∫

Ω
u∗uδ if ‖u∗‖Gk ≤ α

+∞ else
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Let uα and u∗α be extrema of F , F∗, respectively, then from (3.3) it follows that
∫

1

p

∣
∣uα − uδ

∣
∣
p

+
1

p∗
|u∗α|p∗ + u∗αu

δ = −α
∣
∣Dkuα

∣
∣

Since uα and u∗α are related by (3.5) it follows that

(4.9) u∗α =
∣
∣uα − uδ

∣
∣
p−2

(uα − uδ).

This shows that

(4.10)

− α
∣
∣Dkuα

∣
∣

=

∫

Ω

1

p

∣
∣uα − uδ

∣
∣
p

+
1

p∗

∣
∣(uα − uδ)p−1

∣
∣
p∗

+
∣
∣uα − uδ

∣
∣
p−2

(uα − uδ)uδ

=

∫

Ω

∣
∣uα − uδ

∣
∣
p−2

(uα − uδ)

(
1

p
(uα − uδ) +

1

p∗
(uα − uδ) + uδ

)

=

∫

Ω

u∗αuα .

This is a generalization of the results in [Mey01, p. 33] and [OshSch04, Theorem
7] for arbitrary k = 1, 2, . . ..

5. Analytical Examples

We apply duality arguments to analytically calculate minimizers of the function-
als

Fp,k : Lp(Ω) → R ∪ {+∞} , u 7→ 1

p

∫

Ω

∣
∣u− uδ

∣
∣
p

︸ ︷︷ ︸

S(u)

+α
∣
∣Dku

∣
∣

︸ ︷︷ ︸

R(u)

when Ω = (−1, 1), p = 1, 2, and k = 1, 2.
By uα, u

∗
α we denote minimizers of Fp,k and F∗

p,k.
To analytically calculate uα, we show below that either uα is piecewise a poly-

nomial of order k − 1 or equals uδ.
Moreover, as we show below, ρ∗α, the k-th primitive of (−1)ku∗α, shows structural

behavior of uα: if |ρ∗α| (x1) = α and |ρ∗α| < α in a sourrounding of x1, then for
k = 1, uα is discontinuous and for k = 2, uα bends (that is, the derivative has a
discontinuity) at x = x1. Compare Figure 1.

Figure 1. Left: ρ∗α touching the α-tube. Right: uα is continuous
(case Fp,1) or bends (case Fp,2) at that x-value where ρ touches
the α−tube.
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Theorem 5.1. Let Ω = (−1, 1). Assume that uα and u∗α are minimizers of Fp,k,
F∗

p,k, p = 1, 2. Then uα and

(5.1) ρ∗α(x) := (−1)k

∫ x

−1

(

· · ·
∫ t2

−1

u∗α(t1)dt1 · · ·
)

dtk for x ∈ (−1, 1)

satisfy the following relations:

(a) If (a, b) ⊂ Ω such that |ρ∗α(x)| < α for all x ∈ (a, b), then uα is a polynomial
of order k − 1 in (a, b).

(b) If (a, b) ⊂ Ω such that |ρ∗α(x)| = α for all x ∈ (a, b), then uα = uδ in (a, b).
(c) If x1, x2, x3, x4 such that ρ∗α(x1) = ρ∗α(x4) = 0, ρ∗α(x) = α for all x ∈

[x2, x3] and |ρ∗α(x)| < α for x ∈ (x1, x4)\[x2, x3] then

uα =







∑k−1
i=0 cix

i in (x1, x2),

uδ in (x2, x3),
∑k−1

i=0 dix
i in (x3, x4).

and additionally (−1)(k−1)

hinzugefügt.(−1)(k−1)dk−1 ≤ (−1)(k−1) inf
x∈(x2,x3)

(uδ)(k−1)(x)

≤ (−1)(k−1) sup
x∈(x2,x3)

(uδ)(k−1)(x) ≤ (−1)(k−1)ck−1.

(c’) For x2 = x3 we have

uα(x) =

{∑k−1
i=0 cix

i for x ∈ (x1, x2)
∑k−1

i=0 dix
i for x ∈ (x2, x4)

and
dk−1 ≤ ck−1.

Proof. (a) We first prove the case k = 1. Assume that ψ ∈ C1
0 (Ω) with ‖ψ‖L∞(Ω) ≤

α satisfies

(5.2) ρ∗α(x) = ψ(x) for x 6∈ (a, b).

Then
∫ b

a

(ψ′ − ρ∗α
′) = (ψ − ρ∗α) |ba= 0 and ψ′(x) = ρ∗α

′(x) for x /∈ (a, b).

