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Abstract. In this article we are concerned with photoacoustic imaging for the

electromagnetic absorption coefficient of a medium from recorded acoustic signals

with detectors that are arranged on lines or planes outside of the medium. In the

literature Fourier reconstruction algorithms have been proposed, which require in-

terpolation of the sampled acoustic signals on the transducers in the Fourier space

domain. As documented in the literature these methods are not very efficient numer-

ically or produce serious artifacts. The proposed algorithm uses the nonuniform fast

Fourier transform. As we show below this algorithm can be implemented efficiently

and avoids serious artifacts.

Keywords: Photoacoustic imaging; planar measurement geometry; fast algorithm;

nonuniform FFT.

AMS Classifications: 35L05, 65R32, 65T50, 92C55.

1 Introduction

Photoacoustic imaging (PAI) is used for visualizing the electromagnetic absorption coeffi-

cient of a medium at low frequencies. PAI is based on the physical principle that acoustic

waves are excited when a medium is exposed to non-ionizing electromagnetic radiation.

The method combines the advantages of optical (high contrast) and ultrasonic imaging

and has demonstrated great promise for a variety of biomedical applications, such as

imaging of animals [14, 28], early cancer diagnostics [15, 18], and imaging of vasculature

[11, 7].

Fourier reconstruction [1, 13, 30] is a well established numerical method for recon-

struction of the absorption density when the acoustic signals are recorded with detectors,
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Figure 1: Setup for photoacoustic imaging. The object is illuminated with an elec-
tromagnetic pulse, which induces an acoustic wave. The acoustic waves are measured
with detectors on a plane (or a line).

which are arranged on lines or planes (see Figure 1). These reconstruction techniques

can be implemented using the fast Fourier transform (FFT). However, standard FFT

algorithm requires sampling on an equally spaced grid, and therefore, in order to im-

plement the reconstruction algorithms interpolation in the Fourier space (see Section 2)

is required. Referring to the literature [19] interpolation is a very critical issue, which

can lead to sever artifacts (see the examples in Section 5). In this paper, we propose

an efficient reconstruction algorithm that uses the nonuniform FFT which provides very

accurate reconstructions.

This article is organized as follows: In Section 2 we present the mathematical basics

of Fourier reconstruction in PAI. In Section 3 we review the nonuniform FFT which is

then used to derive the nonuniform FFT based reconstruction algorithm in Section 4. In

Section 5 we present numerical results of the proposed algorithm and compare it with

existing Fourier algorithms. The paper concludes with a discussion of some issues related

sampling and resolution in Appendix A.

2 Photoacoustic Imaging

Let C∞
0 (H) denote the space of smooth functions supported in the half space H := R

d−1×
(0,∞), d ≥ 2. Consider the initial value problem

(

∂2
t −△

)

p(x, t) = 0 , (x, t) ∈ R
d × (0,∞) ,

p(x, 0) = f(x) , x ∈ R
d ,

∂tp(x, 0) = 0 , x ∈ R
d ,
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with f ∈ C∞
0 (H). Here△ denotes the Laplacian in Rd and ∂t is the derivative with respect

to t. We write x = (x, y), x ∈ R
d−1, y ∈ R, and define the operator Q : C∞

0 (H)→ C∞(Rd)

by

(Q f)(x, t) :=

{

p(x, y = 0, t) , if t > 0 ,

0 , otherwise .

Photoacoustic imaging is concerned with reconstructing f ∈ C∞
0 (H) from incomplete and

possibly erroneous knowledge of Q f . Of particular interest for photoacoustic imaging are

the cases d = 2 and d = 3, see [16, 23, 25, 29].

The operator Q can be inverted analytically be means of the exact inversion formula

(Fd f)(ξ, η) =
2η
(

Fd Q f
)

(

ξ, sign(η)
√

|ξ|2 + η2
)

sign(η)
√

|ξ|2 + η2
, (ξ, η) ∈ R

d−1 × R , (1)

where the Fd denotes the d-dimensional Fourier transform,

(Fd ϕ)(ξ) :=

∫

Rd

e−iξxϕ(x) dx , ξ = (ξ, η) ∈ R
d .

