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Abstract

Total variation regularization and anisotropic filtering have been es-

tablished as standard methods for image denoising because of their ability

to detect and keep prominent edges in the data. Both methods, however,

introduce artifacts: In the case of anisotropic filtering, the preservation

of edges comes at the cost of the creation of additional structures out

of noise; total variation regularization, on the other hand, suffers from

the stair-casing effect, which leads to gradual contrast changes in homo-

geneous objects, especially near curved edges and corners. In order to

circumvent these drawbacks, we propose to combine the two regulariza-

tion techniques. To that end we replace the isotropic TV semi-norm by an

anisotropic term that mirrors the directional structure of either the noisy

original data or the smoothed image. We provide a detailed existence the-

ory for our regularization method by using the concept of relaxation. The

numerical examples concluding the paper show that the proposed intro-

duction of an anisotropy to TV regularization indeed leads to improved

denoising: the stair-casing effect is reduced while at the same time the

creation of artifacts is suppressed.

MSC: 68U10, 49J45.

1 Introduction

Because of unavoidable inaccuracies inherent in every data acquisition process,
it is not possible to recover a precise images of incoming signals. Instead, the
recorded data are defective in various manners. Typical problems that may
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occur are blurring, optical distortions read-out errors, defects of the electronic
systems, etc.

In the present paper, we concentrate on the treatment of data distorted by
random noise. A first ansatz is to apply a low-pass filter, for instance convolution
with a Gaussian kernel removing the high frequencies of both the noise and the
image content. This is equivalent to solving the heat equation

∂tu + ∆u = 0 , u(0) = u0 (1)

up to some specified time t determining the amount of smoothing, where u0

denotes the given noisy data. The diffused function u(t) then serves as denoised
image.

Linear diffusion indeed efficiently removes noise, but at the same time it
destroys many important features. Edges, that is, discontinuities in the inten-
sities, immediately get smeared out and the whole image becomes blurry and
diffuse. For these reasons, this method is not suited for most applications of
image processing.

In order to enhance the quality of the denoised image, Perona & Malik
introduced a modification of the diffusion equation (1) by a non-constant diffu-
sivity [16]. Instead of (1), they proposed to solve the equation

∂tu + div
( ∇u

1 + c|∇u|2

)
= 0 , u(0) = u0

with c > 0. The idea behind this modification is to stop the diffusion at edges,
which are characterized by steep gradients, while treating regions with nearly
constant intensity as in the uniform model. As further improvement and stabi-
lization of the solution, Catté et al.[7] suggested to scale the diffusivity using the
gradient of the uniformly smoothed image. Then the diffusion equation reads
as

∂tu + div
( ∇u

1 + c|∇uσ|2

)
= 0 , u(0) = u0 , (2)

where uσ = Kσ ∗ u denotes the convolution of u with a Gaussian kernel of
variance σ2.

The above method can be further refined by noting that only diffusion across
edges should be prohibited, but diffusion along edges in fact encouraged. To
that end it is necessary to consider not only the size of the gradient but also
its local direction, which can be computed from the smoothed tensor Jρ(u) :=
Kρ ∗ (∇uσ ⊗∇uσ) for some ρ > 0.

The eigenvector v1 corresponding to the largest eigenvalue of Jρ(u)(x) points
in the prevailing direction of ∇uσ near x, while the local coherence, that is, the
squared difference of the eigenvalues, indicates how pronounced this direction
is.

This directional knowledge can be incorporated into the diffusion equation
by replacing the diffusivity, which for the modified Perona–Malik model (2)
has the form 1

1+|∇uσ | , by a matrix or tensor A(u) that decreases the diffusion
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only in direction of v1. One possibility for defining the tensor A(u) is shown in
Section 2, further details can be found in [20].

With this modification, we obtain the anisotropic diffusion equation

∂tu + div
(
A(u)∇u

)
= 0 , u(0) = u0 . (3)

In [20], it has been shown that the diffusion equation (3) has a unique solution
u, which satisfies u(t) ∈ C∞(Ω) for all t > 0.

In general, diffusion filtering is closely connected with variational meth-
ods [19]. If one applies an implicit Euler scheme for solving the time discretized
diffusion equation, one obtains that each step requires the minimization of a
variational functional. In the case of anisotropic diffusion, this functional reads
as

F(u, u0) :=
1

2

∫

Ω

(u(x) − u0(x))2 + α∇u(x)T A(u)∇u(x) dx , (4)

where α > 0 is the step size.
Setting u0

α := u0 and defining the functions uk
α := argminu F(u, uk−1

α ) for
k ∈ N, one can show by using standard results from semi-group theory that, for
α sufficiently small, uk

α is an approximation of the solution of the corresponding
diffusion equation at time kα (see [6, 21]).