Since ψ has compact support and ‖ψ‖L∞(Ω) ≤ α, from the definition of |Duα| it

follows that
∫

Ω

ψuα ≤ α |Duα| .

From (4.10) it follows α |Duα| = −
∫

Ω
u∗αuα =

∫

Ω
ρ∗α

′uα and consequently
∫

Ω

(ψ′ − ρ∗α
′)uα =

∫ b

a

(ψ′ − ρ∗α
′)uα ≤ 0

for all ψ ∈ C1
0 (Ω) with ‖ψ‖L∞(Ω) ≤ α that satisfy (5.2). Since C1

0 (Ω) is dense in

C0(Ω), uα has to be constant in (a, b).
For k > 1 from (4.10) and the definition of ρ∗α in (5.1) it follows that

−
∣
∣Dkuα

∣
∣ =

∫

Ω

u∗αuα = (−1)k

∫

Ω

ρ∗α
(k)uα.
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For u ∈ TV k(Ω), u(k−1) ∈ TV (Ω) (see Appendix). Define w∗ = −ρ∗α′ and w :=

u
(k−1)
α . Then

−α |Dw| = −α
∣
∣Dkuα

∣
∣ =

∫

Ω

u∗αuα = (−1)k

∫

Ω

ρ∗α
(k)uα = (−1)

∫

Ω

ρ∗α
′u(k−1)

α =

∫

Ω

w∗w

If |ρ∗α| < α, then w = const. Since w = u
(k−1)
α , we conclude that uα is a polynomial

of order (k − 1).
(b) If |ρ∗α| = α in (a, b), then

ρ∗α
(k)(x) = u∗α(x) = 0 for x ∈ (a, b).

The Kuhn-Tucker condition u∗α ∈ ∂S(uα) reads as follows

u∗α(x) = −1 ⇔ uδ(x) ≥ uα(x),

u∗α(x) = 1 ⇔ uδ(x) ≤ uα(x),

u∗α(x) ∈ (−1, 1) ⇔ uδ(x) = uα(x).

(5.3)

for p = 1 and (4.9) for p = 2. Thus it follows in both cases that uα = uδ.
(c) Again we start with k = 1. From the Kuhn-Tucker condition −uα ∈

∂R∗
(

u∗
α

α

)

, it follows that for all v∗ ∈ Lp∗(Ω)

(5.4) R∗
(
v∗

α

)

−R∗
(
u∗α
α

)

+

∫

Ω

uα(v∗ − u∗α) ≥ 0.

Since by assumption |ρ∗α(x)| < α in (x1, x4)\[x2, x3] it follows from (a) and (b) that

uα(x) =







c0 for x ∈ (x1, x2)

uδ(x) for x ∈ (x2, x3)

d0 for x ∈ (x3, x4)

with c0, d0 ∈ R.
For x2 < x3, 0 ≤ ǫ ≤ min {x2 − x1, x4 − x3} and δ > 0 define

w∗ =







+δ for x ∈ (x2 − ǫ, x2)

−δ for x ∈ (x0, x0 + ǫ) ⊂ (x2, x3)

0 else

Since w∗ ∈ Lp∗(Ω) with M⊥
1 ⊂ N (w∗), v∗ = w∗ + u∗α ∈ Lp∗(Ω) with M⊥

1 ⊂ N (v∗).

With this choice of v∗ and the fact that R∗
(

u∗
α

α

)

= R∗
(

v∗

α

)

= 0 (see (3.7)), it

follows from (5.4) that
∫

Ω

uα(v∗ − u∗α) =

∫ x2

x2−ǫ

δuα −
∫ x0+ǫ

x0

δuα = c0δǫ− δ

∫ x0+ǫ

x0

uδ ≥ 0.

Therefore we have

sup
x∈(x2,x3)

uδ(x) ≤ c0.

Analogously as above it can be shown that

d0 ≤ inf
x∈(x2,x3)

uδ(x).

For higher k we can argue as before by choosing w∗ = (ψ∗)(k) such that

• M⊥
k ⊂ N (w∗),
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• (ψ∗)′(x) = 0 for x ∈ Ω\ ([x2 − ǫ, x2] ∪ [x0, x0 + ǫ])
• and

∫ x2

x2−ǫ

(ψ∗)′ = −
∫ x0+ǫ

x0

(ψ∗)′ = −δ.

We set v∗ = w∗ + u∗α, then it follows from (5.4) that
∫

Ω

uα(v∗ − u∗α) = (−1)(k−1)

∫

Ω

u(k−1)
α (ψ∗)′

= (−1)k−1

(∫ x2

x2−ǫ

u(k−1)
α (ψ∗)′ −

∫ x0+ǫ

x0

u(k−1)
α (ψ∗)′

)

= (−1)k−1

(

ck−1δ −
∫ x0+ǫ

x0

(uδ)(k−1)(ψ∗)′
)

≥ 0.

