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Abstract

The taut string method is classically used in statistical applications

to obtain a sparse estimation for a density given by point measurements.

Mostly, a discrete formulation is employed that interpretes the data and

the output as piecewise constant splines.

This paper deals with the continuous formulation of this algorithm.

We show that it is able to deal with continuous data as well as with

discrete data interpreted as Dirac measures. In fact, any onedimensional

finite signed Radon measures is suited as input for the method.

Moreover, we study the usage of tubes of non-constant diameter. Ex-

amples indicate that such tubes can be useful in various applications. An

existence and uniqueness theorem is given for the continuous formulation

of the taut string algorithm with arbitrary tubes of nonnegative diameter.

1 Introduction

The taut string algorithm (cf. [2, 7, 9]) is a method for denoising onedimensional
data f on an interval (a, b). The first step is to pass from the data f to its
antiderivative

F (x) :=

∫ x

a

f(y) dy .

In order to denoise f consider a tube G of radius α > 0 around F . Imagine
a string that is contained in the tube G and fixed in the points (a, 0) and
(

b, F (b)
)

. Now pull on both sides until the string, still contained in G, is taut.
The derivative of this taut string then gives a smoothed approximation to the
data f .

More formally, the denoised function uα is defined as derivative of the min-
imizer Uα of the constrained minimal surface functional

JF (V ) :=

∫ b

a

√

1 + V ′(x)2 dx + |V (a) − F (a)| + |V (b) − F (b)| → min ,

max
a≤x≤b

|U(x) − F (x)| ≤ α .
(1)
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This paper intends to present a twofold generalization of the taut string
algorithm. First, it has to be noted that the regularization works on the inte-
grated instead of the original data. As a consequence, the algorithm still makes
sense, if we require less regularity of f . We only need that the data can be
integrated. This is the case if we assume the data to be a finite Radon measure,
e.g. a sum of weighted Dirac measures. In particular, this provides a theoretical
justification for the usage of the taut string algorithm for density estimation in
statistical applications. Note, however, that in this setting the derivative in (1)
has to be regarded in a weak sense, and, consequently, JF as convex functional
depending on a Radon measure (cf. [3]).

The second generalization concerns the shape of the tube used for regu-
larization. In (1) we simply use a tube that extends in vertical direction by
a parameter α starting from the integrated data. Although there is a good
motivation for using exactly this kind of tube, namely equivalence with total
variation regularization (see [7, 9, 5]), one can easily find applications where
different forms yield better results. In fact, already in [2] tubes of varying size
have been used under the heading of local squeezing.

The structure of this article is as follows: In Section 2 we recall the ba-
sic properties of Radon measures and functions of bounded variation that are
needed for the main results. We present the mathematical definition of the
generalized taut string method in Section 3 and state the main existence and
uniqueness theorem. Additionally, we give a characterization of the solution
and some simple consequences. In Section 4 we show in different examples how
this generalization can be applied. The proofs of the main theorems are given
in Section 5.

2 Preliminaries

We require the following results stated in [1]. Many results concerning functions
of bounded variation can also be found in [6].

A positive Radon measure on an interval (a, b) ⊂ R is Borel regular measure
that is finite on each closed interval [c, d] ⊂ (a, b). If ν is a positive Radon
measure, and u a ν-summable function, we define the measure u ν setting

u ν(E) =

∫

E

u dν

for every Borel set E ⊂ (a, b).
We say that ν is a finite Radon measure, if there exist a positive Radon

measure |ν| with |ν|(a, b) < ∞, and a |ν|-measurable function σ : (a, b) → {±1}
such that ν = σ |ν|. The positive Radon measure |ν| is uniquely determined by
ν, and is called the total variation of ν. Similarly, σ is uniquely determined |ν|-
almost everywhere and coincides with the Radon Nikodým derivative dν/d|ν|.

Let ν be a finite Radon measure on (a, b). Then there exists a unique de-
composition

ν = uL1 + νs
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such that u ∈ L1(a, b) and there exists a Borel set E ⊂ (a, b) with L1
(

(a, b)\E
)

=
0 and |νs|(E) = 0. The function u is called the absolutely continuous part of
the measure ν. Here, L1 denotes the Lebesgue measure on the real numbers.

The Dirac measure δx centered at x ∈ (a, b) is defined by δx(E) = 1 if x ∈ E
and δx(E) = 0 else.