Parallel to the refinement of diffusion methods, a different variational ap-
proach was developed. One reason was that, although the goal of anisotropic
diffusion was edge enhancement, all models introduced above have the draw-
back that the solutions are in fact smooth [7, 20]. Thus it is never possible to
recover sharp edges, even if they can be seen clearly in the original noisy data.
Also, in regions where no edges are present, the anisotropic model inherits from
the isotropic diffusion the problem that speckles appear, because the quadratic
regularization term hardly penalizes sufficiently slow oscillations.

As a remedy, it was proposed to consider variational regularization meth-
ods in the space BV(Ω) of functions of bounded variation, which consists of all
integrable functions u : Ω → R whose distributional derivative can be repre-
sented by a finite Radon measure Du (see [2, 12]). The most important method
is the minimization of the Rudin–Osher–Fatemi or total variation functional
(see [1, 17]), which is defined as

F(u, u0) :=

∫

Ω

1

2

(
u(x) − u0(x)

)2
dx + α|Du|(Ω) . (5)

Note that for a Sobolev function u we have the identity |Du|(Ω) =
∫
Ω
|∇u(x)| dx.

The linear growth of the regularization term near infinity has the conse-
quence that only the total height of a slope is penalized, but not its steepness.
This permits the presence of edges in the minimizer, which can be seen as in-
finitely steep gradients concentrated on a narrow line. The singularity at zero,
on the other hand, encourages zero gradients, as the cost for small oscillations
is high compared to a possible gain through the fidelity term ‖u − u0‖2. Thus,
the minimizer of the total variation functional typically consists of regions of
almost constant intensity, well separated by distinct edges.
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Still, total variation regularization has its problems: First, it tends to insert
edges where they should not be. Smooth changes of the intensities are broken
up and a gradual transition is created instead. In the literature, this issue is
called stair-casing effect. Second, it leads to a contrast loss near edges that
mainly depends on its curvature. Thus, especially corners in objects, but also
regions with strongly varying curvature are resolved badly.

In order to combine the benefits of anisotropic filtering and total variation
regularization, we propose to apply anisotropic total variation regularization
based on the functional

F(u, u0) =

∫

Ω

(
u(x) − u0(x)

)2
+ α

(
∇uT (x)A(u)(x)∇u(x)

) 1
2 dx .

Similar functionals have already been proposed in the literature for the prob-
lem of inpainting (see e.g. [4, 8]). There, the ℓ1-norm of the rotated gradient
R(x)∇u(x) is used as regularization term. Here, we use directional information
in order to introduce different weights on the components of ∇u(x) in a local
coordinate system in x.

The precise definition of the anisotropy matrix A(u) is given in Sec. 2. The
linear growth of the regularization term implies that BV(Ω) is the natural space
of definition for the functional F . In particular, it is necessary to define how
F acts on edges, that is, discontinuities in u. Because the regularization term
depends in a non-trivial manner on u, standard results from the calculus of
variations (see e.g. [5, 11, 13]) do not apply. Still, it is possible to exploit the
structure of A(u), which allows to define the required extension of F to BV(Ω).
A detailed derivation of the extension is provided in Sec. 3 along with the proof
of the existence of minimizers.

We describe the numerical implementation of the regularization method in
Sec. 4. The discretization is carried out by a finite element method; for the
minimization of the discretized functional we use a steepest descent method
combined with a fixed point iteration.

The advantages of introducing an anisotropy to total variation regularization
are demonstrated in Sec. 5. Numerical experiments show that this ansatz yields
cartoon like images similar to standard total variation regularization, but the
typical stair-casing effect is suppressed. In addition, the contrast in the images
is much better preserved.

2 Anisotropic diffusion/regularization

From now on, we assume that u0 ∈ L∞(Ω) is fixed. In order to simplify the
notation, we therefore omit the dependence on u0 in the regularization functional
F . On the other hand, it is convenient to introduce the anisotropy A(u) as an
additional argument both for the existence theory in Sec. 3 and the numerical
implementation in Sec. 4. Our proposed regularization functional thus reads as

F
(
u, A(u)

)
=

∫

Ω

(
u(x) − u0(x)

)2
+ α

(
∇uT (x)A(u)(x)∇u(x)

) 1
2 dx . (6)
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The matrix A(u) in (6) is a particular instance of diffusion tensors introduced
in [20] for the definition of (linear) anisotropic diffusion. Its construction is
carried out in two steps. First we calculate the smoothed structure tensor Jρ,
which reflects the local structure of u. Then we define A(u) by adapting the
eigenvalues of Jρ while leaving the eigenvectors unchanged.

