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High spatial resolution is one of the major aims in tomographic imaging.
Two main factors limiting the resolution of photo- and thermoacoustic to-
mography are the detector size and the finite bandwidth of the ultrasound
detection system. In this paper we present a quantitative analysis of those
effects for “approximate point detectors” and for “approximate line detec-
tors”.
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1 Introduction and main results

Photoacoustic tomography (PAT) is new imaging modality for visualizing the optical
absorption coefficient of a probe. It has proven great promise for a variety of biomedical
applications, such as imaging of animals, early cancer diagnostics, and imaging of
vasculature (see [9, 21, 27, 30, 39, 40, 41, 44]). PAT is based on the excitation of
acoustic pressure waves by illuminating a probe with short light pulses. The acoustic
pressure is recorded outside of the object and used to reconstruct an image of the
probe. We refer the reader to [37, Section 1.5] for a detailed mathematical description.
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Figure 1: Photoacoustic tomography with piezoelectric transducer as an “approximate
point detector” (left) and a laser beam as “approximate line detector” (right).

If we assume that the probe is acoustically homogeneous, the induced acoustic pres-
sure p : R

3 × (0,∞) → R satisfies

(

∂2
t − ∆

)

p(x, t) = 0 , (x, t) ∈ R
3 × (0,∞) , (1a)

p(x, 0) = f(x) , ∂tp(x, 0) = 0 , x ∈ R
3 , (1b)

where ∆ denotes the Laplacian with respect to the spatial variable x and ∂t is the
derivative with respect to the temporal variable t. The goal of PAT is to reconstruct
the initial pressure f (representing the probe) from measurements of p(x, t) taken
outside of Ω. We assume throughout that initial pressure f is an element of the space
C∞
c (Ω) of all smooth functions with compact support in Ω.
We denote by W3D : C∞

c

(

R
3
)

→ C∞
(

R
3 × (0,∞)

)

the operator that maps the

compactly supported f ∈ C∞
c

(

R
3
)

to the solution of (1a), (1b).

1.1 Approximate point detectors

The classical approach in PAT is to assume that point-wise measured data

(P f)(x, t) := g(x, t) :=
(

W3D f
)

(x, t) , with (x, t) ∈ ∂Ω × (0,∞) ,

are given (see [22, 23, 44]). The operator P : C∞
c (Ω) → C∞

(

∂Ω × (0,∞)
)

that maps
the initial data of the wave equation to the data measured by an ideal point detector
can be inverted uniquely (see [2, 3]) and stably (see [26, 32, 46]). Analytic expressions
for its inverse

P−1 : ran(P) ⊂ C∞
(

∂Ω × (0,∞)
)

→ C∞
c (Ω)

via eigenfunction expansions are derived in [1, 25]. (Here ran(P) := {P f : f ∈ C∞
c (Ω)}

denotes the range of P.) Efficient reconstruction methods for arbitrary Ω are based
on time reversal (see [7, 8, 11, 18, 19, 38]). In the case that Ω is a ball, filtered
back-projection type inversion formulas are derived in [11, 24, 29, 43].
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In practical applications, the detection system has a finite bandwidth. Moreover,
standard ultrasound transducers, which integrate the pressure over its surface, are used
to approximate point data (see [42]). We assume for simplicity that the transducer
surface is part of the measurement surface. Then, the data measured by approximate
point detectors are given by (see [42])

(Pφ,w f)(x, t) =

[

φ ∗t
∫

∂Ω

w (x,x′)
(

W3D f
)

(x′, ·) dS(x′)

]

(t) ,

for (x, t) ∈ ∂Ω × (0,∞) . (2)

Here w(x, ·) represents the sensitivity of the detector located at position x ∈ ∂Ω, φ(t)
denotes the impulse response function of the ultrasound detection system, and ∗t is
the convolution with respect to the temporal variable t.

Inexact knowledge of w and φ, as well as the ill-posedness of deblurring problems
make it impossible to stably reconstruct the function f from the data in (2). It is
therefore common to apply the exact inverse of P to the data Pφ,w f . This results
in a blurred reconstruction, where the blurring depends on the detector size and the
detector bandwidth.

For the following result we assume that Ω = BR is a ball of radius R and that the
detector surface is rotationally symmetric (see Figure 1), that is, we have w(x,x′) =
wpoint(|x − x′|) for some one dimensional function wpoint.