For U ∈ L1
loc and (c, d) ⊂ (a, b) the variation of U on (c, d) is defined as

|DU |(c, d) := sup
{

∫ d

c

U(x)φ′(x) dx : φ ∈ C∞
c (c, d), ‖φ‖∞ ≤ 1

}

= ∞ .

Here, C∞
c (c, d) denotes the space of all arbitrarily differentiable functions com-

pactly supported in (c, d). An integrable function U ∈ L1(a, b) is said to be of
bounded variation, if |DU |(a, b) < ∞. If U is of bounded variation, then there
exists a Radon measure DU with total variation |DU | satisfying

∫ b

a

U(x)φ′(x) dx = −

∫ b

a

φ(x) dDU for all φ ∈ C∞
c (a, b) .

Since DU is a finite Radon measure, it can be decomposed as DU = V L1 +
(DU)s. The function V coincides almost everywhere with the classical derivative
U ′ of U . The singular part (DU)s is often denoted as DsU instead. The function
U is called absolutely continuous, if the singular part DsU of its derivative
vanishes.

Let U : (a, b) → R. We define

U (l)(x) := lim
y→x−

U(y), U (+)(x) := lim sup
y→x

U(y) ,

U (r)(x) := lim
y→x+

U(y), U (−)(x) := lim inf
y→x

U(y)

whenever the above limits are defined.
The space BV(a, b) is by definition a subspace of L1(a, b) and thus consists of

equivalence classes of functions rather than of functions. There exists, however,
for every class U ∈ BV(a, b) a unique ’good representative’ Ũ satisfying

Ũ(x) =
1

2

(

Ũ (l)(x) + Ũ (r)(x)
)

for all x ∈ (a, b). In the following we will always identify U with its good
representative Ũ . It is easy to see that either U (+)(x) = U (l)(x) and U (−)(x) =
U (r)(x), or U (−)(x) = U (l)(x) and U (+)(x) = U (r)(x).

3 Generalization of the Taut String Method

Let µ be a finite Radon measure on (a, b), and let F be the antiderivative of µ,
i.e.,

F (x) := µ(a, x).
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Then the function F is of bounded variation, and DF = µ.
We define for U ∈ BV(a, b)

JF (U) :=

∫ b

a

√

1 + U ′(x)2 dx + |DsU |(a, b) + |U(a) − F (a)| + |U(b) − F (b)| .

The functional JF is the natural extension to BV(a, b) of the (unconstrained)
taut string functional defined in (1).

Let now T : [a, b] → R ∪ {+∞} be lower semicontinuous, and B : [a, b] →
R ∪ {+∞} be upper semicontinuous. Assume moreover that

T (a) ≥ F (a) ≥ B(a) , T (b) ≥ F (b) ≥ B(b) ,

T (x) ≥ F (x) ≥ B(x) for a.e. x ∈ (a, b) .

Define

G :=
{

U ∈ BV(a, b) : B(x) ≤ U(x) ≤ T (x) for a.e. x ∈ (a, b)
}

.

We consider the minimization problem

JF (U) → min , U ∈ G , (2)

and define the regularization of µ with tube G as µG := DUG , where UG

solves (2).

In the following we prove existence and uniqueness of a solution UG of (2).
Moreover, we provide a characterization of UG . To that end we need the follow-
ing subsets of (a, b):

We denote

Σ− :=
{

x ∈ (a, b) : lim sup
y→x−

B(y) ≥ lim inf
y→x+

T (y)
}

,

Σ+ :=
{

x ∈ (a, b) : lim sup
y→x+

B(y) ≥ lim inf
y→x−

T (y)
}

,
(3)

and
Σ := Σ+ ∪ Σ− =

{

x ∈ (a, b) : B(x) ≥ T (x)
}

. (4)

Since T is lower semicontinuous and B is upper semicontinuous, it follows that
the set Σ is closed.