Therefore we obtain

(−1)(k−1)dk−1 ≤ (−1)(k−1) inf
x∈(x2,x3)

uδ(k−1)
(x)

≤ (−1)(k−1) sup
x∈(x2,x3)

uδ(k−1)
(x) ≤ (−1)(k−1)ck−1.

(c′) We have to show also in the cases x2 = x3, d0 ≤ c0. In this case we set

v∗(x) :=

{

0 for x ∈ (x1, x4),

u∗α(x) else.

Since M⊥
k ⊂ N (v∗) it follows from (5.4) that

(5.5)

∫

Ω

uα(v∗ − u∗α) = −
∫ x4

x1

uαu
∗
α ≥ 0

Since
∫ x2

x1
u∗α = −α = −

∫ x4

x2
u∗α inequality (5.5) reduces to

∫ x4

x1

uαu
∗
α = c0

∫ x2

x1

u∗α + d0

∫ x4

x2

u∗α = −c0α+ d0α ≤ 0

Hence d0 ≤ c0. For higher k we can argue as before and obtain

(−1)(k−1)dk−1 ≤ (−1)(k−1)ck−1.

�

Example 5.2 (L1-TV regularization). We use Examples 3.4 and 3.6 to derive
the dual functional F∗

1,1. We set M⊥
1 , the set of polynomials of order 0 (constant

functions on Ω) and

M1 :=

{

u ∈ L1(Ω) ∩ TV (Ω) :

∫

Ω

u = 0

}

.

The condition M⊥
1 ⊆ N (u∗) can be expressed as

u∗ ∈ L∞
⋄ (Ω) :=

{

v∗ ∈ L∞(Ω) :

∫

Ω

v∗ = 0

}

.

The dual problem consists in maximization of −F∗
1,1(u

∗) := −
∫

Ω u
δu∗ over the set

Ψα :=
{

u∗ ∈ L∞
⋄ (Ω) : ‖u∗‖L∞(Ω) ≤ 1 and ‖u∗‖M∗

1
≤ α

}

.
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From Example 3.7 we know that the condition ‖u∗‖M∗
1
≤ α is equivalent to

∣
∣
∣
∣

∫ x

−1

u∗(t)dt

∣
∣
∣
∣
≤ α for all x ∈ (−1, 1).

Thus

Ψα =

{

u∗ :

∣
∣
∣
∣

∫ x

−1

u∗
∣
∣
∣
∣
≤ α ,

∫ 1

−1

u∗ = 0 and ‖u∗‖L∞(Ω) ≤ 1

}

=
{

u∗ = −ρ∗′ : ρ∗(±1) = 0, ‖ρ∗‖L∞(Ω) ≤ α , and ‖u∗‖L∞(Ω) ≤ 1
}

.

Using, that for u∗ ∈ Ψα and ρ∗ the first primitive of u∗,

(5.6) −F∗
1,1(u

∗) = −
∫

Ω

uδu∗ = −
∫ 1/2

−1/2

u∗ = ρ∗(−1/2) − ρ∗(1/2) ≤ min {1, 2α} ,

we find that the maximizer of −F∗
1,1 is

u∗α :=

{

−min {1, 2α} in (−1/2, 1/2)

∈ [−1, 1] in (−1, 1)\(−1/2, 1/2)
∈ Ψα .

Using the Kuhn-Tucker condition u∗α ∈ ∂S(uα), we see that the minimizers uα and
u∗α of the functional and its dual are related as follows:

We distinguish between α < 1
2 , α = 1

2 , and α > 1
2 .

α > 1/2: In this case u∗α = −2uδ minimizes (5.6). Since ρ∗α does not have contact
with the α-tube, according to Theorem 5.1(a) uα is constant in (−1, 1).
From (5.3) it follows that

uα(x) ≥ uδ(x) = −1/2 for x ∈ (−1,−1/2) ∪ (1/2, 1),

uα(x) ≤ uδ(x) = 1/2 for x ∈ (−1/2, 1/2).

Thus uα = const with const ∈ [−1/2, 1/2] is a solution.

Figure 2. α > 1/2. Left: uα. Gray: uδ. Middle: u∗α = −ρ∗α′.
Right: ρ∗α/α; ρ∗α does not touch the α−tube.

α < 1/2: The optimility condition in (5.6) fixes ρ∗α for x = ±1/2. Let

A(u∗α) := {x ∈ (−1,−1/2) : u∗α(x) ∈ (−1, 1)} ,
B+(u∗α) := {x ∈ (−1,−1/2) : u∗α(x) = 1, |ρ∗α(x)| < 1} ,
B−(u∗α) := {x ∈ (−1,−1/2) : u∗α(x) = −1, |ρ∗α(x)| < 1} .

