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Abstract

In this paper we study the problem of bivariate density estimation. The aim is to
find a density function with the smallest number of local extreme values which is
adequate with the given data. Adequacy is defined via Kuiper metrics. The concept
of the taut-string algorithm which provides adequate data with a small number
of local extrema is generalised for analysing high dimensional data, thereby using
Delaunay triangulation and diffusion filtering. Our results are based on equivalence
relations in space dimension one of the taut string algorithm with the total variation
minimisation and the method of solving the discrete total variation flow equation.
The generalisation and some modifications (for instance based on the Fisher in-
formation contents) are developed and the performance for density estimation is
shown.
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1 Introduction

In this paper we consider the problem of density estimation. Given a sample
x1, . . . , xn ∈ Rm the task is to specify a simple density function u and hence a
distribution function U such that the data look like a typical sample from U .

Figure 1 shows observations from the Old Faithful Geyser in the Yellowstone
National Park. Each observation consists of two measurements: the duration
of the eruption and waiting time to the next eruption (both in minutes), which
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Fig. 1. ’Old Faithful’ geyser data.

are plotted against each other. The data indicate a bimodal distribution which
is rare for the behaviour of a geyser and so physicists and geologists were
interested in investigating possible reasons for this distribution (Azzalini and
Bowman, 1990).

Existing literature on density estimation is vast. In particular the one-dimensional
situation has been studied extensively and numerous methods have been pro-
posed. Of the different approaches the most popular one is kernel estimation.
We refer to Nadaraya (1964), Watson (1964), Silverman (1986), Sheather and
Jones (1991), Wand and Jones (1995), Sain and Scott (1996) and Simonoff
(1996) and the references given there. Another approach is based on wavelets.
We refer to Donoho, Johnstone, Kerkyacharian and Picard (1996), Herrick,
Nason and Silverman (2000) and to Chapter 7 of Vidakovic (1999). Mixtures
of densities have been considered in the Bayesian framework by Richardson
and Green (1997) and Roeder and Wasserman (1997). Other Bayesian meth-
ods are to be found in Verdinelli and Wasserman (1998). Multivariate density
estimation has been analysed mainly in the context of kernel estimators (Scott
and Sain, 2005).

Most of the developed methodology focuses on smoothness of the regression
function rather than on simplicity like a small number of local extreme values.
In spite of this methods are often judged by their ability to identify peaks in
the data as in Loader (1999) and Herrick et al (2000). Work directly concerned
with modality has been done by Davies and Kovac (2001, 2004) who use the
taut-string method to provide approximations with asymptotically consistent
modality. Further work is provided by Müller and Sawitzki (1991) using their
concept of excess mass. Their ideas have been extended to multidimensional
distributions by Polonik (1995a, 1995b, 1999). Hengartner and Stark (1995)
use the Kolmogoroff ball centred at the empirical distribution function to ob-

2



tain nonparametric confidence bounds for shape restricted densities. Another
way of controlling modality is that of mode testing. We refer to Good and
Gaskins (1980), Silverman (1986), Hartigan and Hartigan (1985) and Fisher,
Mammen and Marron (1994).

In this paper we study the problem of density estimation on a high dimensional
domain Ω. Our approach relies on a suitable definition of adequacy (Davies,
1995). A measure of adequacy gives rise to a set of adequate functions, each
of them representing a plausible model for the data in the sense that the data
look like a “typical” sample from the model. The measure we employ in this
paper is based on projections of the density function in the directions of its
coordinates and evaluating the distance to the data with the Kuiper metric.

Having specified the set of adequacy we look for an adequate function u which
is as simple as possible and in particular has the smallest possible number
of local extreme values. In particular we construct a scale of candidate func-
tions u(1), u(2), u(3), . . . with decreasing complexity, in particular decreasing
modality, and choose the smoothest function that is still adequate as an ap-
proximation to the data.

The candidate functions are generated by generalisations of the taut-string
algorithm for analysing data defined on a high dimensional domain. For the
purpose of density estimation of high dimensional data we propose a two
step algorithm which consists in generating an auxiliary function y from the
sampled data xi to which a filtering technique is applied. For the purpose of
data filtering we discuss total variation regularisation, the total variation flow,
and some variants (for instance based on the Fisher information), since these
three techniques can be considered possible generalisations of the taut-string
algorithm. Generalisation to contact problems derived from minimal surface
minimisation as in Mammen and van de Geer (1997) have been generalised in
Hinterberger et al. (2003) and Scherzer (2005) but are not discussed further
in this paper.