Theorem 1.1. Let f ∈ C∞
c (BR), and let φ,wpoint : R → R be even functions

such that x ∈ R
3 7→ φ′(|x|)/ |x| and x ∈ ∂BR 7→ wpoint(|x − x0|) are absolutely

integrable, for some x0 ∈ ∂BR. Moreover, assume that supp(φ) ⊂ [−τ, τ ], where
τ := dist

(

supp(f), ∂BR
)

and supp(φ) := {t : φ(t) 6= 0}.
Then Pφ,w f ∈ ran(P) and

(

P−1 Pφ,w f
)

(x) =

[

Φband ∗
∫

R3

Wpoint(·,x′)f(x′) dx′

]

(x) , x ∈ BR ,

with the blurring kernels

Φband(x) := −πφ′(|x|)/(2 |x|) , x ∈ R
3 , (3)

Wpoint(x,x
′) :=

R2

|x|2
δ (|x| − |x′|)wpoint (|x − x′| R/ |x|) , x,x′ ∈ R

3 . (4)

Here δ denotes the one-dimensional delta distribution.

Proof. See Section 2.

As a consequence of Theorem 1.1, the detector aperture causes blurring in the
lateral direction, which becomes more severe near to the recording surface. The finite
bandwidth, on the other hand, causes spatially invariant blurring.
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Remark 1.2. In the case of an arbitrary domain, one obtains the same spatially
invariant blurring kernel (4) due to the detector bandwidth (see Proposition 2.3).
The blurring kernel (3) due to the detector size, however, depends to the shape of the
detection surface. In Subsection 2.4 we also derive analytic expressions for the blurring
kernel for a planar and cylindrical detection surface (Theorems 2.4, 2.5).

1.2 Approximate line detectors

In order to partly overcome the size and shape limitations of point detectors, in [6, 35]
we proposed PAT with integrating line detectors, where certain integrals of W3D f
over lines are used to reconstruct the function f . There it is assumed that

Ω :=
{

Φθ(y) =
(

y1θ1, y1θ2, y2
)

: θ = (θ1, θ2) ∈ S1 and y = (y1, y2) ∈ D
}

(5)

is a volume of revolution generated by rotating a domain {0} × D, with D ⊂ R
2,

around the (0, 0, 1) axis. The data measured by ideal line detectors are given by

(L f)(θ,y, t) :=

∫

R

(

W3D f
)(

y1θ + sθ⊥, y2, t
)

ds

=

∫

ℓθ,y

(

W3D f
)(

z, t
)

dℓ(z) , (θ,y, t) ∈ S1 × ∂D × (0,∞) ,

where ℓθ,y =
{

Φθ(y) + s(θ⊥, 0) : s ∈ R
3
}

is the unique line passing through Φθ(x) and

pointing in direction (θ⊥, 0) := (−θ2, θ1, 0). The operator L : C∞
c (Ω) → C∞

(

S1 ×
∂D × (0,∞)

)

can be iverted uniquely and stably by means of a two step procedure
described in [5, 13, 34]. In the case thatD is a disc, exact inversion formulas are derived
in [5, 10, 14, 24, 25, 29]. Efficient reconstruction methods for arbitrary domain D are
again based on time reversal (see [7, 18, 19, 38]).

In practical applications line detector are usually implemented by optical line de-
tection, where the pressure is integrated over the volume of a cylindrical laser beam.
Thus, the actually available data are given by (see [33, 36])

(Lφ,w f)(θ,y, t) =

[

φ ∗t
∫

R3

w
(

dist(ℓθ,y,x)
)(

W3D f
)

(x, t)dx

]

with (θ,y, t) ∈ S1 × ∂D × (0,∞) .

Here w(r) represents the radial intensity profile of laser beam, ℓθ,y is its central axis,
φ(t) is the impulse response function of the detection system, and dist(ℓθ,y,x) denotes
the distance between the line ℓσ,y and the point x ∈ R

3. Again, application of L−1 to
the data Lφ,w f leads to a blurred reconstruction. The laser beam, however, can be
made very thin, suggesting that the one dimension approximation with approximate
line detectors gives less blurred images than the zero dimension approximation with
approximate point detectors.1

1Note that the finite length of an integrating detctor does not influence the resultion, see [13, 36, 37].
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Theorem 1.3. Let D ⊂ R
2, let Φθ, Ω be as in (5), let f ∈ C∞

c (Ω), and let φ,w : R →
R be even functions such that Φband(x) = −φ′(|x|)/(2 |x|) and

Wline(x) := − 1

π

∫ ∞

|x|

∂ξw(ξ)
√

ξ2 − |x|2
dξ , x ∈ R

3 , (6)

are absolutely integrable. Moreover, assume that the support of φ∗w satisfies supp(φ∗
w) ⊂ [−τ, τ ], with τ := dist

(

supp(f), ∂Ω
)

.