Then uδ = uα in A(u∗α), −1/2 = uδ ≤ uα in B+(u∗α) and uα ≤ uδ = −1/2
in B−(u∗α). From Theorem 5.1 we know that uα is constant in B+(u∗α) ∪
B−(u∗α) with const ≥ −1/2 in B+(u∗α) and const ≤ −1/2 in B−(u∗α).
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Thus uα = uδ in (−1/2, 1/2). For (−1/2, 1/2) and (1/2, 1) we can argue
analogously to show that uα = uδ.

Figure 3. For α < 1/2, ρ∗α is not unique. The maximization
condition only fixes ρ∗α for x = ± 1

2 .

Figure 4. α < 1/2 : Left: uα = uδ. Middle: u∗α = −(ρ∗α)′.
Right: ρ∗α/α; ρ∗α touches the α−tube at x = ±1/2, these are the
positions where uα is discontinuous.

α = 1/2: Here u∗α = −2uδ ∈ Ψα and ρ∗α(−1/2) = −α = −ρ∗α(1/2). From (5.3) it
follows that

−1/2 = uδ ≤ uα in (−1,−1/2)∪ (1/2, 1),

1/2 = uδ ≥ uα in (−1/2, 1/2).

According to Theorem 5.1 (b) uα is constant in the intervals (−1,−1/2),
(−1/2, 1/2), (1/2, 1). From (c) we know that a1 = uα(−3/4) ≤ a2 =
u(0) and a2 = uα(0) ≥ a3 = u(3/4). Thus the solutions of the L1-TV
minimization problem are

uα =







−1/2 ≤ a1 in (−1,−1/2),

a1 ≤ a2 ≤ 1/2 in (−1/2, 1/2),

−1/2 ≤ a3 ≤ a2 in (1/2, 1).

Example 5.3 (L2-TV regularization). To calculate minimizers of F2,1 with Ω =
(−1, 1), we use Examples 3.4 and 3.6 to derive the dual functional F∗

2,1. We set

M⊥
1 , the set of polynomials of order 0 (constant functions on Ω) and

M1 :=

{

u ∈ L2(Ω) ∩ TV (Ω) :

∫

Ω

u = 0

}

.
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Figure 5. α = 1/2. Left: uα. Gray: uδ. Middle: u∗α = −(ρ∗α)′.
Right: ρ∗α/α; ρ∗α touches the α−tube where uα jumps.

The condition M⊥
1 ⊆ N (u∗) can be expressed as

u∗ ∈ L2
⋄(Ω) :=

{

v∗ ∈ L2(Ω) :

∫

Ω

v∗ = 0

}

.

Thus the dual problem consists in maximization of −F∗
2,1(u

∗) := −
∫

Ω

(
1
2 (u∗)2 + uδu∗

)

over the set

Ψα :=
{

u∗ ∈ L2
⋄(Ω) : ‖u∗‖M∗

1
≤ α

}

.

From Example 3.7 we know that the condition ‖u∗‖M∗
1

≤ α is equivalent to the

condition ∣
∣
∣
∣

∫ x

−1

u∗(t)dt

∣
∣
∣
∣
≤ α for all x ∈ (−1, 1).

Hence we have

Ψα =

{

u∗ ∈ L2
⋄(Ω) :

∣
∣
∣
∣

∫ x

−1

u∗(t)dt

∣
∣
∣
∣
≤ α for all x ∈ (−1, 1)

}

=
{

u∗ ∈ L2(Ω) : u∗ = −(ρ∗)′, ρ(±1) = 0, ‖ρ∗‖L∞(Ω) ≤ α
}

.

Taking into account that the minimizer u∗α of F∗
2,1 is the same as the minimizer of

1
2

∫

Ω
(u∗ + uδ)2 we see that u∗α is the L2-projection of −uδ onto Ψα.

Examplarily we choose uδ = χ(−1/2,1/2) − 1
2 . Integrating uδ once shows that the

minimal α for which uδ ∈ Ψα is α = 1
4 . Thus for α ≥ 1

4 we have u∗α = −uδ. If

α < 1
4 then uα = −4αuδ. In summary

u∗α = −uδ min{1, 4α}.
and hence

uα = uδ + u∗α =

{

0 for α ≥ 1
4

(1 − 4α)uδ for 0 ≤ α ≤ 1
4

Example 5.4 (L1-TV 2 regularization). We consider the problem of L1-TV 2 reg-
ularization, i.e., the minimization of the functional F1,2 with Ω = (−1, 1). We use
Examples 3.4 and 3.6 to derive the dual functional F∗

1,2. We set M⊥
2 , the set of

polynomials of order 1 (affine functions) and

M2 :=

{

u ∈ L1(Ω) ∩ TV 2(Ω) :

∫

Ω

u = 0 and

∫

Ω

u x = 0

}

.
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Figure 6. α ≥ 1
4 Left: uα = 0. Gray: uδ. Middle: u∗α = −ρ∗α′.