Equation (1) has been derived in [20, 30] for three spatial dimensions. It can be rigourously

proved in any dimension using the inversion formula for the spherical mean Radon trans-

form of [2, 8]. Note that a related formula using the Fourier cosine transform instead of

the Fourier transform has been obtained in [12, 13] for d = 2, 3.

The inversion formula (1) yields an exact reconstruction, provided that (Q f)(x, t) is

given for all (x, t) ∈ R
d. In practical applications only a partial (or limited view) data set

is available [21, 22, 31]. In this paper we assume that data (Q f)(x, t) are given only for

(x, t) ∈ (0,X)d, see Figure 1, which are modeled by

g(x, t) := wcut(x, t)(Q f)(x, t) , (2)

where wcut is a smooth nonnegative cutoff function that vanishes outside (0,X)d. Using

data (2), the function f cannot be exactly reconstructed in a stable way (see [17, 31]). It

is therefore common to apply the exact inverse of Q to the partial data g and consider

the reconstruction as an approximation of the data to be reconstructed. More precisely,

the function f † defined by

(Fd f
†)(ξ, η) :=

2η(Fd g)
(

ξ, sign(η)
√

|ξ|2 + η2
)

sign(η)
√

|ξ|2 + η2
, (ξ, η) ∈ R

d (3)

is considered an approximation of f . The function f † is called partial reconstruction.

In this paper we apply the nonuniform FFT to derive a fast algorithm for implementing

(3).
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3 The Nonuniform Fast Fourier Transform

The discrete Fourier transform of a vector g = (gn)N−1
n=0 ∈ C

N with respect to the nodes

ω = (ωk)
N/2−1
k=−N/2 (with N even) is defined by

T [g](ωk) :=
N−1
∑

n=0

e−iωkn2π/Ngn , k = −N/2, . . . , N/2 − 1 . (4)

Direct evaluation of the N sums in (4) requires O(N2) operations. Using the classical fast

Fourier transform (FFT) this effort can be reduced to O(N logN) operations. However,

application of the classical FFT is restricted to the case of equispaced nodes ωk = k,

k = −N/2, . . . , N/2 − 1.

The nonuniform FFT (see [3, 6, 9, 24, 26]) is an approximate but highly accurate

method for evaluating (4) at arbitrary nodes ωk, k = −N/2, . . . , N/2 − 1 in O(N logN)

operations.

To derive the nonuniform FFT we closely follow the presentation of [9], which is based

on the following lemma:

Lemma 3.1 ([9, Proposition 1]). Let c > 1 and α < π(2c− 1). Assume that Ψ : R→ R

is continuous in [−α,α], vanishing outside [−α,α], and positive in [−π, π]. Then

e−iωθ =
c

2πΨ(θ)

∑

j∈Z

Ψ̂(ω − j/c)e−ijθ/c , ω ∈ R , |θ| ≤ π . (5)

Here Ψ̂(ω) :=
∫

R
e−iωθΨ(θ)dθ denotes the one dimensional Fourier transform of Ψ.

Proposition 3.2. Let c, α, Ψ, and Ψ̂ be as in Lemma 3.1. Then, for every g = (gn)N−1
n=0 ∈

C
N and ω ∈ R we have

N−1
∑

n=0

e−iωn2π/Ngn =
∑

j∈Z

e−iπ(ω−j/c)Ψ̂(ω − j/c)Ĝj , (6)

with

Ĝj :=
c

2π

(

N−1
∑

n=0

gne
−ijn2π/(Nc)

Ψ(n2π/N − π)

)

, j ∈ Z . (7)

Proof. Taking θ = n2π/N − π ∈ [−π, π] in (5), gives

e−iωn2π/N =
c

2πΨ(n2π/N − π)

∑

j∈Z

Ψ̂(ω − j/c)e−ijn2π/N e−iπ(ω−j/c) ,

and therefore

N−1
∑

n=0

e−iωn2π/Ngn =
c

2π

N−1
∑

n=0

∑

j∈Z

e−iπ(ω−j/c)Ψ̂(ω − j/c) gne
−ijn2π/(Nc)

Ψ(n2π/N − π)
.
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Interchanging the order of summation in the right hand side of the above equation shows

(6), (7) and concludes the proof.