Then we have Lφ,w f ∈ ran(L), and

(

L−1 Lφ,w f
)

(x) = (Φband ∗Wline ∗ f) (x) , x ∈ Ω .

Here both blurring effects are spatially invariant.

Proof. See Section 3.

1.3 Prior work and innovations

Analytic expressions for the blurring kernels with approximate line detectors are pre-
sented for the first time. Exact blurring kernels for approximate point detectors have
also been derived in [42] (see [45] for an updated version) and due to the finite detector
bandwidth in [4, Section 5]. However, we present a completely different and proba-
bly simpler analysis, which is based on geometric arguments and the rotational and
translational invariance of the wave equation. Moreover, in [4, 42] the authors did not
show that Pφ,w f ∈ ran(P). Instead, they applied a particular inversion formula (i.e.
an extension of P−1 outside the range of P) to the blurred data. Hence their results
depend on the used extension, whereas our results are independent of any particular
inversion formula.

A preliminary version of this paper has been presented at the MATHMOD 2009
conference in Vienna (see [15]) where the case Ω =

{

x ∈ R
3 : |x| < 1

}

has been treated.

2 Approximate point detectors

The main goal in this section is the derivation of the analytic expressions for the
blurring kernels due to the detector size and bandwidth. The proof of Theorem 1.1
will follow from Propositions 2.1 and 2.3 and will be given ain Subsection 2.3.

2.1 Effects of detector size

Proposition 2.1. Let f ∈ C∞
c (BR), let wpoint : R → R be an even function such that

x ∈ ∂BR 7→ w( |x0,x|) = wpoint(|x0 − x|) is absolutely integrable for some x0 ∈ ∂BR,
and define, for x ∈ R

3,

fw(x) :=

∫

R3

[

R2

|x|2
δ(|x| − |x′|)wpoint

(

|x − x′|R/ |x|
)

]

f(x′) dx′ . (7)
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Then, for every (x, t) ∈ ∂BR × (0,∞), we have

(P fw)(x, t) =

∫

∂BR

wpoint(|x − x′|)(P f)(x′, t)dS(x′) . (8)

Proof. We first calculate an expression for fw without the Dirac δ distribution. To
that end, denote x = ρσ, x′ = ρ′σ′ with ρ, ρ′ ∈ (0,∞) and σ, σ′ ∈ S2. Then, we have

fw(x) = R2

∫

S2

(
∫ ∞

0

δ(ρ− ρ′)wpoint

(

|ρσ − ρ′σ′|R/ρ
)

f(ρ′σ′) dρ′
)

dσ′

= R2

∫

S2

wpoint

(

|σ − σ′|R
)

f(ρσ′) dσ′ ,

which is the desired expression.
Now define, for x = ρσ ∈ R

3,

pw(ρσ, t) := R2

∫

S2

wpoint

(

|σ − σ′|R
)(

W3D f
)

(ρσ′, t) dσ′ .

We will show that pw = W3D fw, which then implies (8), since

pw(Rσ, t) =

∫

∂BR

wpoint(|Rσ − x′|)
(

W3D f
)

(x′, t)dS(x′) .

For every (ϑ, φ) ∈ (0, π) × (0, 2π), let Q[ϑ, φ] : R
3 → R

3 denote any rotation with

Q[ϑ, φ]e3 = (sinϑ cosφ, sinϑ sinφ, cosϑ) .

Writing σ′ in spherical coordinates around σ as north pole then shows that

pw(ρσ, t) = R2

∫ π

0

∫ 2π

0

wpoint

(

|σ −Q[ϑ, φ]σ|R
)(

W3D f
)

(ρQ[ϑ, φ]σ, t) sinϑdϑdφ

= R2

∫ π

0

wpoint

(

2R(1 − cosϑ)
)

sinϑ

∫ 2π

0

(

W3D f
)(

Q[ϑ, φ](ρσ), t
)

dϑdφ .

The rotational invariance of the wave equation implies that

(ρσ, t) 7→
(

W3D f
)(

Q[ϑ, φ](ρσ), t
)

is a solution of the wave equation and its linearity implies that also pw(ρσ, t) is a
solution of the wave equation. Since the initial conditions pw(x, 0) = fw(x) and
∂tpw(x, 0) = 0 immediately follow from the definition of pw this implies pw = W3D fw
and concludes the proof.