Right: ρ∗α/α; ρ∗α does not touch the α−tube.

Figure 7. α < 1
4 Left: uα Gray: uδ. Middle: u∗α = (−ρ∗α)′.

Right: ρ∗α/α; ρ∗α touches the α−tube at the positions where uα is
discontinuous.

The condition M⊥
2 ⊆ N (u∗) can be expressed as

u∗ ∈ L∞
⋄ (Ω) :=

{

v∗ ∈ L∞(Ω) :

∫

Ω

v∗ = 0 and

∫

Ω

v∗ x = 0

}

.

Using 3.4 and 3.6 it follows that the dual problem consists in maximization of

−F∗
1,2(u

∗) := −
∫

Ω

uδu∗

over the set

Ψα :=
{

u∗ ∈ L∞
⋄ (Ω) : ‖u∗‖L∞(Ω) ≤ 1 and ‖u∗‖M∗

2
≤ α

}

.

From Example 3.7 we know that the condition ‖u∗‖M∗
2

≤ α is equivalent to

‖ρ∗α‖L∞(Ω) ≤ α in (−1, 1). Hence we can write

Ψα : =
{

u∗ ∈ L∞
⋄ (Ω) : ‖u∗‖L∞(Ω) ≤ 1, ‖u∗‖M∗

2
≤ α

}

=
{
u∗ ∈ L∞(Ω) : ‖u∗‖L∞(Ω) ≤ 1, u∗ = ρ∗′′, ‖ρ∗‖L∞(Ω) ≤ α,

ρ∗′(±1) = 0, ρ∗(±1) = 0
}
.

For u∗ ∈ Ψα and uδ = χ[−1/2,1/2] − 1/2 we have

(5.7) −F∗
1,2(u

∗) = −
∫

Ω

uδu∗ = ρ∗′
(

−1

2

)

− ρ∗′
(

1

2

)

.

We calculate the minimizer of F1,2 with uδ = χ[−1/2,1/2] − 1/2. We distinguish

between the three cases α > 1/4, α ∈ (3
8 −

√
2

4 ,
1
4 ] and α ≤ 3

8 −
√

2
4 .
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• Let α > 1/4, then u∗α := −2uδ is an element of Ψα which maximizes (5.7).
Moreover |ρ∗α| < α and according to Theorem 5.1 (a) uα is a polynomial of
order 1 on (−1, 1). From (5.3) it follows that

(5.8)
0 ≤ uα in (−1,−1/2)∪ (1/2, 1),

uα ≤ 1 in ∈ (−1/2, 1/2).

Thus the minimizers of F1,2 are affine functions satisfying (5.8) (Figure
8).

Figure 8. α > 1
4 Left: bold: uα, gray: uδ. Note that uα is not

unique. Middle: u∗α = ρ∗α
′′. Right: ρ∗α/α, ρ∗α does not touch the

α−tube.

• Let α ∈ (3/8 −
√

2/4, 1/4). If α ≤ 1/4, ρ∗α has at least one contact point
0 ≤ x1 ≤ 1/2 with the α-tube and according to Theorem 5.1 uα bends at
x = ±x1. From Theorem 5.1 it follows that uα is affine in (−1,−x1) and
(x1, 1).

Since uδ is symmetric, there exists a symmetric minimizer of F1,2 which
satisfies |ρ∗α(−x1)| = α. In the following we concentrate on calculating
symmetric minimizers.

We calculate the minimizer uCα
of F1,2 in the class

C :=

{

uC : C = {s, x1, d} with s x1 + d =
1

2
and

1

2
≤ − s

d
≤ 1

}

,

where

uC(x) =

{

1/2 x ∈ [−x1, x1],

s |x| + d x ∈ (−1,−1)\[−x1, x1] ,

and prove afterwards that uα = uCα
.

We set

C∗ := {u∗C ∈ Ψα : (u∗C , uC) satisfy (5.3)}
One possibility of a function u∗C ∈ C∗ related to uC by (5.3) is as follows:

u∗C(x) =







−1 x ∈ (−1, s/d) ∪ (− 1
2 ,−x1) ∪ (x1,

1
2 ) ∪ (−s/d, 1),

+1 x ∈ (s/d,− 1
2 ) ∪ (1

2 ,−s/d),
0 x ∈ (−x1, x1) .