In the following we assume that cN is an even number. Then

Ĝj =
c

2π

(

cN−1
∑

n=0

gn

Ψ(n2π/N − π)
e−ijn2π/(Nc)

)

, j ∈ Z , (8)

where gn := 0 for n ≥ N , is an oversampled discrete Fourier transform with the over-

sampling factor c. Moreover we assume that Ψ̂ is concentrated around zero and decays

rapidly away from zero. The nonuniform FFT uses the formulas (6), (8) to evaluate T [g]

at the nodes ωk. The basic steps of the algorithm are as follows:

(i) Append (c−1)N zeros to the vector g = (gn)N−1
n=0 and evaluate Ĝj , j = −Nc/2, . . . , Nc/2−

1, in (8) with the FFT algorithm.

(ii) Evaluate the sums in (6) approximately by using only the terms with |ωk−j/c| ≤ K,

where the interpolation length K is a small positive parameter.

Since Ψ̂ is assumed to decay rapidly, the truncation error in Step (ii) is small.

The nonuniform Fourier transform is summarized in Algorithm 1:

Algorithm 1 Nonuniform FFT with respect to the nodes ω = (ωk)
N/2−1
k=−N/2, using input

vector g = (gn)N−1
n=0 , oversampling c > 1, interpolation length K, and window width

π < α < π(2c − 1).

1: Ψ←
(

Ψ(2πn/N − π)
)

n
⊲ precomputations

2: Ψ̂←
(

e−i(ωk−j/c)π/cΨ̂(ωk − j/c)
)

k,j
3:

4: function nufft(g,ω, c,K,Ψ, Ψ̂)
5: g← g/Ψ · c/(2π)
6: g←

(

g, zeros(1, (c − 1)N
)

⊲ zero-padding
7: g← fft(g) ⊲ one dimensional FFT
8: for k = −N/2, . . . , N/2 − 1 do

9: ĝk ←
∑

|j−cωk|≤cK Ψ̂k,jgj ⊲ truncated summation of (6)
10: end for

11: return (ĝk)k
12: end function

In Algorithm 1 all evaluations of Ψ and ψ̂ are precomputed and stored. Moreover the

classical FFT is applied to a vector of length cN . Therefore the numerical complexity of

Algorithm 1 is O(cN logN). Typically c = 2, in which case the numerical effort of the

nonuniform FFT is essentially twice the effort of the one dimensional classical FFT applied

to an input vector of the same length. See [9, Section 3] for an exact operation count,

and a comparison between actual computation times of the classical and the nonuniform

FFT.
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Figure 2: Left: Kaiser-Bessel window Ψα,K
KB (θ) and characteristic function of the interval

[−π, π]. Right: Fourier transforms Ψ̂α,K
KB (ω) and 2π sinc(ω) in dB (decibel). Here dB

denotes the logarithmic decay 10 log10(φ(ω)/φ(0)) of some quantity φ(ω).

In our implementation we choose for Ψ the Kaiser Bessel window,

Ψα,K
KB (θ) :=

1

I0(αK)

{

I0(K
√
α2 − θ2) , if |θ| ≤ α ,

0 , if |θ| > α .

Here I0 is the modified Bessel function of order zero. The one dimensional Fourier trans-

form of Ψα,K
KB is

Ψ̂α,K
KB (ω) =

{

2 sinh(α
√
K2 − ω2)/

(

I0(αK)
√
K2 − ω2

)

, if ω ∈ R \ {−K,K} ,
2α/(I0(αK)), otherwise .