Assume that Ω ⊂ R
2 is an open, bounded, and convex domain with suffi-

ciently regular boundary ∂Ω, and that u ∈ L2(Ω). As A(u) is intended to adapt
to the local structure of the function u, its local geometry has to be accessed.
This is achieved by means of the structure tensor Jρ, which depends on the
smoothed mapping uσ := Kσ ∗ u obtained by convolving u with the Gaussian
kernel of variance σ2 > 0,

Kσ(x) :=
1

2πσ2
exp

(
−

x2

2σ2

)
.

Now we calculate the structure tensor Jρ(u) : Ω → Sym2 from the smooth
mapping ∇uσ ∈ C∞(Ω, R2) by

Jρ(u) := Kρ ∗ J0(u) := Kρ ∗
(
∇uσ∇uT

σ

)

for some ρ > 0. Here, the convolution of J0 and Kρ is carried out separately in
each component. The smoothing of the data u is performed in order to make
the structure tensor insensitive to noise, whereas the smoothing of J0 provides
a local averaging of the information contained in uσ.

At each x ∈ Ω, the structure tensor Jρ(u)(x) is a positive semi-definite,
symmetric 2×2-matrix. Consequently, its eigenvalues are real and non-negative.
Denote now by λ1(x) ≥ λ2(x) ≥ 0 the ordered eigenvalues of Jρ(u)(x). Then we
find that λ1(x) ≈ λ2(x) ≈ 0 in regions where the function u is almost constant,
λ1(x) ≫ λ2(x) = 0 at edges, i.e., at the border between these regions, and
λ1(x) ≥ λ2(x) ≫ 0 at corners, i.e., at junctions of edges. Along edges, the
eigenvector corresponding to the eigenvalue λ2(x) is parallel to the isolevels of
uσ.

We now define the diffusion tensor A(u)(x). For notational convenience, we
omit in the following presentation all dependencies on the function u. We now
consider an eigenvalue decomposition Jρ(x) = UT (x)Σ(x)U(x), where U(x) ∈
R

2×2 is an orthogonal matrix and Σ(x) := diag(λ1(x), λ2(x)) ∈ R
2×2 is the

diagonal matrix of the ordered eigenvalues. The diffusion tensor is defined by

A(u) : Ω → Sym2

x 7→ UT (x) diag
(
γ(λ1(x) − λ2(x)), 1

)
U(x)

(7)

where

γ(s) :=
1

1 + s2

γ2
0

(8)

for some γ0 > 0 (cf. [16, 7, 20]).

There are two main possibilities for the application of the diffusion tensor
in the regularization functional F . The first, main variant, which is also stated
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in (6), defines the anisotropy by means of the structural information of the
minimizer of F . Though leading to a good estimation of the edges present in
the data, the nonlinear dependence of A on the image u poses severe difficulties
to the actual computation of the solution. In particular, it is possible that local
or even multiple global minimizers exist, because the functional u 7→ F

(
u, A(u)

)

fails to be convex.
As an alternative, it is possible to base the definition of the diffusion solely

on the structural properties of the given data u0. That is, one minimizes the
functional u 7→ F

(
u, A(u0)

)
. This strategy has the drawback that the diffusion

tensor A(u0) is affected by the noise contained in the original data. On the
other hand, the computations become considerably easier, as the regularization
functional now is convex. Also, its theoretical treatment is simplified—most
problems that arise during the existence proof in the following section are rooted
in the non-locality of the integrand in (6) that arises if A depends on u.

3 Existence Theory

In the case of linear anisotropic regularization, where the regularization term is
quadratic, the existence of minimizers can be proven easily by applying direct
methods (see for instance [9, 14]). The convexity of the integrand with respect
to the gradient variable implies the weak lower semi-continuity of the functional
F in W 1,2(Ω). Then the fact that F(u) ≥ c‖u‖2

W 1,2 for some c > 0 proves that
a minimizer exists.

The situation is more complicated for the non-quadratic functional proposed
in this paper. Due to the linear growth of the integrand with respect to the
gradient variable, BV(Ω) is the natural space in which to search for a minimizer.
As the functional in (6) is only given for u ∈ W 1,1(Ω), it is therefore necessary
to find a suitable extension for u ∈ BV(Ω) \ W 1,1(Ω). In particular, one has to
define how the integrand acts on jump discontinuities of u.