(5.9)

We determine Cα := {sα, x1,α, dα} as follows:
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– Since uα bends at x1,α, we aim for uCα
which bends at x = ±x1,α.

Thus

ρ∗Cα
(x1,α) =

4s2α − 8sαx1,αdα + 6x2
1,αd

2
α − 8x1,αd

2
α − 4d2

α

4d2
α

= α.

– ρ∗Cα
is maximal at ±x1,α

ρ∗Cα

′(x1,α) =
x1,αdα − 2sα − 2dα

dα
= 0.

From this calculations it follows that:

x1,α =
1

sα

(
1

2
− dα

)

, dα =
4 +

√
1 + 12α

3
√

1 + 12α
, sα =

−2√
1 + 12α

.

Since uCα
and u∗Cα

satisfy (3.4) they are minimizers of F1,2,F∗
1,2 respec-

tively.

Figure 9. Left: uα bends at x = ±x1,α. Gray: uδ. Middle:

u∗α = ρ∗α
′′. Right: ρ∗α/α; ρ∗α touches the α−tube at x = ±x1,α,

where uα bends.

• Let α ≤ 3
8 − 1

4

√
2. We calculate the minimizers uCα

of F1,2 in

C :=
{
uC : C := {s1, s2, d1, d2, x1,α, x2} with

0 ≤ x1 ≤ 1

2
≤ x2 ≤ 1, s1 ≤ 0 and s1 ≤ s2

}

with

uC(x) =







s2 |x| + d2 x ∈ (−1, 1)\(−x2, x2)

s1 |x| + d1 x ∈ (−x2,−x1) ∪ (x1, x2)

1/2 x ∈ (−x1, x1)

.(5.10)

Here the functions uC can bend at least four times. Afterwards we verify
that uα = uCα

.
Let

C∗ := {u∗C ∈ Ψα : (u∗C , uC) satisfy (5.3)} .

One possibility of a function u∗C ∈ C∗ related to uC by (5.3) is as follows:

u∗C(x) 7→







−c1 x ∈ (−1,− 1
2 − 1

2x2) ∪ (1
2 + 1

2x2, 1)

c1 x ∈ (− 1
2 − 1

2x2,−x2) ∪ (x2,
1
2 + 1

2x2)

c2 x ∈ (−x2,− 1
2 ) ∪ (1

2 , x2)

−c2 x ∈ (− 1
2 ,−x1) ∪ (x1,

1
2 )

0 x ∈ (−x1, x1)
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with 0 ≤ c1, c2 ≤ 1. Let ρ∗C be the second primitive of u∗C.
Since uα bends at x = ±x1,±x2, we aim to find uCα

which bends at
x1, x2 as well and according to Theorem 5.1 enforcing the properties of ρα

onto ρCα
we additionally require that ρ∗Cα

is maximal at ±x1, ±x2. Thus,
by using that by assumption s1 ≤ 0 and s1 ≤ s2 it follows that

ρC
∗(−x2,α) =

∫ −x2,α

−1

(ρ∗Cα
)′ = −α, ρC

∗(−x1,α) =

∫ −x1,α

−1

(ρ∗Cα
)′ = α,

ρC
∗(x1,α) =

∫ x1,α

−1

(ρ∗Cα
)′ = α, ρC

∗(x2,α) =

∫ x2,α

−1

(ρ∗Cα
)′ = −α.

(5.11)

Since ρ∗Cα
attains an extremum at ±x1,α, x2,α, we have that

ρ∗Cα

′(±x2,α) = 0 and ρ∗Cα

′(±x1,α) = 0 .

Taking into account that ρ∗C ∈ Ψα (and thus satisfies boundary conditions),
if we see that maximizing −F2,2 on C is equivalent to maximizing

ρ∗C
′
(

−1

2

)

=

∫ −1/2

−1

u∗C =
c2
2

(

x2 −
1

2

)

Hence it follows that c2,α = 1. Since ρ∗Cα
(−x2,α) = −α and ρ′Cα

(−1/2) = 0,
x2,α has to satisfy
∫ −1/2

−x2,α

ρ∗Cα

′ =

∫ −1/2

−x2,α

c2,α(x + x2,α) =
1

2
x2

2,α − 1

2
x2,α +

1

8
= α

Hence

x2,α =
1

2
+
√

2α.

Analogous we find that

x1,α =
1

2
−
√

2α.

Since ρ∗C(−x2,α) = −α it follows that

c1,α =
16α

(
2
√

2α− 1
)2 ≤ 1.

Next we determine the coefficients such that uCα
and û∗Cα

are connected via
(5.3) and get

s2,α = 0, d2,α = 0,

k1,α = − 1

2
√

2α
, d1,α =

x2,α

2
√

2α
.