The outline of this paper is as follows:

In Section 2 we discuss some possible generalisation of the taut-string algo-
rithm for analysing high dimensional data. In Section 3 an initial solution for
the density estimation process is constructed. Moreover, a grid, which can be
used in numerical reconstructions is provided. Section 4 discusses different dif-
fusion filtering methods. Section 5 is concerned with the definition of adequacy
for bivariate density functions. Finally the results obtained with the different
methods are shown and the results for density estimation are compared.
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2 Taut strings in one and higher dimensions

One dimensional density functions approximating scattered point data can be
calculated with the taut string algorithm (Davies and Kovac, 2001, 2004). It is
the goal of this section to discuss generalisations of the taut string algorithm
for density estimation on high-dimensional data.

It has been shown by Mammen and van de Geer (1997) that the solution of
the taut string algorithm for given sampling data y = (y1, . . . , yn−1) sampled
at the midpoints of uniformly distributed grid points x1 = 0, x2 = h, x3 =
2h, . . . , xn = (n − 1)h in Ω = [0, 1] with sampling distance h = 1/(n − 1) is
equivalent to minimising

fd(u) :=
1

2

n−1∑

i=1

h |ui − yi|2 + α
n−2∑

i=1

h
|ui+1 − ui|

h
.

where the ui are associated with a function u s.t. u(x) := ui if x ∈ (xi, xi+1).
The equivalence relation of the taut string algorithm and total variation flow
regularisation shows that u is determined by ui = vi+1 − vi, i = 1, . . . , n − 1
where v minimises the constraint optimisation problem

n−1∑

i=1

√
1 +

|vi+1 − vi|2
h2

subject to

∣∣∣∣∣∣
vj − h

j∑

k=1

yk

∣∣∣∣∣∣
≤ α j = 1, . . . , n . (1)

and v1 = 0. The vi are associated with a function v which is linear in [xi, xi+1]
and v(xi) = vi.

In Steidl et al. (2004) it has been shown that the minimiser of fd and the
solution of the space discrete total variation flow equation at time t = α
which solves

u̇1 ∈ sgn(u2 − u1),

u̇i ∈ sgn(ui+1 − ui)− sgn(ui − ui−1) (i = 2, . . . , n− 2),

u̇n−1 ∈ −sgn(un−1 − un−2),

u(0) = y.

(2)

are identical.

These considerations reveal that for analysing sampling data with sampling
points in (0, 1) there are at least three equivalent concepts, contact problems
as formulated in Mammen and van de Geer (1997), discrete total variation
regularisation (i.e. minimisation of fd), and the discrete total variation flow (2).
We show below that for continuous data the adequate continuous formulations
of the three concepts can be generalised to high dimensional data. We focus on
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generalisations of total variation regularisation and the discrete total variation
flow.

It has been shown by Grasmair (2006) (see also Pöschl and Scherzer, 2006)
that for y ∈ L2(0, 1), the minimiser of continuous total variation minimisation,
consisting in minimisation of

fc(u) :=
1

2

∫ 1

0
(u− y)2 + α

∫ 1

0
|u′| ,

is locally constant or satisfies u = y. If u : Ω ⊂ R2 → R is an image or a voxel
data u : Ω ⊂ R3 → R, then continuous total variation minimisation consists
in minimisation of

Fc(u) :=
1

2

∫

Ω
(u− y)2 + α |Du| ,

where |Du| is the total variation of u (see e.g. Evans & Gariepy, 1992). In
the image processing community Fc is called the R(udin)-O(sher)-F(atemi)-
functional (Rudin, Osher, Fatemi, 1992).

With a similar argumentation it becomes evident that the total variation in-
clusion equation

∂u

∂t
∈ −∂ |Du| ,

where ∂ |Du| denotes the subgradient of the total variation |Du| of u, is the
continuous formulation of the discrete total variation flow equation. For more
background on inclusion equations we refer to Brezis (1973). It is convenient
and instructive, but not mathematically rigorous, to write

∂ |Du| = −∇ ·
( ∇u

|∇u|

)
. (3)

Total variation regularisation and total variation flow can be used if appropri-
ate initial data y has been determined from discrete sampling data. A method
to construct the data y which is compatible with the taut-string algorithm is
presented in the next section.