The Kaiser Bessel window is a good and often used candidate for Ψ, since Ψ̂α,K
KB (ω)

becomes extremely small for |ω| > K. Exemplarily, for the parameters K = 3, and

α = 3π, we have

Ψ̂α,K
KB (K)

Ψ̂α,K
KB (0)

=
αK

sinh(αK)
≃ 3 ∗ 10−11 ,

see Figure 2.

Remark 3.3. Take c = 1 and let Ψ be the characteristic function of the interval [−π, π].

Then Ψ̂(ω) = 2π sinc(πω) and (6), (7) reduce to the sinc series

N−1
∑

n=0

e−iωn2π/Ngn =
∑

j∈Z

e−iπ(ω−j) sinc(ω − j)
(

N−1
∑

n=0

gne
−ijn2π/N

)

,

which is a discretized version of Shannon’s sampling formula [19, 27]

ĝ(ω) =
∑

j∈Z

e−iπ(ω−j) sinc(ω − j)ĝ(j)

applied to the Fourier transform of a function g supported in [0, 2π].
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See Figure 2 for a comparison of sinc and Ψ̂α,K
KB , with K = 3 and α = 3π. One realizes

that Ψ̂α,K
KB decays much faster than sinc and is therefore much better suited for truncated

interpolation. In fact, Ψ̂α,K
KB (ω) is in the order of double precision for |ω| > 3, whereas

| sinc(ω)| < 0.01 only for ω > 100/π.

An error estimate for the nonuniform FFT using the Kaiser Bessel window is given in

[9]. The result is

∣

∣

∣
e−iωθ − c

2πΨ(θ)

∑

|ω−j/c|<K

Ψ̂α,K
KB (ω − j/c)e−ijθ/c

∣

∣

∣
≤ 30

πI0(K/c2π
√
α2 − 1)

.

Exemplarily, taking c = 2, α = 3π and K = 3, the above error is as small as 3 ∗ 10−8.

4 A Fourier Reconstruction Algorithm based on the Non-

uniform FFT

In this section we apply the nonuniform FFT to photoacoustic imaging. Throughout the

following we restrict our attention to two dimensions, noting that the general case d ≥ 2

can be treated in an analogous manner.

Assume that f ∈ C∞
0

(

(0,X)2
)

, and set g := wcut Q f , where wcut is as in (2). Fourier

reconstruction names an implementation of (3), that uses discrete data

gm,n := g(m∆samp, n∆samp) , (m,n) ∈ {0, . . . , N − 1}2 , (9)

and reconstructs an approximation

fm,n ≃ f †(m∆samp, n∆samp) , (m,n) ∈ {0, . . . , N − 1}2 . (10)

Here f † is defined by (3), N is an even number and ∆samp := X/N . In appendix Appendix

A we show that the sampling in (10), (9) is sufficiently fine, provided that ∆samp ≤ π/Ω,

where Ω is the essential bandwidth of f .

Discretizing (3) with the trapezoidal rule gives

N−1
∑

n=0

(

N−1
∑

m=0

e−i(ln+km)2π/Nfm,n

)

=
2k

ωk,l

N−1
∑

n=0

e−iωk,ln2π/N

(

N−1
∑

m=0

e−ikm2π/Ngm,n

)

, (11)

where

ωk,l := sign(l)
√

k2 + l2 , (k, l) ∈ {−N/2, . . . , N/2 − 1}2 .

Now one notices that the inner sums in (11),

g̃k,n :=

N−1
∑

m=0

e−ikm2π/Ngm,n , (k, n) ∈ {−N/2, . . . , N/2 − 1} × {0, . . . , N − 1} , (12)
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can be evaluated with N one dimensional FFTs, and the outer sums

ĝk,l :=
N−1
∑

n=0

e−iωk,ln2π/N g̃k,n , (k, l) ∈ {−N/2, . . . , N/2 − 1}2 , (13)

with N nonuniform FFTs. Having evaluated ĝk(ωk,l) we set f̂k,l :=
2k ĝk,l

ωk,l
and finally find

fn,m :=
1

N2

N/2−1
∑

k,l=N/2

ei(km+ln)2π/N f̂k,l , (m,n) ∈ {0, . . . , N − 1}2 , (14)

with the two dimensional FFT.