This extension to functions of bounded variation is generally carried out by
relaxation. First, one sets F(u) := +∞ for u ∈ BV(Ω) \ W 1,1(Ω). Then one
defines the relaxed functional FR as the largest weakly∗ lower semi-continuous
functional on BV(Ω) that is smaller or equal than F . If the original functional
satisfies a certain growth condition, then the relaxed functional FR has a mini-
mizer û. If moreover û ∈ W 1,1(Ω), then it is in fact a minimizer of F .

We now treat the relaxation of the functional F defined in Section 2.
Since the mapping u 7→ S(u) := 1

2‖u−u0‖2 is weakly∗ continuous on BV(Ω),
it easily follows that

FR(u) =
(
S + αR

)
R
(u) = S(u) + αRR(u)

for every u ∈ BV(Ω). Therefore, it is sufficient to compute the relaxation RR(u)
of the regularization term R(u).

In order to be able to also deal with other integrands proposed for anisotropic
regularization, we consider a generalized setting. We assume that R : BV(Ω) →
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[0, +∞] has the form

R(u) :=





∫

Ω

g
(
G(u)(x),∇u(x)

)
dx , if u ∈ W 1,1(Ω) ,

+∞ , if u ∈ BV(Ω) \ W 1,1(Ω) ,

where G : L1(Ω) → C(Ω̄; V ) maps a summable function u to a continuous func-
tion G(u) with values in some normed vector space V , and the integrand g maps
V × R

n to [0, +∞).
We assume that G and g satisfy the following conditions:

1. The functional G : BV(Ω) → C(Ω̄; V ) is continuous and bounded with
respect to the L1-norm on BV(Ω) and the maximum norm on C(Ω̄; V ).

2. The integrand g : V × R
n → [0, +∞) is continuous and non-negative.

3. For every A ∈ V , the function ξ 7→ g(A, ξ) is convex and positively homo-
geneous, that is, g(A, λξ) = λg(A, ξ) for all λ ≥ 0.

4. There exists a non-decreasing, continuous function C : [0, +∞) → [1, +∞)
such that

C(|A|)−1|ξ| ≤ g(A, ξ) ≤ C(|A|) (1 + |ξ|) (9)

for all (A, ξ) ∈ V × R
n.

Remark 1. The functional F of Section 2 satisfies above conditions with the
choices V = Sym2 normed with the spectral norm |A| = ‖A‖2,

G(u) = Jρ(u) , and g(A, ξ) :=
√

ξT Γ (A) ξ ,

where Γ (A) = UT diag
(
γ(λ1 − λ2), 1

)
U , if A = UT diag(λ1, λ2)U is a singular

value decomposition of A with λ1 ≥ λ2 and γ(s) = 1/(1 + s2/γ2
0) is as in (8).

• Condition 1 is satisfied, because Jρ only consists of multiplications and
convolutions with smooth functions.

• Since the singular values of a symmetric matrix depend continuously on
the entries of the matrix, Condition 2 is satisfied.

• Condition 3 obviously holds.

• Finally, ‖Γ (A)‖2 = 1 and

‖Γ (A)−1‖2
2 = 1 +

(λ1 − λ2)
2

γ2
0

≤ 1 +
λ2

1

γ2
0

= 1 +
‖A‖2

2

γ2
0

,

which implies that

γ2
0

γ2
0 + ‖A‖2

2

|ξ| ≤
√

ξT Γ (A) ξ ≤ |ξ| ,

and thus Condition 4 holds.
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This shows the assertion. �

Theorem 2. Let the Conditions 1–4 be satisfied. Then

RR(u) =

∫

Ω

g

(
G(u)(x),

dDu

d|Du|
(x)

)
d|Du| (10)

for every u ∈ BV(Ω). Here, the relaxation RR of R is defined as

RR := sup
{
T : BV(Ω) → [0, +∞] : T ≤ R is weakly∗ lower semi-continuous

}
.

Theorem 3. Let the Conditions 1–4 be satisfied. For every u0 ∈ L2(Ω) and
α > 0, the mapping u 7→ FR(u) = 1

2‖u − u0‖2 + αRR(u) attains its minimum
in BV(Ω).

If no dependence of the integrand g on G(u) were present, Theorem 2 would
directly follow from well-known results concerning relaxation of local integral
functionals on BV(Ω). The non-locality introduced by the term G(u), however,
poses severe difficulties. In the present case, these difficulties can be met, as,
locally around u ∈ BV(Ω), the function G is almost constant.