3 Initialisation of irregularly sampled data

To calculate a density function on a one-dimensional domain given a sample x
we first define a piecewise constant function y by setting h(i) := x(i+1)−x(i) and
y(x) := 1/((n− 1)hi) for all x ∈ [x(i), x(i+1)) and for i = 1, . . . , n− 1. Here x(i)

denotes the ordered samples with x(j) ≤ x(j+1). Then the taut string algorithm
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Fig. 2. Top: Randomly distributed data points with piecewise constant initial guess
y.

can be used and equivalently be formulated as the problem of minimisation of

fe(u) :=
1

2

n−1∑

i=1

hi(ui − yi)
2 + α

n−2∑

i=1

hi
|ui+1 − ui|

hi

:=
1

2

n−1∑

i=1

hi(ui − yi)
2 + α

n−2∑

i=1

hi |∇hi
u| (xi) .

We interpret fe as a quadrature rule of Fc(u) with sampling distances hi and

partitioning sampling intervals Ii :=
[
x(i), x(i+1)

]
, i = 1, . . . , n− 1.

Here |∇hi
u| (x(i)) = |ui+1−ui|

hi
is the absolute value of the right difference quo-

tient of a function u at xi with step size hi. The method of minimising fe is
called discrete total variation minimisation with irregular samples.

A typical example of a function y is plotted in Figure 2.

We associate a grid with the nodes (i.e. data points) xi and the corresponding
elements Ii. For high dimensional domains, Delaunay’s triangulation can be
used to determine partitioning tetrahedrons, thus generalising the concept of
sampling intervals Ii in space dimension one. Delaunay’s triangulation and
the associated Voronoi diagram are well known concepts from computational
geometry and used in many applications (Aurenhammer and Klein, 2000). An
excellent introduction to this topic is Edelsbrunner (2001). An example of a
Delaunay triangulation is shown in Figure 3. The data used for the trian-
gulation were 500 points randomly generated from the distribution shown in
Figure Figure 4.

As in the the one-dimensional case we define the value of the initial solution
for every grid-element Ii as 1/(marea(Ii)), i = 1, . . . , n − 1 where m is the
number of triangles. Figure 4 shows an initial solution obtained by setting a
constant value over each grid cell.
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Fig. 3. Scattered data and the Delaunay triangulation

Fig. 4. Underlying distribution and Initial Guess

4 Diffusion filtering after Delaunay’s triangulation

For filtering data y derived after Delaunay’s triangulation from a discrete
sample we use differential equations of the form

∂u

∂t
= ∇ · (d(u,∇u)∇u) + e(u,∇u) in Ω

∂u

∂n
= 0 on ∂Ω ,

u(0) = y .

(4)

where d(·, ·) and e(·, ·) : R× Rn → R are appropriate functions.

Particular examples considered in this paper are

• the total variation flow equation (3), where d(u,∇u) = 1
|∇u| and e(u,∇u) =

0,
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• the Fisher information flow equation with d(u,∇u) = 1
|u| and e(u,∇u) =

u|∇u|2
2|u|3 , and

• the 3
2

Laplacian flow with d(u,∇u) = 1√
|∇u| and e(u,∇u) = 0.

The solution of (4) at time T is an approximation of the density to be es-
timated. We note that the partial differential equation (4) is only formally
stated and in general has to be considered an inclusion equation.

4.1 The total variation flow equation

For the solution of (3) we use a standard semi-implicit scheme

u(n) − u(n−1) ∈ ∆t∇ ·
( ∇u(n)

|∇u(n−1)|

)
in Ω and

∂u(n)

∂n
= 0 on ∂Ω . (5)

Hereby we take u(0) = y and consider u(n) an approximation of u(n∆t).

Equation (5) is related to adaptive weights smoothing (Polzehl and Spokoiny,
2004) as far as both methods use nonlinear diffusivities depending on the
solution and the norm of the gradient of the solution. This brings up the idea
of using general smoothing kernels of the form d = d(u, |∇u|).