Remark 2.2. The main ingredient of the proof of Proposition 2.1 is the rotational
invariance of the wave equation. In an analogous manner (see Subsection2.4) one de-
rives derive analytic expressions of the blurring kernel for a planar (using translational
invariance) and for a cylindrical detection surface (using translational and rotational
invariance).
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2.2 Finite bandwidth

The following proposition deals with the blurring to the finite bandwidth of the
detection system. It states that it is equivalent to either convolute the solution
W3D f in time with the function φ, or to convolute the initial data in space with
−πφ′(|x|)/(2 |x|). This fundamental and simple looking property seems to be a new
result.

Proposition 2.3. Let f ∈ C∞
c (R3) and let φ : R → R be an even compactly supported

function such that Φband(x) = −πφ′(|x|)/(2 |x|) is absolutely integrable in R
3. Then,

the identity
W3D

(

Φband ∗ f
)

(x, t) =
(

φ ∗t W3D f
)

(x, t)

holds for all (x, t) ∈ R
3 × (0,∞) with x outside the support of Φband ∗ f .

Proof. Let Ψ(x) = ψ(|x|) be a radially symmetric absolutely integrable function of
compact support. Our aim is to find an analytic expression for W3D(Ψ∗f) in terms of
the solution W3D f of (1a), (1b) and the to adjust Ψ such that W3D(Ψ∗f) = φ∗tW3D f
outside the support of Ψ ∗ f .

The solution formula for the three dimensional wave equation (see [20]) applied to
the initial data Ψ ∗ f reads

W3D(Ψ ∗ f)(x, t) =
1

4π
∂tt

∫

S2

(
∫

R3

f(x′)ψ(|x + tω − x′|)dx′

)

dS(ω) .

Substituting x′ = x + ρσ, with ρ > 0 and σ ∈ S2, in the inner integral, and applying
Fubini’s Theorem leads to

W3D(Ψ ∗ f)(x, t) =
1

4π
∂tt

∫

S2

(
∫

S2

∫ ∞

0

f(x + ρσ)ψ(|ρσ − tω|)ρ2dρdS(σ)

)

dS(ω)

= ∂tt

∫ ∞

0

∫

S2

f(x + ρσ)

(

1

4π

∫

S2

ψ(|ρσ − tω|)dS(ω)

)

dS(σ) ρ2dρ

The inner integral in the last expression is the (spherical) mean of Ψ(x) = ψ(|x|) over
a sphere with radius t centered at ρσ. Denoting by Iψ a primitive of s 7→ ψ(

√
s), then

[16, Lemma 5.1] assures that

1

4π

∫

S2

ψ(|ρσ − tω|)dS(ω) =
Iψ

(

(ρ+ t)2
)

− Iψ
(

(ρ− t)2
)

4tρ
,

for ρ, t > 0. Consequently

W3D(Ψ∗f)(x, t) =
1

4
∂t

∫ ∞

0

(

Iψ
(

(ρ+t)2
)

−Iψ
(

(ρ−t)2
)

)

(

ρ

∫

S2

f(x + ρσ)dS(σ)

)

dρ .

Differentiating under the integral leads

W3D(Ψ ∗ f)(x, t) =
1

2

∫ ∞

0

(ρ− t)ψ(|ρ− t|)
(

ρ

∫

S2

f(x + ρσ)dS(σ)

)

dρ (9)
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for x 6∈ supp(Ψ ∗ f).

On the other hand, we have

(φ ∗t W3D f)(x, t) =
1

4π

∫ ∞

0

φ′(t− ρ)

(

ρ

∫

S2

f(x + ρσ)dS(σ)

)

dρ . (10)

The right hand sides in equations (9) and (10) coincide if sψ(|s|) = −π
2φ

′(s) for all
s ∈ R. Since φ is assumed to be an even function, this is the case if

ψ
(

s
)

= −π
2

φ′(s)

s
, s ≥ 0 .

By taking Ψ = Φline, this concludes the proof.

Now we are ready to prove Theorem 1.1.

2.3 Proof of Theorem 1.1

Propositions 2.1 and 2.3 imply that

(Pφ,w f)(x, t) =

(

φ ∗t
∫

∂BR

wpoint(|x − x′|)
(

W3D f
)

(z′, ·)dS(x′)

)

(t)

=
(

φ ∗t
(

W3D fw
)

(x, ·)
)

(t) =
(

W3D
(

Φband ∗ fw
)

)

(x, t)

if x 6∈ supp(Φband ∗ f). Here fwpoint
is defined as in (7). Together with support

hypothesis on φ this shows that Pφ,w f = P(Φband ∗ fwpoint
). Therefore Pφ,w f ∈

ran(P) and P−1 Pφ,w f = Φband ∗ fwpoint
which concludes the proof.