Algorithm 2 Nonuniform FFT based algorithm for calculating f = (fm,n)N−1
n,m=0 using

data g = (gm,n)N−1
m,n=0, oversampling factor c, interpolation length K, and window size

π < α < π(2c − 1).

1: function FouRecNufft(g, α, c,K)
2: for n = 0, . . . , N − 1 do

3: h← (gm,n)m
4: (g̃k,n)k ← fft(h) ⊲ one dimensional FFT
5: end for

6: l← (−N/2, . . . , N/2 − 1)
7: for k = −N/2, . . . , N/2 − 1 do

8: ω ← sign(l)
√
k2 + l2

9: h← nufft(g,ω, c,K,Ψ, Ψ̂) ⊲ nonuniform FFT, Algorithm 1
10: (fk,l)l ← k h/ω
11: end for

12: f ← (fk,l)k,l

13: f ← ifft2(f) ⊲ two dimensional inverse FFT
14: return f

15: end function

The nonuniform FFT based reconstruction algorithm is summarized in Algorithm 2.

Its numerical complexity can easily be estimated. Evaluating (12) requires NO(N logN)

operations (N one dimensional FFTs), evaluating (13) requires NO(N logN) operations

(N non-uniform FFTs), and (14) is evaluated with the inverse two dimensional FFT in

O(N2 logN) operations. Therefore the overall complexity of Algorithm 1 is O(N2 logN).

In the following we compare the numerical performance of Algorithm 2 with the stan-

dard Fourier algorithms presented in the literature [10, 30], which all differ in the way

how the sums in (13) are evaluated:

1. Direct Fourier reconstruction. Equation (13) cannot be evaluated with the

classical FFT algorithm because the nodes ωk,l are non-equispaced. The most simple

way to evaluate (13) is with direct summation. Because there are N2 such sums in

(13), direct Fourier reconstruction requires O(N3) operations. Consequently it does
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not lead to a fast algorithm. However, since (13) is evaluated exactly, it is optimally

suited to evaluate reconstructions of fast Fourier algorithms.

2. Linear interpolation based reconstruction. A fast and simple alternative to

direct Fourier reconstruction is as follows: Choose an oversampling factor c ≥ 1 and

evaluate

ĝk(ω) := ∆samp

N−1
∑

n=0

e−iωn2π/N g̃k,n ,

at the uniformly spaced nodes ω = ∆sampj/c, j ∈ {0, . . . , Nc−1} exactly. In a next

step, linear interpolation is used to find approximate values ĝk,l ≃ ĝk(ωk,l).

3. Truncated sinc reconstruction. If the function Ψ in Algorithm 2 is chosen

as the characteristic function of the interval [−cπ, cπ], c ≥ 1, then the nonuniform

fast Fourier transform reduces to the truncated sinc interpolation considered in [10].

However, due to the slow decay of sinc(ω), truncation will introduce a non-negligible

error in the reconstructed image (see Remark 3.3).

fcirc Qfcirc

fphant Qfphant

Figure 3: Phantoms and corresponding data used in the numerical test.
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direct reconstruction

linear interpolation, c = 1 linear interpolation, c = 2

truncated sinc nonuniform FFT

Figure 4: Reconstruction of fcirc. White corresponds to function value 1, black to function
value -0.4. Top Line: Direct Fourier reconstruction. Middle line: Linear interpolation
based reconstruction without (left) and with (right) oversampling. Bottom line: Trun-
cated sinc (left) and nonuniform FFT based reconstruction (right).

5 Numerical Examples

In the following we numerically evaluate nonuniform FFT based, truncated sinc, linear

interpolation based, and direct Fourier reconstruction. In all numerical experiments we

use N = 512, X = 1. For the nonuniform FFT and the truncated sinc interpolation we

10



illumination

truncated sinc nonuniform FFT

Figure 5: Differences between and direct and truncated sinc reconstruction (left), and
direct and nonuniform FFT based reconstruction (right). White (resp. black) corresponds
to function value 0.05 (resp. −0.05).

choose the oversampling factor c = 2, interpolation length K = 3, and window width

α = 3π − 0.02.