We now introduce some notation and auxiliary Lemmas 5–7 for the proof of
Theorem 2.

Definition 4. Let u ∈ BV(Ω). A sequence (uk)k∈N ⊂ W 1,1(Ω) is called admis-
sible for u, if ‖uk − u‖1 → 0 and

sup
k∈N

R(uk) < +∞ .
�

Lemma 5. A sequence (uk)k∈N ⊂ W 1,1(Ω) weakly∗ converges to u ∈ BV(Ω)
if and only if it is admissible. Moreover, for every u there exists at least one
admissible sequence (uk)k∈N satisfying

lim inf
k→∞

R(uk) ≤ C
(
‖G(u)‖∞

) (
1 + |Du|(Ω)

)
. (11)

Proof. Let (uk)k∈N ⊂ W 1,1(Ω) weakly∗ converge to u. Then in particular ‖uk−
u‖1 → 0. Therefore, the continuity of G implies that ‖G(uk) − G(u)‖∞ → 0.
In particular, there exists t > 0 such that ‖G(uk)‖∞ ≤ t for all k ∈ N. Now (9)
implies that

R(uk) =

∫

Ω

g
(
G(uk)(x),∇uk(x)

)
dx

≤ C(t)

∫

Ω

(
1 + |∇uk(x)|

)
dx = C(t)

(
L2(Ω) + ‖∇uk‖1

)
.

Since (uk)k∈N is weakly∗ convergent, it follows that supk‖∇uk‖1 < ∞, which in
turn implies that supk R(uk) < ∞. The converse implication can be shown in
a similar manner.
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In order to show the existence of an admissible sequence (uk)k∈N for u sat-
isfying (11) recall that there exists a sequence (uk)k∈N with ‖uk − u‖1 → 0 and
limk‖∇uk‖1 = |Du|(Ω). In particular we have that ‖G(uk)‖∞ → ‖G(u)‖∞.
The continuity of C therefore implies that also C

(
‖G(uk)‖∞

)
→ C

(
‖G(u)‖∞

)
.

The inequality (11) now follows again from (9). �

Lemma 6. There is a non-increasing, positive function s : [0, +∞) → (0, +∞)
such that

R(u) ≥ s
(
‖u‖1

)
‖∇u‖1 (12)

for every u ∈ W 1,1(Ω).

Proof. Define

s(K) := inf
{
C

(
‖G(u)‖∞

)−1
: ‖u‖1 ≤ K

}
.

By assumption, the functional G is bounded and C is locally bounded, which
implies that s(K) > 0 for all K. The estimate (12) now follows from (9). �

Lemma 7. The functional RR is weakly∗ lower semi-continuous and

RR(u) = inf
{

lim inf
k→∞

R(uk) : (uk)k∈N is admissible for u
}

(13)

for every u ∈ BV(Ω).

Proof. Equation (13) is a consequence of Lemma 5. The proof of the weak∗

lower semi-continuity of RR is along the lines of [15, Le. 4.3] or [18, Le. 5.4,
Thm. 5.8]. The only difference is that the estimate R(u) ≥ c‖∇u‖1 is replaced
by the weaker inequality (12). �

For the proof of Theorem 2, it is convenient to separate the dependence of
R on G(u) and ∇u. This is achieved by introducing a functional S : C(Ω̄; V )×
BV(Ω) → [0, +∞) setting

S(v, u) :=

∫

Ω

g

(
v(x),

dDu

d|Du|
(x)

)
d|Du| .

Lemma 8. For every K > 0 there exists a function ωK : [0, +∞) → [0, +∞)
with limt→0+ ωK(t) = 0 such that

∣∣S(v, u) − S(v̂, u)
∣∣ ≤ ωK

(
‖v − v̂‖∞

)
|Du|(Ω)

whenever u ∈ BV(Ω) and v, v̂ ∈ C(Ω̄; V ) satisfy ‖v‖∞, ‖v̂‖∞ ≤ K.