2.4 Planar and cylindrical detection surface

For the following theorems recall the definition of the data (2) of approximate point
detectors.

Theorem 2.4 (Blurring kernels for planar detection surface). Let Ω := (0,∞) × R
2

denote a half space in R
3 and assume that w(x,x′) = wpoint(x − x′), where wpoint is

absolutely integrable on ∂Ω = {0} × R
2. Moreover, let f ∈ C∞

c (Ω), let φ : R → R

be an even function such that Φband(x) = φ′(|x|)/ |x| is integrable, and assume that
supp(φ) ⊂ [−τ, τ ], where τ := dist

(

supp(f), ∂BR
)

.

Then Pφ,w f ∈ ran(P) and

(

P−1 Pφ,w f
)

(x) = (Φband ∗Wpoint ∗ f) (x) , x ∈ Ω ,

with the blurring kernel

Wpoint(x,y) := δ (x)wpoint (0,y) , for x = (x,y) ∈ R
3 .
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Proof. Theorem 2.4 is proven along the lines of Theorem 1.1. For showing an analogue
of Proposition 2.1, one uses the translational invariance of the wave equation.

In the case of cylindrical surface the blurring kernel is a combination of the planar
and the spherical case and follows from the translational and the rotational invariance
of the wave equation.

Theorem 2.5 (Blurring kernels for cylindrical detection surface). Let Ω := R ×DR

denote a cylinder of radius R, and assume that

w(x,x′) = wpoint(x− x′, |y − y′|) , for x = (x,y) and x = (x,y) ∈ R × ∂DR .

Here wpoint(x, |y − y0|) is assumed to be absolutely integrable on R × ∂DR for some
y0 ∈ ∂DR. Moreover, let f ∈ C∞

c (Ω), let φ : R → R be an even function such
that Φband(x) = φ′(|x|)/ |x| is integrable, and assume that supp(φ) ⊂ [−τ, τ ], where
τ := dist

(

supp(f), ∂Ω
)

.

Then Pφ,w f ∈ ran(P), and

(

P−1 Pφ,w f
)

(x) =

[

Φband ∗
∫

R3

Wpoint(·,x′)f(x′) dx′

]

(x) , for x = (x,y) ∈ R
3

where

Wpoint

(

(x,y), (x′,y′)
)

:=
R

|x| δ(|y| − |y′|)wpoint

(

x− x′, |y − y′|
)

, .

for x = (x,y) and x′ = (x′,y′) ∈ R ×DR.

Proof. Theorem2.5 is again proven along the lines of Theorem 1.1. In order to show an
analogue of Proposition 2.1, one uses the translational and the rotational invariance
of the wave equation.

3 Approximate line detectors

In this section we derive the analytic expressions for the blurring kernels due to the de-
tector size and bandwidth given in Theorem 1.3. In the following let W2D : C∞

c (R2) →
C∞(R2 × (0,∞)) denote the operator that maps a compactly supported initial data
to the solution of the two dimensional wave equation

(

∂2
t − ∆

)

p(x, t) = 0 , (x, t) ∈ R
2 × (0,∞) , (11a)

p(x, 0) = f(x) , ∂tp(x, 0) = 0 , x ∈ R
2 . (11b)

The symmetry of the Greens function of the two dimensional wave equation implies
the following well know result:

Lemma 3.1 (Acoustic reciprocal principle in two dimensions). Let f ∈ C∞
c (R2) and

let Ψ be a compactly supported absolutely integrable function. Then Ψ ∗
(

W2D f
)

=

W2D
(

Ψ ∗ f
)

.
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3.1 Finite beamwidth

First we calculate the blurring kernel due to the detector size.

Proposition 3.2. Let f ∈ C∞
c (R3), let w : R → R be a compactly supported even

function such that Wline(x) = −1/π
∫ ∞

|x|
∂ξw(ξ)/

√

ξ2 − |x|2 dξ is absolutely integrable.

Then, for any line ℓ ⊂ R
3, we have

∫

R3

w
(

dist(ℓ,x)
)(

W3D f
)

(x, t)dx =

∫

ℓ

W3D
(

Wline ∗ f
)

(x, t)dℓ(x) ,

with Wline as defined in (6).