4.2 Fisher information minimisation

As alternative to total variation regularisation we also consider the a regular-
isation method (Ambrosio et al., 2005), which consists in minimisation of the
functional

FFisher(u) =
1

2

∫

Ω
(u− y)2 + α

1

2

∫

Ω

|∇u|2
|u|

which pronounces high peaks in y. The optimality condition for a minimiser
u is

u− y

α
= ∇ ·

(∇u

|u|

)
+

u · |∇u|2
2|u|3 . (6)

Identifying α = ∆t, equation (6) can be interpreted as a fully implicit time
step of length α of the following flow equation:

∂u

∂t
= ∇ ·

(∇u

|u|

)
+

u · |∇u|2
2|u|3 . (7)
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In the numerical experiments we have implemented (7) with the semi-implicit
scheme

u(n) − u(n−1) = ∆t


∇ · ∇u(n)

√
|u(n−1)|2 + β2

+
u(n−1) · |∇u(n−1)|2√

4|u(n−1)|6 + β2


 . (8)

Due to the diffusivity d(u) = 1/|u| pronounced (high) peaks are smeared out
little, i.e. they remain significant. The right hand side is, like for the TV-flow,
invariant to scaling of u.

4.3 The 3
2

Laplacian flow equation

In the literature the 3
2

Laplacian operator is defined as

∂
(

2

3

∫

Ω
|∇u| 32

)
= −∇ · (d(u, |∇u|)∇u)

with

d(u,∇u) =
1√
|∇u|

.

We have used the equation

∂u

∂t
= ∇ · (d(u, |∇u|)∇u) (9)

for filtering. In the numerical solution we have actually approximated d by

dβ(u,∇u) :=

√
1/

√
|∇u|2 + β2 ≈ 1√

|∇u|

and implemented the time steps with a semi-implicit algorithm.

This diffusion filtering approach is the steepest descent flow for the W 1,3/2-
Sobolev semi norm.

5 Approximation and Kuiper metrics

Davies and Kovac (2004) use Kuiper metrics to derive a measure of adequacy
for univariate densities. In this section we extend their concept to two dimen-
sions. Given bivariate data x1, . . . , xn and a bivariate density function f(x1, x2)
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the problem is to decide whether the data xi look like a typical sample from
f .

The approach we study here is based on projecting the density in the directions
of its coordinates. We consider the marginal distribution functions

F 1(x) =
∫ x

−∞

∫ ∞

−∞
f(x1, x2)dx2dx1 and F 2(x) =

∫ x

−∞

∫ ∞

−∞
f(x1, x2)dx1dx2

and define two sets of variables u1
i = F 1(x1

i ) and u2
i = F 2(x2

i ). If the approxi-
mation f is adequate, then the new variables u1 and u2 should look like two
samples of a uniform distribution on [0, 1]. Therefore we consider the empirical
distribution of each sample

E1(x) =
1

n

n∑

i=1

1{u1
i≤x} and E2(x) =

1

n

n∑

i=1

1{u2
i≤x}

and calculate the according distances d1 and d2 to a uniform distribution in
the Kuiper metric

dj(uj) = dKu(E
j, U) = ( sup

x∈[0,1]
Ej(x)− x)− ( inf

x∈[0,1]
Ej(x)− x).

Let qu(n, α) be the α-quantile of the maximum of d1(U1) and d2(U2) so that

P(max(d1(U1), d2(U2)) ≤ qu(n, α)) = α

where U1
1 , . . . , U1

n, U2
1 , . . . , U2

n are iid random variables with a uniform distri-
bution on [0, 1]. Then a function f is considered adequate with the given data
if max(d1(u1), d2(u2)) ≤ qu(n, α). In this paper we always use α = 0.99.

For small values of n the quantiles qu(n, α) can be obtained by simulation
(see Table 1). For larger values of n the distribution of the Kuiper difference
between the uniform distribution and its empirical distribution can be approx-
imated by a Brownian bridge and explicit expressions can be derived (Dudley,
1989) and evaluated to obtain quantiles qu(n, α).

Given this notion of adequacy we are interested in finding an adequate density
which is as simple as possible. Since an exact solution of this problem can not
be obtained we consider the sequence of functions generated by the discrete
diffusion filtering approaches introduced in the previous section and choose the
last adequate function as it has the smallest number of local maxima among
them as an approximation to the data.
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n α = 0.95 α = 0.99 α = 0.999

100 0.175 0.199 0.228

200 0.125 0.141 0.160

500 0.081 0.091 0.105

1000 0.058 0.065 0.074

2000 0.041 0.046 0.052
Table 1
Quantiles for the Kuiper difference for 5 different sample sizes and 3 different values
of α.