Then uCα
minimizes F1,2 as can be shown by testing (3.4).

Example 5.5 (L2-TV 2 regularization). We consider the problem of L2-TV 2 reg-
ularization, i.e., the minimization of the functional F2,2 : L2(Ω) → R ∪ {∞}. We
use Examples 3.4 and 3.6 to derive the dual functional F∗

2,2. We set M⊥
2 , the set

of polynomials of order 1 (affine functions on Ω) and

M2 :=

{

u ∈ L2(Ω) ∩ TV 2(Ω) :

∫

Ω

u = 0 and

∫

Ω

u x = 0

}

.
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Figure 10. α < 3
8 − 1

4

√
2 Left: uα bends at x = ±

(
1
2 ±

√
2α
)
.

Gray: uδ. Middle: u∗α = (ρ∗α)′′ Right: ρ∗α/α; ρ∗α touches the α-tube

at x = ±
(

1
2 ±

√
2α
)
, where uα bends.

The condition M⊥
2 ⊆ N (u∗) can be expressed as

u∗ ∈ L2
⋄(Ω) :=

{

v∗ ∈ L2(Ω) :

∫

Ω

v∗ = 0 and

∫

Ω

v∗x = 0

}

.

The dual problem consists in maximization of

(5.12) −F∗
2,2(u

∗) = −
∫

Ω

(
1

2
(u∗)2 + u∗uδ

)

over the set

Ψα : =
{

u∗ ∈ L2
⋄(Ω) : ‖u∗‖M∗

2
≤ α

}

=
{

u∗ ∈ L2(Ω) : u∗ = ρ∗′′, ‖ρ∗‖L∞(Ω) ≤ α, ρ∗′(±1) = 0, ρ∗′′(±1) = 0
}

.

We consider again as test data uδ = χ(−1/2,1/2) − 1
2 .

We investigate four different cases α > 1
8 =

∥
∥uδ
∥
∥

M∗
2

, α ∈ ( 1
24 ,

1
8 ), α ∈ (αm,

1
24 ),

and α < αm. Here αm denotes the largest α-value such that ρ∗α takes the value −α
for some x ∈ (−1, 1).

• If α >
∥
∥uδ
∥
∥

M∗
2

= 1
8 , then −uδ ∈ Ψα. Thus u∗α = −uδ is the L2-projection of

−uδ onto Ψα and (4.9) shows that uα = u∗α +uδ = 0. Since (uα, u
∗
α = −uδ)

satisfy (3.4) they are minimizers of F2,2,F∗
2,2 respectively.

• For α ∈ ( 1
24 ,

1
8 ] we calculate the minimizer uCα

of F2,2 in the class of
functions

C := {uC : C := {s, d} and uC(x) = s |x| + d} ,
and verify afterwards that uα = uCα

.
Let u∗C = uC − uδ and ρ∗C the second primitive of u∗C. We determine

Cα := {sα, dα} such that
– u∗Cα ∈ Ψα, that is

∫

Ω

u∗Cα
= sα + 2dα = 0 → dα = −1

2
sα

and
– uCα

bends at x = 0, which requires that

ρ∗Cα
(0) =

1

12
sα +

1

8
= α, → sα =

24α− 3

2
.(5.13)
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Then (u∗Cα
+ uδ, u∗Cα

) satisfy (3.4) and thus are minimizers of F2,2,F∗
2,2,

respectively.

Figure 11. Left: uα bends at x = 0. Gray: uδ. Middle: u∗α =
(ρ∗α)′′. Right: ρ∗α/α, ρ∗α touches the α−tube at x = 0, where uα

bends.

• For α ∈ (αm,
1
24 ] we calculate the minimizer uCα

of F2,2 in

C := {uC : C := {s, d, x1}}
with

uC(x) =

{

s |x| + d x ∈ (−1,−x1) ∪ (x1, 1)

uδ in (−x1, x1)
(5.14)

We verify afterwards that uα = uCα
. Let again u∗C = uC − uδ and ρ∗C the

second primitive of u∗C . We determine Cα = {sα, dα, x1,α} such that
– u∗Cα

∈ Ψα, that is
∫

Ω

u∗C = sα + 2dα + sα x
2
1,α = 0 .

This condition implies that

dα = −1

2

(
sα + sα x

2
1,α

)
.

– ρ∗Cα
is extremal at ±x1

ρ∗Cα

′(x1,α) = sα

(

x2
1,α − 1

2
x1,α − 1

2
x3

1,α

)

− 1

2
x1,α = 0 ,

ρ∗Cα
(x1,α) = −1

6
x1,α +

1

24
= α.