Proof. Without loss of restriction we shall assume that ℓ is of the form ℓ = R(1, 0, 0)+
(0, y1, y2). Moreover we write x = (x,y) with x ∈ R and y = (y1, y2) in R

2, and denote
by X the X-ray transform restricted to lines pointing in (1, 0, 0) direction,

(Xh)(y) :=

∫

R

h(x,y)dx1 , h ∈ C∞
c (R3) .

The commutation relation of the Laplacian with the X-ray transform (see [17]) implies
that W2D X = XW3D. After writing x′ = (x′,y′) with x′ ∈ R and y′ = (y′1, y

′
2) in

R
2, we obtain

∫

R3

w(dist(ℓ,x)
(

W3D f
)

(x′, t)dx′

=

∫

R2

∫

R

w(|y − y′|)
(

W3D f
)

((x′,y′), t)dx′dy′

=

∫

R2

w(|y − y′|)(XW3D f)(y′, t)dy′

=
(

w(|·|) ∗ (XW3D f)
)

(y, t) =
(

w(|·|) ∗ (W2D X f)
)

(y, t) . (12)

Now let U(x) = u(|x|) be any radially symmetric integrable function. Then one
easily verifies that (XU)(y) = Iu(|y|) with Iu(ξ) :=

∫

R
u
(

(s2 + ξ2)1/2
)

ds. Moreover,

the relation XW3D = W2D X, the convolution theorem for the X- ray transform, and
the acoustic reciprocal principle Lemma 3.1, imply

∫

ℓ

W3D(U ∗ f)(x, t)dℓ(x′) =
(

(XW3D(U ∗ f)
)

(y, t)

=
(

W2D X(U ∗ f)
)

(y, t)

=
(

W2D
(

XU ∗ X f
)

)

(y, t)

=
(

W2D(Iu(|·|) ∗ X f)
)

(y, t)

=
(

Iu(|·|) ∗ (W2D X f)
)

(y, t) . (13)
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Consequently the left hand sides of (12) and (13) coincide, if

w(ξ) = Iu(ξ) =

∫

R

u
(

(s2 + ξ2)1/2
)

ds = 2

∫ ∞

ξ

u(η)
ηdη

√

η2 − ξ2
.

This is an Abel integral equation for the function u. Its solution is (see [12, 28])

u(η) = − 1
π

∫ ∞

η
∂ξw(ξ)√
ξ2−η2

dξ. This concludes the proof by taking Wline = U .

3.2 Finite bandwidth

Next we calculate the point spread function due to the finite bandwidth.

Proposition 3.3. Let f ∈ C∞
c (R3) and let φ : R → R be an even compactly supported

function such that Φband(x) = −πφ′(|x|)/(2 |x|) is absolutely integrable. Then

φ ∗t
∫

ℓ

(

W3D f
)

(x′, t)dℓ(x′) =

∫

ℓ

(

W3D(Φband ∗ f)
)

(x′, t)dℓ(x′) (14)

for any line ℓ with ℓ ∩ supp
(

Φband ∗ f
)

= ∅.

Proof. Proposition 2.3 states that φ∗t
(

W3D f
)

= W3D(Φband ∗f) outside the support
of Φband ∗ f . Integrating this identity over ℓ proves (14).

3.3 Proof of Theorem 1.3

According to Propositions 3.2 and 3.3 we have

φ ∗t
∫

R3

w
(

dist(ℓ,x′)
)(

W3D f
)

(x, t)dx′ = φ ∗t
∫

ℓ

W3D(Wline ∗ f)(x′, t)dℓ(x′)

=

∫

ℓ

W3D(Φband ∗Wline ∗ f)(x′, t)dℓ(x′) .

By taking ℓ = ℓθ,y, y ∈ D, and using the support hypothesis on φ ∗ w, this shows
Lφ,w f = L(Φband ∗Wline ∗ f). Therefore Lφ,w f ∈ ran(L) and L−1 Lφ,w f = Φband ∗
Wline ∗ f , which concludes the proof.

4 Discussion

In this paper we derived analytic expression for the point spread functions in PAT
due to the finite detector size and the finite bandwidth of the ultrasound detection
system for approximate point and approximate line detectors. We showed, that the
point spread functions due to the finite bandwidth is spatial invariant in both cases.
The point spread function due to the detector size is only spatial invariant in the
case of line detectors. The intensity profile of the detecting laser beam is usually well

approximated by w(r) = I0 exp
(

−r2

2b

)

, see [33, 36]. In this case, up to some constant,
the radial profile of the point spread function wline coincides with the beam profile w.