Proof. The continuous function g is uniformly continuous on the compact set
BK(0) × S1. Therefore there exists a modulus of continuity ωK : [0, +∞) →
[0, +∞) satisfying limt→0+ ωK(t) = 0 such that

∣∣g(w, s) − g(ŵ, ŝ)
∣∣ ≤ ωK(|w − ŵ| + |s − ŝ|)

9
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for every w, ŵ ∈ V with |w|, |ŵ| ≤ K, and s, ŝ ∈ S1.
Then, for u ∈ BV(Ω) and v, v̂ ∈ C(Ω̄) with ‖v‖∞, ‖v̂‖∞ ≤ K, we have

∣∣S(v, u) − S(v̂, u)
∣∣ =

∣∣∣∣
∫

Ω

[
g

(
v(x),

∇u(x)

|∇u(x)|

)
− g

(
v̂(x),

∇u(x)

|∇u(x)|

)]
d|Du|

∣∣∣∣

≤ |Du|(Ω) sup
x∈Ω

∣∣∣∣g
(

v(x),
∇u(x)

|∇u(x)|

)
− g

(
v̂(x),

∇u(x)

|∇u(x)|

)∣∣∣∣

≤ |Du|(Ω) sup
s∈S1

sup
x∈Ω

∣∣g
(
v(x), s

)
− g

(
v̂(x), s

)∣∣

≤ |Du|(Ω)ωK

(
‖v − v̂‖∞) ,

which shows the assertion. �

Lemma 9. Let u ∈ BV(Ω) and let (uk)k∈N be an admissible sequence for u.
Then

lim inf
k→∞

R(uk) = lim inf
k→∞

S
(
G(uk), uk

)
= lim inf

k→∞
S

(
G(u), uk

)
.

In particular, we have in view of Lemma 7 that

RR(u) = inf
{

lim inf
k→∞

S(G(u), uk) : (uk)k∈N is admissible for u
}

.

Proof. Since (uk)k∈N is an admissible sequence for u, it follows that ‖uk−u‖1 →
0 and L := supk∈N

|Duk|(Ω) < +∞ (see Lemma 5). In particular, the L1-
convergence of (uk)k∈N implies that K := supk∈N‖G(uk)‖∞ < +∞ and that
‖G(uk) − G(u)‖∞ → 0.

Let ωK : [0, +∞) → [0, +∞) be as in Lemma 8. Then

∣∣R(uk) − S(G(u), uk)
∣∣ =

∣∣S
(
G(uk), uk

)
− S

(
G(u), uk

)∣∣

≤ ωK

(
‖G(uk) − G(u)‖∞

)
|Duk|(Ω) ≤ L ωK

(
‖G(uk) − G(u)‖∞

)
→ 0 . �

Using the above result, we can now conclude the proof of Theorem 2:

Proof (of Thm. 2). Let u ∈ BV(Ω) be fixed. Define the auxiliary localized
functional R̃ : BV(Ω) → [0, +∞) setting

R̃(v) :=

{
S(G(u), v) , if v ∈ W 1,1(Ω) ,

+∞ , if v ∈ BV(Ω) \ W 1,1(Ω) .

Denote by R̃R the relaxation of R̃. From standard results in relaxation of
functionals on BV(Ω) (see for instance [3, 10, 13]), it follows that

R̃R(v) =

∫

Ω

g

(
G(u)(x),

dDv

d|Dv|
(x)

)
d|Dv|

for every v ∈ BV(Ω). Lemma 9 implies that

R̃R(u) = inf
{

lim inf
k→∞

S(G(u), uk) : (uk)k∈N is admissible for u
}

= RR(u) .

This proves the assertion. �
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Proof (of Thm. 3). Let (uk)k∈N ⊂ BV(Ω) be a minimizing sequence for FR.
The definition of FR implies that uk can be chosen to be an element of W 1,1(Ω)
for every k ∈ N. Since (uk)k∈N is a minimizing sequence, it follows that the
sequence (‖uk‖2)k∈N is bounded. Because ‖uk‖1 ≤

√
L2(Ω)‖uk‖2, there exists

K > 0 such that ‖uk‖1 ≤ K for all k ∈ N. Lemma 6 therefore implies that
RR(uk) ≥ s(K)‖∇uk‖1 for every k ∈ N. Thus, also the sequence (‖∇uk‖1)k∈N

is bounded. Consequently, the sequence (uk)k∈N admits a subsequence, again
denoted (uk)k∈N, weakly∗ converging to some u ∈ BV(Ω). Now the weak∗ lower
semi-continuity of FR implies that FR(u) ≤ lim infk FR(uk), and therefore u
minimizes FR. �

4 Numerics

After the general considerations of the previous section, we now turn back to
the functional

F
(
u, A(u)

)
:=

∫

Ω

f
(
u(x) − u0(x),∇u(x), A(u)(x)

)
dx , (14)

where the integrand equals

f(s, ξ, A) := s2 + α
(
ξT Aξ

) 1
2 .