We define moreover for a function V ∈ G

S(+)(V ) :=
{

x ∈ (a, b) \ Σ : V (−)(x) > B(x)
}

,

S(−)(V ) :=
{

x ∈ (a, b) \ Σ : V (+)(x) < T (x)
}

,
(5)

i.e., S(+)(V ) is the part of (a, b) where V does not touch the lower boundary of
the tube, and S(−)(V ) is the part of (a, b) where V does not touch the upper
boundary. Note that the set S(+)(V ) is open, since the set Σ is closed, the
function V (−) is lower semicontinuous, and B is upper semicontinuous. Similarly
we obtain that the set S(−)(V ) is open.
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Theorem 3.1. The minimization problem (2) attains a unique solution UG

characterized by the conditions

1. UG(a) = F (a), UG(b) = F (b),

2. for every x ∈ Σ− we have

U
(l)
G (x) = lim sup

y→x−

B(y), U
(r)
G (x) = lim inf

y→x+
T (y) ,

for all x ∈ Σ+,

U
(l)
G (x) = lim inf

y→x−

T (y), U
(r)
G (x) = lim sup

y→x+

U(y) .

3. UG is convex on each connected component of S(+)(UG) and concave on

each connected component of S(−)(UG).

Proof. The existence of a minimizer follows from Lemma 5.1. From Lemma 5.2
it follows that UG satisfies Item 2. Item 1 follows from Lemma 5.3, and Item 3
from Lemma 5.4. Using Lemma 5.5 it follows that UG is uniquely characterized
by Items 1–3. This shows the assertion.

Remark 3.2. Note that by construction
(

(a, b)\Σ
)

⊂ S(+)(UG)∪S(−)(UG). In
particular, it follows from Item 3 in Theorem 3.1 that in every point x ∈ (a, b)\Σ
the function UG is either locally convex or locally concave. In particular, UG is
continuous outside of Σ. Since every convex or concave function is absolutely
continuous (see e.g. [8, Thm. 11.A]), we additionally obtain that the singular
part of the measure µG is concentrated on Σ. We therefore have a decomposition

µG = uG L1 + (µG)s

with |(µG)s|
(

(a, b) \ Σ
)

= 0.
Moreover, if UG is not locally convex in a point x ∈ (a, b)\Σ, then necessarily

UG(x) = B(x), and if UG is not locally concave in x ∈ (a, b) \ Σ, then UG(x) =
T (x).

Now we discuss the influence of the regularity of the functions B and T on
the outcome of the algorithm.

Example 3.3 (Continuous Tubes). Assume that T (x) ≥ B(x) for all x ∈ (a, b).
Then Σ consists of all points x ∈ (a, b) satisfying B(x) = T (x). Thus, it follows

from Item 2 that U
(l)
G (x) = U

(r)
G (x) for every x ∈ Σ, which implies that UG is

continuous in Σ. Since by Remark 3.2 the function UG is continuous outside Σ,
we obtain that UG is continuous on the whole interval (a, b). Thus µG({x}) = 0
for every x ∈ (a, b), which shows that µG contains no Dirac measures. In
particular, this applies if T and B are continuous.
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Example 3.4 (Absolutely Continuous Tubes). Assume that B and T are ab-
solutely continuous. From Example 3.3 it follows that UG is continuous. Now
denote

SB := {x ∈ (a, b) : UG(x) = B(x)} , ST := {x ∈ (a, b) : UG(x) = T (x)} .

From Item 3 in Theorem 3.1 it follows that UG is locally affine outside SB ∪ ST

and thus its derivative a piecewise constant function. Using [1, Rem. 3.93] it
follows that DUG and DB coincide on SB . Similarly, DUG and DT coincide on
ST . Since by assumption B and T are absolutely continuous, this implies that
UG is absolutely contiuous too, that is, µG = uG L1 for some uG ∈ L1(a, b).

Example 3.5 (Standard Taut String for Radon Measures). Assume that T :=
F (−) + α and B = F (+) − α for some α > 0. Then

Σ− =
{

x : F (l) − α ≥ F (r) + α
}

, Σ+ =
{

x : F (l) + α ≤ F (r) − α
}

.

From the definition of F it follows that

Σ− =
{

x : µ({x}) ≤ −2α
}

, Σ+ =
{

x : µ({x}) ≥ +2α
}

.

Consequently, we obtain by applying Item 2 in Thm. 3.1 that

µG({x}) = µ({x}) + 2α, for x ∈ Σ− ,

µG({x}) = µ({x}) − 2α, for x ∈ Σ+ .

Moreover, it follows from Remark 3.2 that UG is absolutely continuous outside
of Σ. We therefore have the decomposition

µG = uG L1 +
∑

µ({x})≤−2α

(

µ({x}) + 2α) δx +
∑

µ({x})≥2α

(

µ({x}) − 2α) δx .