11



The full with half maximum of the point spread function is a typical parameter to
measure spatial resolution. Ignoring effects of finite bandwidth, Theorems 1.1 and
1.3 show that the lateral resolution of PAT with “approximate point detectors” is
atrans |x| /R, where atrans is the diameter of the ultrasound transducer, and the (uni-
form) resolution of PAT with “approximate line detectors” is given by the width alaser

of the detecting laser beam. Typical values atrans = 1 cm and alaser = 0.1 cm (see
[33, 42]) point out the high spatial resolution of PAT with integrating line detectors.

5 Acknowledgement

This work has been supported by the Austrian Science Foundation (FWF), project
S10505-N20.

References

[1] M. Agranovsky and P. Kuchment. Uniqueness of reconstruction and an inversion
procedure for thermoacoustic and photoacoustic tomography with variable sound
speed. Inverse Probl., 23(5):2089–2102, 2007.

[2] M. L. Agranovsky and E. T. Quinto. Injectivity sets for the Radon transform over
circles and complete systems of radial functions. J. Funct. Anal., 139(2):383–414,
1996.

[3] G. Ambartsoumian and P. Kuchment. On the injectivity of the circular Radon
transform. Inverse Probl., 21(2):473–485, 2005.

[4] M. A. Anastasio, D. Zhang, J. Modgil, and P. L. La Riviere. Application of
inverse source concepts to photoacoustic tomography. Inverse Probl., 23(6):S21–
S35, 2007.

[5] P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Pal-
tauf. Temporal back-projection algorithms for photoacoustic tomography with
integrating line detectors. Inverse Problems, 23(6):S65–S80, 2007.

[6] P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer. Thermo-
acoustic tomography with integrating area and line detectors. IEEE Trans. Ul-
trason., Ferroeletr., Freq. Control, 52(9):1577–1583, September 2005.

[7] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf. Exact and approximate
imaging methods for photoacoustic tomography using an arbitrary detection sur-
face. Phys. Rev. E, 75(4):046706, 2007.

[8] C. Clason and M. Klibanov. The quasi-reversibility method for thermoacoustic
tomography in a heterogeneous medium. SIAM J. Sci. Comp., 30(1):1–23, 2007.

12



[9] R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S.
Prough. Optoacoustic technique for noninvasive monitoring of blood oxygenation:
a feasibility study. App. Opt., 41(22):4722–4731, 2002.

[10] D. Finch, M. Haltmeier, and Rakesh. Inversion of spherical means and the wave
equation in even dimensions. SIAM J. Appl. Math., 68(2):392–412, 2007.

[11] D. Finch, S. Patch, and Rakesh. Determining a function from its mean values
over a family of spheres. SIAM J. Math. Anal., 35(5):1213–1240, 2004.

[12] R. Gorenflo and S. Vessella. Abel integral equations, volume 1461 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1991. Analysis and applications.

[13] M. Haltmeier. Frequency domain reconstruction for photo- and thermoacoustic
tomography with line detectors. Math. Models Methods Appl. Sci., 19(2):283–306,
2009.

[14] M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf. Thermo-
acoustic tomography and the circular Radon transform: exact inversion formula.
Math. Models Methods Appl. Sci., 17(4):635–655, 2007.

[15] M. Haltmeier, O. Scherzer, and G. Zangerl. Influence of detector bandwidth and
detector size to the resolution of photoacoustic tomagraphy. In F. Breitenecker
and I. Troch, editors, Argesim Report no. 35: Proceedings Mathmod 09 Vienna,
pages 1736–1744, 2009.

[16] M. Haltmeier, T. Schuster, and O. Scherzer. Filtered backprojection for thermoa-
coustic computed tomography in spherical geometry. Math. Methods Appl. Sci.,
28(16):1919–1937, 2005.

[17] S. Helgason. The Radon Transform, volume 5 of Progress in Mathematics.
Birkhäuser, Boston, second edition, 1999.

[18] Y. Hristova. Time reversal in thermoacoustic tomography&mdash;an error esti-
mate. Inverse Probl., 25(5):055008 (14pp), 2009.

[19] Y. Hristova, P. Kuchment, and L. Nguyen. Reconstruction and time reversal
in thermoacoustic tomography in acoustically homogeneous and inhomogeneous
media. Inverse Problems, 24(5):055006 (25pp), 2008.

[20] F. John. Partial Differential Equations, volume 1 of Applied Mathematical Sci-
ences. Springer Verlag, New York, fourth edition, 1982.

[21] R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller.
Thermoacoustic molecular imaging of small animals. Mol. Imaging, 2(2):113–123,
2003.