These two conditions are guaranteed if sα = − 1
(1−x1,α)2 and x1,α =

6α− 1
4 .

Since uCα
= u∗Cα

+uδ and u∗Cα
satisfy (3.4) they are minimizers of F2,2,F∗

2,2

respectively. See Figure 12.
• For α ≤ αm we minimize F2,2 on the set of piecewise affine functions

uC(x) =







s2 |x| + d2 x ∈ (−1,−x2) ∪ (x2, 1)

s1 |x| + d1 x ∈ (−x2,−x1) ∪ (x1, x2)

s1x1 + d1 x ∈ (−x1, x1)

with C := {x2, x1, k2, k1, d1, d2} and proceed as above to determine Cα.
Afterwards we show that uα = uCα

. See Figure 13.
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Figure 12. Left: uα bends at x = ±x1, gray: uδ. Middle:

u∗α = ρ∗Cα

′′, gray: −uδ. Right: ρ∗α/α; ρ∗α = α in (−x1, x1).

Figure 13. Left: uα bends at x = ±x1 and x = ±x2, gray:

uδ. Middle: u∗α = (ρ∗Cα
)′′,gray: −uδ. Right:ρ∗α/α; ρ∗α touches the

α−tube at x = ±x2 and x = ±.x1, where uα bends.

Appendix A. Functions of Bounded Variation

In the following we highlight some properties of functions of bounded variation,
which are collected from Evans & Gariepy [EvaGar92] and Ambrosio, Fusco &
Pallara [AmbFusPal00].

Definition A.1. For 1 ≤ p < n the Sobolev conjugate is

pn =
np

n− p
.

Definition A.2. The space of functions of bounded variation (BV ) consists of
functions u ∈ Lpn(Ω) satisfying

|Du| :=

{∫

u∇ · ~φ : ~φ ∈ C1
0 (Rn,Rn),

∥
∥
∥~φ
∥
∥
∥

L∞(Ω)
≤ 1

}

<∞

The standard definition of BV requires u ∈ L1(Ω) ([EvaGar92]). In this case
u ∈ Lpn(Ω) (which follows from the Gagliardo-Nirenberg-Sobolev inequality).

Definition A.3. We define the set of functions with derivatives of bounded varia-
tion (BV k) as functions u ∈ Lp(Ω) (for some p ≥ 1) satisfying

∣
∣Dku

∣
∣ := sup

{∫

u∇k · ~φ : ~φ ∈ Ck
0 (Rn,Rnk

),
∣
∣
∣~φ
∣
∣
∣ ≤ 1

}

<∞

where

∇k · ~φ =
∑

il=1,...,n
l=1,...,k

∂kφi1,...,ik

∂xi1 · · ·∂xik

.
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The gradient Du = (D1u, . . . , Dnu) of a function of bounded variation is repre-
sentable by a finite Radon measure in Ω and satisfies

∫

Ω

u
∂φ

∂xi
dx = −

∫

Ω

φdDiu φ ∈ C∞
0 (Ω) , i = 1, . . . , N .

The following superspaces of BVk(Ω) are of importance for this work:

Definition A.4. Functions with finite total variation. For k ∈ N let

TV k(Ω) :=
{
u ∈ Ck

0 (Ω)∗ :
∣
∣Dku

∣
∣ <∞

}
.

In the definition above u has to be considered a distribution of order k, that is u is

a linear operator on Ck
0 (Ω; Rnk

) satisfying

u[~φ] = (−1)k

∫

Ω

u∇k~φ for all ~φ ∈ C∞
0 (Ω; Rnk

) .

Theorem A.5. For k > 1 and u ∈ TV k(Ω), ∇(k−1)u exists and
∣
∣Dku

∣
∣ =

∣
∣
∣D(∇(k−1)u)

∣
∣
∣ .

Proof. Since TV k(Ω) ⊂
(
Ck

0 (Ω)
)∗

and Ck
0 (Ω) ⊂ Ck−1

0 (Ω) every u ∈
(
Ck

0 (Ω)
)∗

can

be extended to a functional ũ ∈
(

C
(k−1)
0 (Ω)

)∗
such that

u[φ] = ũ[φ] for all φ ∈ Ck
0 (Ω).

Since C∞
0 (Ω) ⊂ Ck

0 (Ω) it follows that
∫

Ω

u∇k · ψ = u[φ] =

∫

Ω

∇u∇k−1 · ψ = ũ[ψ]

for all ψ ∈ C∞
0 (Ω). Thus ∇u exists. According to Hahn-Banach, this extension is

norm preserving, so that we have
∣
∣Dku

∣
∣ =

∣
∣Dk−1(∇u)

∣
∣ .

�
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