6 Numerical examples

In the numerical experiments we compare the diffusion filtering methods (5),
(8) and (9) with kernel estimators. To solve the flow equations we have imple-
mented the following algorithm:

(1) For given measurement data xi we calculate the Delaunay triangulation
as described in Section 2 (see figure 3).

(2) Define an initial guess yi := 1/(marea(Ii)) for every element of the De-
launay triangulation where m is the number of triangles (see figure 4).

(3) We make a piecewise linear interpolation y on the Delaunay triangles,
such that the integral over each triangle is one; that is the integral equals
the integral of the piecewise constant initial guess on each triangle. Then
we define a regular rectangular grid covering the Delaunay Triangulation
and determine the values y of the interpolated initial guess on the regular
grid. In our numerical realisation we used a 281× 281 grid.

(4) We use a Finite Difference Method to solve the flow equations on the
regular grid with piecewise linear initial guess y with a semi-implicit
iteration as shown in equation (5) and (8), respectively.

(5) For each iteration we check whether the current function is still adequate
with the data. We stop once this is no longer the case and then choose
the function from the previous iteration as an approximation to the data.

6.1 A simulated example

A sample of size 500 was drawn from a mixture of two bivariate normal dis-
tributions. The underlying density function was given by

f(x, y) = 0.5 · φ(x; 0, 1) · φ(y; 0, 1) + 0.5 · φ(x; 2, 0.1) · φ(y; 2, 0.1)

11



Fig. 5. Top left: TV-flow; Top right: 3
2 Laplacian flow equation; Bottom left: Fisher

information minimisation; Bottom right: Kernel estimator

where φ(x; µ, σ) denotes the density function of a normal distribution with
mean µ and standard deviation σ.

The results are shown in Figure 5. The result top left was calculated using the
total variation flow equation where in the numerical realisation the time step
size was set to 0.005 and where the flow was stopped by the Kuiper criterion
at time t = 0.33, i.e. after 66 time steps.

Using equation (8) we obtain the solutions represented in the top right of the
figure. Here the time step size was set equal to 0.05 and 49 time steps were
performed. The bottom left of Figure 5 shows the result using equation (9)
where the time step size was set to 0.05 and t = 3.9 (i.e. 78 time steps). Finally
the bottom right of the figure shows the result of an kernel estimator using
a Gaussian kernel and the largest bandwidth such that the Kuiper criterion
was satisfied (0.947).

Comparing the results the most obvious observation is that the kernel esti-
mator produces a much more rough approximation than the diffusion filtering
methods. A close inspection reveals that the kernel estimator produces 82 lo-
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cal maxima whereas TV-flow needs only 6 local maxima and 3
2
-Laplacian and

Fisher flow both produce exactly 2 local maxima.

We also note that TV-flow tends to create levels with constant values. The 3
2
-

Laplacian flow is a good compromise between smoothing and preserving high
peaks with small footpoints (base area). The best results are obtained using
the Fisher information minimisation, since the solution u itself is used in the
diffusivity (d(u) = 1/|u| ) and the gradient of u is taken into account in an
energy term.

The advantage of using flow equations compared to minimising energy func-
tionals where α is fixed, is that the solution for different times (i.e. different
values of α, see the results in Section 2, Steidl et al., 2004) can be calculated
efficiently, i.e. no additional iteration is needed.

6.2 The geyser data

It is interesting to see how the diffusion filtering methods performs on the
geyser data that we introduced in Section 1. Figure 6 shows perspective plots of
the three methods and a contour plot for the 3

2
Laplacian flow. The bimodality

of the data set is clearly shown by all three methods although a close inspection
of the output of the Fisher flow reveals an artificial third local extreme value
to satisfy the Kuiper criterion. BV flow and Laplacian flow on the other hand
both produce only the required two local extreme values.

Conclusions

In this paper we have shown that Delaunay triangulation and diffusion fil-
tering generalise the concept of the taut-string algorithm for analysing high
dimensional data. In principle the concept applies in any space dimension,
however, so far, the dimensionality is limited by the partial differential equa-
tion solver where up to date software can handle space dimension three, but
typically not more.
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