[22] R. A. Kruger, P. Lui, Y. R. Fang, and R. C. Appledorn. Photoacoustic ultrasound
(PAUS)—reconstruction tomography. Med. Phys., 22(10):1605–1609, 1995.

13



[23] P. Kuchment and L. A. Kunyansky. Mathematics of thermoacoustic and photoa-
coustic tomography. European J. Appl. Math., 19:191–224, 2008.

[24] L. A. Kunyansky. Explicit inversion formulae for the spherical mean Radon trans-
form. Inverse Probl., 23(1):373–383, 2007.

[25] L. A. Kunyansky. A series solution and a fast algorithm for the inversion of the
spherical mean radon transform. Inverse Probl., 23(6):S11–S20, 2007.

[26] A. K. Louis and E. T. Quinto. Local tomographic methods in sonar. In Surveys
on solution methods for inverse problems, pages 147–154. Springer, Vienna, 2000.

[27] S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van
Leeuwen. The Twente Photoacoustic Mammoscope: system overview and perfor-
mance. Physics in Medicine and Biology, 50(11):2543–2557, 2005.

[28] F. Natterer. The Mathematics of Computerized Tomography, volume 32 of Classics
in Applied Mathematics. SIAM, Philadelphia, 2001.

[29] L. V. Nguyen. A family of inversion formulas for thermoacoustic tomography.
Inverse Probl. Imaging, 3(4):649–675, 2009.

[30] R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Pal-
tauf. Photoacoustic micro-tomography using interferometric detection. J. Biomed.
Opt., 15:021307, 2010.

[31] A. Oraevsky and L. V. Wang, editors. Photons Plus Ultrasound: Imaging and
Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacous-
tics, and Acousto-optics, volume 6856 of Proceedings of SPIE, 2008.

[32] V. P. Palamodov. Remarks on the general Funk–Radon transform and thermo-
acoustic tomography. arXiv, page math.AP/0701204, 2007.

[33] G. Paltauf, R. Nuster, and P. Burgholzer. Characterization of integrating ul-
trasound detectors for photoacoustic tomography. Journal of Applied Physics,
105:102026, 2009.

[34] G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer. Experimental evaluation
of reconstruction algorithms for limited view photoacoustic tomography with line
detectors. Inverse Problems, 23(6):S81–S94, 2007.

[35] G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer. Photoacoustic tomogra-
phy using a Mach-Zehnder interferometer as an acoustic line detector. App. Opt.,
46(16):3352–3358, 2007.

[36] G. Paltauf, R. Nuster, K. Passler, M. Haltmeier, and P. Burgholzer. Optimizing
image resolution in three-dimensional photoacoustic tomography with line detec-
tors. In [31], 2008.

14



[37] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Vari-
ational methods in imaging, volume 167 of Applied Mathematical Sciences.
Springer, New York, 2009.

[38] P. Stefanov and G. Uhlmann. Thermoacoustic tomography with variable sound
speed. Inverse Probl., 25(7):075011, 16, 2009.

[39] L. V. Wang. Prospects of photoacoustic tomography. Med. Phys., 35(12):5758–
5767, 2008.

[40] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography.
Nature Phot., 3(9):503–509, 2009.

[41] X. D. Wang, G. Pang, Y. J. Ku, X. Y. Xie, G. Stoica, and L. V. Wang. Noninva-
sive laser-induced photoacoustic tomography for structural and functional in vivo
imaging of the brain. Nature Biotech., 21(7):803–806, 2003.

[42] M. Xu and L. V. Wang. Analytic explanation of spatial resolution related to
bandwidth and detector aperture size in thermoacoustic or photoacoustic recon-
struction. Phys. Rev. E, 67(5):0566051–05660515 (electronic), 2003.

[43] M. Xu and L. V. Wang. Universal back-projection algorithm for photoacoustic
computed tomography. Phys. Rev. E, 71(1):0167061–0167067 (electronic), 2005.

[44] M. Xu and L. V. Wang. Photoacoustic imaging in biomedicine. Rev. Sci. Instru-
ments, 77(4):1–22, 2006. Article ID 041101.

[45] M. Xu and L. V. Wang. Analysis of spatial resolution in photoacoustic tomogra-
phy. In L. V. Wang, editor, Photoacoustic imaging and spectroscopy, chapter 5,
pages 47–60. CRC Press, Boca Raton, FL, 2009.

[46] Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment. Reconstructions in
limited-view thermoacoustic tomography. Med. Phys., 31(4):724–733, 2004.

15