The cutoff function wcut is constructed by convolution of

ϕǫ(x, t) =







Cǫ exp
(

−1/(ǫ − x2 − t2)4
)

, if x2 + t2 < ǫ ,

0, otherwise ,

with the characteristic function of [0, 1]2, where ǫ is a small parameter and Cǫ is chosen

in such a way that
∫

R2 ϕǫ(x, t)dxdt = 1. Typically, ǫ is chosen as a “small” multiple of

the sampling step size ∆samp = 1/N .

1. As first case example we use a circular shaped object

fcirc(x) =

{

(

a2 − |x− x0|2
)1/2

, if |x− x0| < a ,

0, otherwise ,

centered at x0 := (x0, y0), see Figure 3. For such a simple object reconstruction

artifacts can be identified very clearly. Moreover, the data Q fcirc can be evaluated

analytically (see [4, Equation (B.1)]) as

(Q fcirc)(x, 0, t) = Re

[

(s+ − s−)− t log
(

s+ + (t+ ai)

s− + (t− ai)

)]

.

Here s± := ((t±a)2 + |(x, 0)−x0|2)1/2, log(·) is the principal branch of the complex

logarithm, and Re[z] denotes the real part of complex number z. The reconstruction

results are depicted in Figures 4 and 5.

2. In the next example we consider the Shepp–Logan phantom fphant, which is shown

in bottom right image in Figure 3. The data were calculated numerically by imple-

11



illumination

linear interpolation, c = 1 linear interpolation, c = 2

truncated sinc nonuniform FFT

Figure 6: Reconstructions of fphant. Top line: Linear interpolation based reconstruc-
tion without (left) and with (right) oversampling. Bottom line: Reconstructions using
truncated sinc (left) nonuniform FFT based reconstruction (right).

truncated sinc nonuniform FFT

Figure 7: Differences between and direct and truncated sinc reconstruction (left), and
direct and nonuniform FFT based reconstruction (right). White (resp. black) corresponds
to function value 0.05 (resp. −0.05)

menting d’Alemberts formula [5],

(Q fphant)(x, 0, t) =

∫ t

0

r(∂r M fphant)(x, 0, r)√
t2 − r2

dr

12



object

Q fphant + noise linear interpolation, c = 1

truncated sinc nonuniform FFT

Figure 8: Reconstruction of fphant from noisy data. Top line: Noisy data (left) and
reconstruction using linear interpolation (right). Bottom line: Truncated sinc (left) and
nonuniform FFT based reconstruction (right).

with

(M fphant)(x, 0, t) :=
1

2π

∫

S1

fphant

(

(x, 0) + tω
)

dω

denoting the spherical mean transform. The reconstruction results from simulated

data are depicted in Figures 6 and 7.

In order to demonstrate the stability of the Fourier algorithms, we also performed

reconstructions from noisy data, where Gaussian noise was added with a variance

equal to 10% of the maximal data value. The reconstruction results are depicted in

Figure 8.

Discussion

We emphasize that none of the above discussed algorithms has been designed to calculate

an approximation of f but an approximation of to the partial reconstruction f † defined in

(3). Therefore even in the direct reconstruction (top left image in Figure 4) one can see

some blurred boundaries appear in the reconstructed images. Such artifacts are expected

using limited view data (2), see [17, 31]

13



The results of linear interpolation based reconstruction without oversampling (c = 1)

are quite useless. The reconstructions can be significantly improved by using a larger

oversampling factor c. However, even then, the results never reach the quality of the

nonuniform FFT based reconstruction. Moreover, the numerical effort of linear interpola-

tion based reconstruction is proportional to the oversampling factor, which prohibits the

use of “very large” values for c. In the reconstruction with c = 2 (middle line in Figure 4

and top line in Figure 6) artifacts are still clearly visible.