In particular we obtain that µG is absolutely continuous, if |µ({x})| ≤ 2α for all
x ∈ (a, b).

4 Examples

Piecewise constant tubes are already used for the smoothing of density esti-
mators in statistical applications (see [2]). Here, we will concentrate on non-
constant tubes depending on the data f . By designing customized tubes we
can obtain problem-specific smoothing-features of the solution and therefore a
higher quality in the postprocessing of the results.

4.1 Tubes depending on f

For multimeters (also known as multitesters) like ammeters, voltmeters or ohm-
meters the accuracy of measurement depends on the absolute value of the mea-
sured quantity, i.e., the error in the measurement is not equally distributed over
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the effective range. Thus it is natural to allow for a stronger smoothing in areas
where the data f is large and stick to the measured values where f is small.

This goal can be obtained by defining

T (x) := F (x) + α|f(x)| ,

B(x) := F (x) − α|f(x)| .
(6)

Figure 1 shows the results for the original taut string method as well as the
results for the tube depending on f . The parameters were chosen such that
the results are comparable in the mid-range of the measurement. For small
measurement values the original taut string smoothing is too far away from the
data (and even fails to differ between two levels, see figure 2, right) whereas for
large values the result sticks too strong to the measurements. Using the tubes
defined in (6), both weaknesses of a constant tube are overcome.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 1: Original (dotted) and noisy (dots) data, original taut string (dashed)
and new tube (solid) result

4.2 The min-max tube

For fixed δ > 0 let

T (x) := sup
{

F (−)(y) : y ∈ (x − δ, x + δ) ∩ (a, b)
}

,

B(x) := inf
{

F (+)(y) : y ∈ (x − δ, x + δ) ∩ (a, b)
}

.
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Figure 2: Left: Original (dotted) and noisy (dots) data, original taut string
(dashed) and new tube (solid) result; Right: Zoom of Region

The main goals of applying this tube are the separation of regions and the
enhancement of plateaus. In Figure 3 one can see that the solution uG has a
jump where the input function f is zero, thus separating the region where f is
positive from the region where f is negative.

0 100 200 300 400 500 600 700
−1

−0.8

−0.6
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−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: data (dotted), min-max tube (solid) and constant tube (dashed)

An interesting application for the min-max tube is line recognition within
pattern recognition. Large amounts of (especially older) publications are about
to be digitized, which requires optical text recognition (OCR) systems. To ease
precise character recognition, the lines in scanned pages should be positioned
horizontally.

Let g(x, y) be the gray values of a scanned page, which is in general not
positioned exactly horizontally, but rotated by a small angle β, and define the
row sum S(y) =

∫ xmax

0 g(x, y) dx. Note that S(y) has a jump at the end and
beginning of each line, if the page is positioned almost horizontally. Moreover,
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the BV semi-norm of S(y) should become maximal if the position of the page
is exactly horizontal. This effect is even more pronounced if one uses the H1-
semi-norm, or rather the sum of squares of the jumps of S, as decision criterion
for the evenness of the scan.

For the application of the method it is necessary to smooth the row sum S.
Since the min-max tube defined above yields a good separation of the jumps
and preserves the plateaus in S, it seems to be a good choice for a presmoother.
Figure 4 shows a part of a scanned page with the row sums as well as the
smoothed row sums. One can see that the row sum has high variations within
the lines which explains the need for smoothing S(y) before maximizing its
norm. Figure 5 shows one of the advantages of the min-max tube compared to
the method using a constant tube. Even small peaks in the row sums (like page
numbers or delimiters) are preserved whereas single peaks or noise in the signal
are removed or at least damped.

Figure 4: Row sum (solid) with peaks, smoothed row sums (dash-dot line) and
constant tube (dashed line)

5 Proofs

Lemma 5.1. The minimization problem (2) attains a solution.

Proof. By assumption we have F ∈ G, which proves that

inf
U∈G

JF (U) ≤ JF (F ) ≤ (b − a) + |DF |(a, b) < ∞.