We describe the numerical minimization of (14) with respect to u.
In order to simplify computations, we assume that Ω ⊂ R

2 is rectangular.
The anisotropy A(u) : Ω → R

2×2 is as defined in (7). Recall that for every x ∈ Ω
the matrix A(u)(x) is symmetric and positive definite.

We implement a finite element method for minimizing F . To that end, we
consider on Ω̄ a uniform grid of grid size h, nodes xi, i = 1, . . . , N , and grid
cells or elements Qj , j = 1, . . . , M . The corresponding finite element space
Vh consists of continuous functions that are bilinear on each element Qj . A
function u ∈ Vh is identified with the vector of its values u = (u1, . . . , uN ) at
the nodes x1, . . . , xN .

Now let N (Qj) denote the index set of the vertices of Qj , and denote by xc
j

the center of Qj . On each element Qj we apply the quadrature rule
∫

Qj

f
(
u(x) − u0(x),∇u(x), A(u)(x)

)
dx

≈
h2

4

∑

i∈N (Qj)

f
(
ui − u0

i ,∇u|Qj
(xi), A(u)(xc

j)
)

. (15)

Note that ∇u is not continuous on Ω̄. Thus in general ∇u|Qi
(x) 6= ∇u|Qj

(x) if
i 6= j and x ∈ Qi ∩Qj. Summing up both sides of (15) over all elements Qj , we

arrive at a discretization F̃h of F , defined by

F̃h

(
u, A(u)

)
:=

h2

4

M∑

j=1

∑

i∈N (Qj)

f
(
ui − u0

i ,∇u|Qj
(xi), A(u)(xc

j)
)

. (16)
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In (16), ∇u|Qj
is evaluated at the vertices of Qj . Since the ansatz functions

are chosen to be bilinear, the gradients can therefore be expressed by difference
quotients of u. Thus A(u) remains the only term in the right hand side of (16)
that still depends on the continuous function u. In the following, we describe
how to compute a discrete approximation.

The first step in the calculation of A(u) consists the convolution of u with a
Gaussian kernel Kσ. In view of the relationship between Gaussian convolution
and linear diffusion, we compute uσ by numerically solving a linear diffusion
equation. We define uσ := ũ(T ) with T = σ2, where ũ solves

∂tũ − ∆ũ = 0 , ũ(0) = u ,

with Neumann boundary conditions.
As a next step, J0 = ∇uT

σ∇uσ is calculated at the mid points xc
j of the grid.

Similarly as for uσ, we obtain the smoothed function Jρ by linear diffusion on
the staggered grid given by the points xc

j , j = 1, . . . , M .

Finally, we calculate for each j the approximation Aj(u) ≈ A(u)(xj
c) from

the eigenvalue decomposition of Jρ(u)(xc
j). This is done by substituting the

eigenvalues λ1 ≥ λ2 of Jρ(u)(xc
j) by γ(λ1−λ2) and 1. Here, γ(t) = 1/(1+t2/γ2

0)
is as in (8).

Inserting A(u) in (16), we end up with the minimization of

Fh

(
u,A(u)

)
:=

h2

4

M∑

j=1

∑

i∈N (Qj)

f
(
ui − u0

i ,∇u|Qj
(xi), Aj(u)

)
. (17)

The challenging part in the minimization of Fh is the complex dependence
of the anisotropy A on u. We have chosen to apply a fixed point iteration with
respect to the second argument of Fh. Starting with a discretization u

0 of u0,
we iteratively compute

u
k := arg min

u

Fh

(
u,A(uk−1)

)

until the difference between two subsequent iterates u
k and u

k−1 becomes small
enough.

The minimization of Fh

(
·,A(uk−1)

)
is carried out by a steepest descent

method. Since the integrand f is not differentiable, we replace it by the approx-
imation

fε(s, ξ, A) := s2 + α
√

ξT Aξ + ε2

for some small ε > 0. This introduction of the parameter ε > 0 is standard in
total variation regularization.

As mentioned in Section 2, one can also exploit the structural properties of
the original data and replace A(u) by A(u0) in the functional F . In this situ-
ation, the numerical approach is the same, except that no fixed point iteration
is required.
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5 Numerical Results

In the following, we present numerical results that illustrate the properties of
non-quadratic anisotropic regularization. For each of the results we used grid
size h = 1. The intensity values were scaled to the interval [0, 1] before filtering.
The parameters α, σ, ρ, ε, γ0, and the number of fixed point iterations, which
were chosen individually for each example, are provided with the results.