The images in the bottom lines of Figures 4 and 6 suggest that truncated sinc and

nonuniform FFT based reconstruction seem to perform quite similar. However the dif-

ferences to the direct Fourier reconstructions in Figure 5 and 7 demonstrate the higher

accuracy of the nonuniform FFT based algorithm.

6 Conclusion

We presented a novel fast Fourier reconstruction algorithm for photoacoustic imaging us-

ing a limited detector array. The proposed algorithm is based on the nonuniform FFT.

Theoretical investigation as well as numerical simulations show that our algorithm pro-

duces better images than existing Fourier algorithms with the same numerical complexity.

Moreover the proposed algorithm is insensitive against noise.
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A Sampling and Resolution

Let f ∈ C∞
0

(

(0,X)d
)

and define g, f † by (2), (3). We further assume that Fd wcut is

centered around zero and that f is essentially bandlimited with essential bandwidth Ω, in

the sense that (Fd f)(ξ) is negligible for |ξ| ≥ Ω. Note that since f has bounded support,

Fd f cannot vanish exactly on {|ξ| ≥ Ω}.

• Sampling of g. Equation (1) implies that

(Fd g)(ξ, ω) = (Fdwcut) ∗ (Fd Q f) (ξ, ω) , (ξ, ω) ∈ R
d , (15)

with

(Fd Q f)(ξ, ω) =







2ω(Fd f)
(

ξ,sign(ω)
√

ω2−|ξ|2
)

sign(ω)
√

ω2−|ξ|2
, if |ω| > |ξ|2 ,

0 , otherwise .
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The assumption that f has essential bandwidth Ω and equation (15) imply that

(Fd g)(ξ, ω) is negligible outside the set

K := {(ξ, ω) : |ξ| ≤ |ω| ≤ Ω} ⊂ (−Ω,Ω)d .

Now Shannon’s sampling theorem [19, 27] states that g is sufficiently fine sampled

if the step size in x and in t satisfies the Nyquist condition ∆samp = π/Ω.

• Sampling of f †. Similar considerations as above again show that f † is essentially

bandlimited with essential bandwidth Ω. Shannon’s sampling theorem implies that

f † can be reliable reconstructed from discrete samples taken with step size ∆samp =

π/Ω.

If f has essential bandwidth larger than Ω, the function g has to be filtered with a

low pass-filter before sampling. Otherwise, sampling introduces aliasing artifacts in the

reconstructed image [19].

Theoretically the resolution (at least of the visible parts) can be increased ad infinity

by simply decreasing the sampling size ∆samp. In practical applications several other

factors (such as the bandwidth of the ultrasound detection system) limit the bandwidth

of the data [29]. This also guarantees that in practise a moderate sampling step size

∆samp gives correct sampling without aliasing.

References

[1] M. A. Anastasio, D. Zhang, J. Modgil, and P. L. La Riviere. Application of inverse

source concepts to photoacoustic tomography. Inverse Problems, 23:S21–S35, 2007.

[2] L.-E. Andersson. On the determination of a function from spherical averages. SIAM

Journal on Mathematical Analysis, 19:214–232, 1988.

[3] G. Beylkin. On the fast Fourier transform of functions with singularities. Applied

and Computational Harmonic Analysis, 2, 1995.

[4] P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf.

Temporal back-projection algorithms for photoacoustic tomography with integrating

line detectors. Inverse Problems, 23:S65–S80, 2007.

[5] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 2. Wiley-

Interscience, New York, 1962.

[6] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM

Journal on Scientific Computing, 14(6), 1993.

[7] R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S.

Prough. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a

feasibility study. Applied Optics, 41:4722–4731, 2002.

15



[8] J. A. Fawcett. Inversion of n-dimensional spherical averages. SIAM Journal on

Applied Mathematics, 45:336–341, 1985.

[9] K. Fourmont. Non-equispaced fast Fourier transforms with applications to tomog-

raphy. Journal of Fourier Analysis and Applications, 9(5):431–450, 2003.
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