From [4, Chp. 14] it follows that the functional JF is weak∗ lower semicon-
tinuous in BV(a, b). Let now {V (k)}k∈N be a minimizing sequence for JF in G,
i.e.,

lim
k→∞

JF (V (k)) = inf
{

JF (V ) : V ∈ G
}

.
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Figure 5: Result of min-max tube (solid) compared to constant tube (dashed)

Then supk∈N
|DV (k)|(a, b) < ∞. Moreover,

sup
k∈N

ess sup
x∈(a,b)

V (k)(x) ≤ sup
k∈N

{

F (a) + |V (k)(a) − F (a)| + |DV (k)|(a, b)
}

≤

≤ F (a) + sup
k∈N

JF (V (k)) < ∞.

Similarly,
inf
k∈N

ess inf
x∈(a,b)

V (k)(x) > −∞,

which shows that supk‖V
(k)‖∞ < ∞. Thus, after possibly passing to a subse-

quence, we may assume without loss of generality that the sequence {V (k)}k∈N

weak∗ converges to some V ∈ G. From the weak∗ lower semicontinuity of JF it
follows that JF (V ) ≤ limk→∞ J(V (k)). Thus, V is a minimizer of the restriction
of JF to G.

In the following we denote by UG any minimizer of JF restricted to G. For
the definitions of Σ± we refer to (3).

Lemma 5.2. For every x ∈ Σ− we have

U
(l)
G (x) = lim sup

y→x−

B(y) , U
(r)
G (x) = lim inf

y→x+
T (y) ,

for all x ∈ Σ+,

U
(l)
G (x) = lim inf

y→x−

T (y) , U
(r)
G (x) = lim sup

y→x+

B(y) .

Proof. Let x ∈ Σ+. Since UG ∈ G, it follows that

U
(l)
G (x) ≤ lim inf

y→x−

T (y) ≤ lim sup
y→x+

B(y) ≤ U
(r)
G (x).
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xx − δ

UG

T

B

Ũ

Figure 6: Sketch of Ũ in the proof of Lemma 5.2.

Suppose that U
(l)
G (x) < lim infy→x− T (y). Then there exists ε > 0 such that

U
(l)
G (x) + 4ε < lim inf

y→x−

T (y) .

Since U
(l)
G is continuous from the left, it follows that there exists δ > 0 such that

U
(l)
G (x) − ε ≤ U

(l)
G (y) ≤ U

(l)
G (x) + ε for all y ∈ [x − δ, x).

Since T is lower semicontinuous we may assume, after possibly choosing a

smaller δ > 0, that T (y) > U
(l)
G (x) + 4ε for all y ∈ (x − δ, x). Since B is

upper semicontinuous, and B(y) ≤ U
(l)
G (y) for almost every y, it follows, again

after choosing a smaller δ > 0, that B(y) < U
(l)
G (x) + ε for every y ∈ (x − δ, x).

Since UG is of bounded variation, it has at most countably many discontinuities.
Thus we may additionally assume by slightly varying δ that UG is continuous
in the point x − δ.

Define

Ũ(y) :=

{

UG(y), if y 6∈ (x − δ, x) ,

U
(l)
G (x) + ε + 3(y − x)ε/δ, if y ∈ (x − δ, x) ,

i.e., Ũ linearly interpolates U
(l)
G (x)+ε and U

(l)
G (x)+4ε on the interval (x−δ, x).

Since B(y) < U
(l)
G (x)+ε < U

(l)
G (x)+4ε < T (y) for every y ∈ (x−δ, x), it follows

that Ũ ∈ G.
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Now note that

JF (UG) − JF (Ũ) =

∫ x

x−δ

√

1 + U ′
G(t)2 dt + |DsUG |(x − δ, x)

+ U
(l)
G (x) + ε − UG(x − δ) +

√

9ε2 + δ2 − 4ε

≤

√

(

U
(l)
G (x) − UG(x − δ)

)2
+ δ2

+ U
(l)
G (x) − UG(x − δ) +

√

9ε2 + δ2 − 3ε .

Since by assumption |U
(l)
G (x)−UG(x−δ)| ≤ ε this shows that JF (UG) < JF (Ũ),

which is a contradiction to the minimality of JF (UG).

Thus we obtain that U
(l)
G (x) = lim supy→x+ T (y). All other equalities can

be shown in a similar manner.

Lemma 5.3. We have UG(a) = F (a) and UG(b) = F (b).

Proof. This is similar to the proof of Lemma 5.2.

For the definition of the sets S(±)(UG) used in the following Lemma we refer
to (5).

Lemma 5.4. The function UG is convex on each connected component of the set

S(+)(UG) and concave on each connected component of S(−)(UG). In particular,

UG is piecewise affine on S(+)(UG) ∩ S(−)(UG).