As a first example, we compare the proposed anisotropic TV regularization
with anisotropic quadratic regularization (see (4)) and standard TV regulariza-
tion (see (5)).

Figure 1: Top left: test image with noise. Top right: image filtered with TV reg-
ularization using α = 1. Bottom left: image filtered with anisotropic quadratic
regularization using α = 5. Bottom right: image filtered with anisotropic non-
quadratic regularization using α = 1.

Our first test image Fig. 1, top left, consists of three separated regions, which
are distorted by noise. We run each of the three regularization methods with
the parameters σ = 1, ρ = 5, ε = 0.001, γ0 = 0.001; for the minimization of Fh,
ten fixed point iterations have been used. The regularization parameter α was
adapted to each method so as to obtain results with comparable noise removal
and sharpness.

13



The result of TV regularization with the parameter choice α = 2 is shown
in Fig. 1, top right. The noise is removed in an adequate manner, but the well-
known stair-casing effect is clearly visible: the contrast of the indentations is
reduced and the peaks are rounded. Conversely, anisotropic quadratic regular-
ization (see Fig. 1, bottom left, with α = 5) preserves the contrast by enhancing
the edges, but this edge enhancement comes at the cost of an insufficient noise
removal.

As the result of non-quadratic regularization with α = 1 (Fig. 1 bottom
right) shows, non-quadratic anisotropic regularization combines the benefits of
the other two methods: On the one hand, our method is able to restore the peaks
in a regular manner, which is achieved by the anisotropy of the regularization.
On the other hand, the non-quadratic regularization term encourages piece-
wise constant results, so that less residual structures remain from noise than
in the case of quadratic regularization. We remark, however, that anisotropic
quadratic diffusion yields the best reconstruction of the bright peaks.

Figure 2: Results after 1 (left column) and 10 iterations (middle column) and
the difference between these results (right column) for non-quadratic (top row)
and quadratic anisotropic regularization (bottom row), respectively.

In the functional for anisotropic regularization, the anisotropy matrix A
depends on the minimizer u. As mentioned in Sect. 2, one may also compute
the anisotropy from the data u0. We now demonstrate the benefits of the
former approach by means of a test image consisting of diagonal stripes with
added noise.

Fig. 2 illustrates, how the resulting image improves with the number of
fixed point iterations. The results of anisotropic quadratic and non-quadratic

14
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Figure 3: Horizontal cross-section of the results shown in Figure 2 after 1 iter-
ation (left) and 10 iterations (right).

diffusion after one iteration (i.e. A depending only on u0) are depicted in the left
column of Fig. 2; the results after ten iterations in the middle column. Here the
parameters σ = 1, ρ = 20, ε = 0.001, γ0 = 0.001 were used. The regularization
parameter was chosen as α = 0.5 in the case of non-quadratic regularization,
and α = 10 for quadratic regularization.

Numerical tests show that the difference between two subsequent iterates
steadily decreases, until after 10 iteration steps no visible changes occur any-
more. Therefore no further iterations are required.

After the first iteration, the image still contains some noise, because the
anisotropy in the regularization term is not yet adapted to the structure of the
solution. As the iteration process continues, the structure is better captured
by the anisotropy and artifacts stemming from noise vanish. The artifacts that
are removed by the iteration process are highlighted in the difference images
in Fig. 2, right column. Moreover, the reduction of artifacts can be observed
particularly well in the horizontal cross sections of the results, see Fig. 3.

Finally we investigate the impact of the regularization parameter α on the
filtering process. Fig. 4, top left, shows the camera man test image. In the same
figure, we present the result of applying anisotropic non-quadratic regularization
with the regularization parameters α = 0.1, α = 0.5 and α = 1 and additional
parameters σ = 1, ρ = 5, ε = 0.001, γ0 = 0.001.

We notice that with increasing parameter α more and more objects of in-
creasing scale vanish. Due to the non-quadratic regularization, regions of con-
stant intensity emerge in the filtered image, while the edges between these re-
gions are kept sharp.

A comparison of non-quadratic anisotropic (see Fig. 4, bottom left) with
isotropic TV regularization (see Fig. 5, left) shows that the former method
produces more regular edges and preserves contrast. The contrast is also well
preserved by quadratic anisotropic regularization (see Fig. 5), but texture and
edges appear blurry. On the contrary, the proposed method yields a piecewise
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Figure 4: Original image (top left) and iteratively filtered images using p = 1
and α = 0.1 (top right), α = 0.5 (bottom left) and α = 1 (bottom right),
respectively.

constant, cartoon like solution with well pronounced edges.
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