Proof. Let x ∈ S(+)(UG). Since U
(−)
G is lower semicontinuous, and B is upper

semicontinuous, there exist ε > 0 and c ∈ R such that

B(y) < c < U
(−)
G (y) for all y ∈ (x − ε, x + ε). (7)

Let x1 < x2 ∈ (x − ε, x + ε). We have to show that

UG

(

λx1 + (1 − λ)x2

)

≤ λUG(x1) + (1 − λ)UG(x2) (8)

for all 0 < λ < 1. Define

Ũ(y) :=











min
{

UG(y), λUG(x1) + (1 − λ)UG(x2)
}

,
if y = λx1 + (1 − λ)x2

for some λ ∈ (0, 1) .

UG(y), if y 6∈ (x1, x2) ,

From (7) it follows that Ũ(y) ≥ c ≥ B(y) for every y ∈ (x1, x2). On the other
hand, Ũ(y) ≤ UG(y) ≤ T (y) for almost every y. Consequently Ũ ∈ G.

Now note that (8) is equivalent to the inequality UG(y) ≤ Ũ(y) on (x1, x2).
Suppose to the contrary that Ũ(y) < UG(y) for some y ∈ (x1, x2). Denote

y1 := sup
{

z < y : Ũ(z) < U
(−)
G (z)

}

,

y2 := inf
{

z > y : Ũ(z) < U
(−)
G (z)

}

.
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From the lower semicontinuity of U
(−)
G it follows that x1 ≤ y1 < y < y2 ≤ x2.

Since by construction Ũ is affine on (y1, y2), it follows that JF (Ũ) < JF (UG),
which is a contradiction to the minimality of JF (UG).

This shows that UG(y) ≤ Ũ(y) for all y. Thus (8) holds for every x1 < x2 ∈
(x − ε, x + ε) and 0 < λ < 1, which shows that UG is convex on (x − ε, x + ε).
Since this holds for every x ∈ S(+)(UG), it follows that UG is convex on each
connected component of S(+)(UG).

The proof that UG is concave on each connected component of S(−)(UG) is
similar.

Lemma 5.5. There exists at most one function in G satisfying Items 1–3 in

Theorem 3.1.

Proof. Assume that V and W ∈ G are two functions satisfying Items 1–3 in
Theorem 3.1. From Items 1 and 2 it follows that V and W coincide on Σ∪{a, b}.
Now suppose that there exists x ∈ (a, b) \ Σ such that V (x) > W (x).

Denote
x1 := sup

{

y < x : V (r)(y) > W (r)(y)
}

,

x2 := inf
{

y > x : V (l)(y) > W (l)(y)
}

.

By Remark 3.2 the functions V and W are continuous on (a, b) \ Σ. Since
x 6∈ Σ, it therefore follows that x1 < x < x2. From Item 1 it follows that
x1 ≥ a, x2 ≤ b, and by Item 2 we have x1, x2 6∈ Σ. Thus the continuity of V
and W outside Σ implies that V (r)(x1) = W (r)(x1) and V (l)(x2) = W (l)(x2).
Since T (y) ≥ V (y) > W (y) ≥ B(y) for every y ∈ (x1, x2), it follows that
(x1, x2) ⊂ S(+)(V )∩S(−)(W ). Thus, V is convex on (x1, x2) and W is concave
on (x1, x2). From this it easily follows that V (x) ≤ W (x), a contradiction to
the definition of x. Consequently V (x) ≤ W (x) for every x ∈ (a, b) \ Σ. The
converse inequality follows in a similar manner.

6 Conclusions

In this paper we have presented a generalization of the taut string algorithm
both theoretically and through examples. The new framework allows for the
smoothing of arbitrary one-dimensional Radon measures with non-constant tubes.
In contrast, the classical taut string method only works with L1-data and tubes
of constant radius.

Existence and uniqueness are shown, and a unique characterization of the
solution is given. The theoretical examples presented in Section 3 show that the
algorithm yields regular results provided the employed tube is of sufficient reg-
ularity. The examples in Section 4 indicate that non-constant tubes can be su-
perior to classical tubes, since knowledge about varying noise levels can directly
be incorporated in the tube. Section 4.2 additionally shows that non-standard
tubes can be made very efficient for the solution of specialized problems.
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